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1. Introduction

In Part 1 of this series of reports, Grinfeld and Grinfeld [1] [2] [3] [4] formulated
a novel approach to the thermodynamics of heterogeneous systems completely
or partially filled with a liquid or gaseous substance in a plasma state. The ap-
proach is based on the use of Gibbs variational principles, and it enables efforts
to address a variety of problems relating to the equilibrium and stability of such
systems.

The general motivation for this series of reports is discussed in Grinfeld and

Grinfeld [1], in which we also demonstrated how the Gibbs approach could be
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applied to heterogeneous systems with charged gases. The main motivation is to
provide a relatively simple model applicable to substances in the plasma state
and compatible with the basic methodology suggested by Gibbs. In part Grinfeld
and Grinfeld [3], we developed a general thermodynamic methodology applica-
ble to gaseous two-component plasma with arbitrary Equations of State (EOS).
The general analysis is the most effective tool to elucidate the universal features
of the approach. On the other hand, it puts obvious limitations on the applica-
tion of mathematically rigorous tools.

The analytical difficulties appear because of two main reasons: 1) the difficul-
ties caused by the geometrical complexities of the problems under study, and 2)
the general relationships lead to essentially nonlinear systems of the partial dif-
ferential equation. Therefore, further simplifying assumptions is unavoidable if
one needs to proceed with exact mathematics. The exact solutions are the main
tools for a deeper understanding of the gross physical features of the models and
for verification of the theory.

In this fifth part of our study, we consider the equilibrium configurations of a
gaseous plasma confined between two infinite parallel plates, which are sketched
in Figure 1.

Fortunately, the equations of electrostatics in a vacuum are linear. The only
source of nonlinearity in the static problems is the EOS. To address this difficul-
ty, we choose the EOS, suggested in Grinfeld [5]. This choice results in dealing
with the linear ordinary differential equations (see also Gibbs [6], Hidalgo, Acosta,
Hinojosa [7]).

2. Formulation of the One-Dimensional Boundary Value
Problem for Two-Component Charged Mixture

We follow here the report by Grinfeld and Grinfeld [3] and the publication
Grinfeld [5]. Per these reports, the entire system of equilibrium equations in-
cludes the following three elements:

1) The condition of thermal equilibrium
T =T° =const (1.1)

through out the whole configuration,
2) The electrostatics system for the electrostatic potential ¢
d’p
?=—4n(aepe+aipi) (1.2)
where o,,0; are the charge densities of the components per unit mass, and

P.. p; are the mass densities of the components.

Vessel with plasma

Figure 1. Model of a charged plasma system.
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3) The electrochemistry equations

(pe), +op=A, (1.3)

where 7assumes the values eand 7and A, are the indefinite Lagrange multip-
liers.

To determine the Lagrange multipliers, we have to use the equation dealing
with the total charge (or mass) of the system. Let A, be the total mass of the gas
per unit cross section. This leads to the relationships

H
jdz,oI (z)=M, (1.4)
-H

Equation (1.1) reflects the thermal equilibrium throughout the whole system,
which is the standard condition implied by the Gibbs isoperimetric variation
principle [6] of thermodynamics of heterogeneous systems. Equation (2) is just
the standard equation of electrostatics. At last, Equation (1.4) is close to the con-

dition of the chemical equilibrium of charged particles [6].

3. The Exact Solution of the BVP for Two Charged Liquids
with the Canonical EOS

Differentiating (1.3), we get 2 equations

dp __adp

2.1
dz o, dz @D

where a7 (p)=(p,€ (p))pp .
We call canonical the EOS for which a? (p) = const. We use the combining

index Iwhich assumes two values “€” and “7”.

Inserting (2.1) in the equation of electrostatics (1.2), we arrive at the equations

2 2
a, d°p,
4Tcea dzze = 0P T O (2.2)
e
and
2 42
a” dp
e AR @3
i

Looking for the solutions of (2.2), (2.3) in the form

pe — & elZ (24)
Pi A
we get the system of 2 equations
a2
[O'e——e/lz A +0A=0 (2.5)
4no,
and
a
o A +| o — A7 1A =0 (2.6)
4no,
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The system (2.5), (2.6) leads to the following secular equation

a’ a’
o,——=1% | 06,-———A% |-0,0,=0 (2.7)
4no, 4no,
which can be rewritten as
aezai2 14 _ aezo-l + aIztje 12 — O (2 8)
4rno,o, o, o;
or
AP —A222 =0 (2.9)
where we use the notation
Ano? Ano?
A2 =E0 T (2.10)
a'i ae

Thus, we arrive at the following spectrum of the eigen-values:

2 =0,0,A+5A=0-|"=c,| 7
A —O,
2
dno?  dno? 2 2 Ae a_l (2.11)
: a a o,
AZZAZE TE3-|+ ch—e,_e'%__lA:O_)H H:Cl ;
a'i a‘e O Oj Aﬁ a_e
Ge
and the following general solution:
a’
o O
Pel 2 Co| ' [+Ci| ,[cosh(Az) (2.12)
Pi —O a_e
Ge

The constants C, and C; can be determined from the mass balance Equa-

tions (1.4).
By elementary integration we get

Idzcosh(Az)zisinh(AH) (2.13)

as implied by the following chain:

H
j dzcosh(Az) = 2 ginh (AH)
. A

—AH

H 1 H 1 AH
d h(Az)=— | dzAcosh(Az)=— | d h
_J; zcosh(Az) A_J; zAcosh (Az) . [ dncoshy

14 2
== 1|d h#n =—sinh(AH
A I ncoshn AS|n (AH)

~AH

with the help of (2.12), (2.13), the Equations (1.4) give us the following system of
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linear algebraic equations:
a2 .
Cy2Ho; +C,——=sinh(AH ) =M,
o A
(2.14)
a2 .
-Cy2Hao, +C1—Zsmh(AH )=M,

e
The Equations (2.14) imply the following solution

c . 1 Mo, -Mao
° 2H oiae(aizaf2+ai20;2)
1 AH M.o, +M,o;

" 2H sinh (AH) 00, (aizo'f2 +a(e20-;2)

(2.15)

Inserting the constants from the Equation (2.15) in Equation (2.12), we get

eventually
Pl _ 1 Meaezo'gl_Miaizafl Oi
ol 2H aiae(aizofz +an0;2) -0,
(2.16)
M Mo, alo*
— _ AH e + Vi0i '20'_1 cosh(Az)
2H sinh(AH) 6,0, (870, +a(a,” ) [alo,
Using elementary transformations, we can rewrite (2.16) as
ZHO'iO'e(aiZO'fZ +aeza;2) Pe
' , 1 217)
of AH ao;
=(Malc.;' —M,a’c )| ' ||+cosh(Az Mo, + Mo
( e S )—ae ( )sinh(AH)( ee ')aeza;1
or else
GiO'E(aizof2 +a820';2) 'Ze
' (2.18)
— .2 1 —=_2 -1\ Ci AH — — izi_l
:(peaeae —piai O; )_o'e +COSh(AZ)W(peGe+piGi) 20-8-1
where we use the following notation
Ano?  4no? Yo, P,
A? = S P =, p=— 2.19
22 2 Pe = Pi=on (2.19)
The solution (2.16) implies
o, p. + 0, p, = —————C0sh(Az 2.20
AR T sinh(AH) (42) (2:20)
where Qis the full charge of the plasma
Q=M,0, + M0, (2.21)

Equation (2.16) implies the following relationships for the spatial distributions
the volumetric charge densities:
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o.p| 1 Malo,'-Malo;" | o0,
op| 2H oo, (aizof2+a620'e'2) —0,0,
1 AH M +M.o. a;
+—— eTe 1% 200 cosh(Az)
2H sinh (AH)()-ige (aizgi’2 +aezge’2) a oo, 2.22)
— .2 -1 =2 -1 = - 2 -2 .
ao. —pao |1 AH o, +po, |a o
=P A J . e cosh(42)
alc,’+a’c;? |-l sinh(AH)alc,?+ac;? aio.’
_ ﬁeaezo-;l _pia‘lzo-;1 1 AH ﬁeo_e +/3io-i aIZG
- 2_-2 2 _-2 T 2_-2 2 _-2 COSh(AZ)
alo,’+alo;? |- sinh(AH)alc,” +alc;? |alo.?

where p, =M, /2H and p,=M;/2H are the mean densities of the charges.

It is sometimes convenient to transform (2.22) as follows:

OePe _ ﬁeasa;l_ﬁiaizafl 1 + AH ﬁeo-e +’Ei ' a O- COSh(AZ)
2 __-2 2__-2 H 2__-2 2 2__-2
o\ p; a’c.?+a’c? |1 sinh(AH)alo,? +a’0;” |alo;
) 1 AH  |afo;?
=% alo’|| | +———=| ", ', [cosh(Az) (2.23)
alo,” +a]o; -1 sinh(AH)|lalo;

AH o
" h(A
sinh(AH) [a%0,? cosh( Z)J

yoXo2 -
t 7/20| g o’ +
a;o, +ao, 1

4. The Asymptotic Case of “Neutral” Ionic Liquid

In the case of o; =0, the solutions (2.16), (2.17) reads

AH
p. cosh( Az
AR ”

osh(&z):psmh( H) (3.1)

smh AH)

where

.. Anoc?
A? =21 (3.2)

5. The Case of “Neutral” Ionic Liquid

For verification purposes, it is instructive to consider the case of the overall neu-
tral plasma. By the natural physical definition, in this case, the net charge of

plasma Q vanishes:

M.o, +M;o; =0 (4.1)
or
M.o.
Y=——i%i 1 (4.2)
M.c
Inserting Equation (4.1) in (2.16), we arrive at the relation
M
Pe|_ 1 1M (4.3)
Pl 2HM;

as implied by the following chain:
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P 1 Malo.'-Ma’o;" | o | 1 M,oalc.” MIGIaIG o;
pl 2 O'O'( |O-i72+a§6972) —Of  2H, O'io'e(ai o’ +a0, ) 0
1 a’c?+alo? o, 1 1 ||

= Mo, eo_: +2 IO—Iz 2 =og Moo —
2H9 0,0, (ai o-i_ +an'e_ ) —Oe 2H 00, | O
1
O-iMeO-e_ Me
_ g0, || 1 1= 1 (M,
- 2H 1| 2H[-oM,—| 2H|M,
-o,M,o, o,

O O-e

The solution (4.3) is in full agreement with the intuition: in the absence of ex-
ternal electrostatic fields, the component is uniformly distributed inside the ves-

sel.

6. The Case of Quasi-Neutral Plasma

Consider the quasi-neutral case, Ze., the case when

Y=1-q, |g|<1 (5.1)

We, then, get
M.o, + M;o; =(1—Y)Meae =gM,o, (5.2)

In view of the Equation (5.2), we get
Mo, =—(1-q)M,o, (5.3)

Using Equation (5.3), we can rewrite Equation (2.16) as follows

p|_M, M, 1
pll 2H|-o.0Y| "2H a’c?+a’c.?
o2 AH 2_-2 (5.4)
x _2 ‘03‘ —_ ‘61‘ cosh(Az)
||a’oi"o,| sinh (AH)|alc "ot
Some regrouping in Equation (5.4) gives us
Ol Mo, |1 N M.o, alo)’
oy "~ 2H |- 2H a’c’+a’c,’
AN 1 (5.5)
2__-2
—a cosh(Az
H ‘ sinh(AH) ;Gﬁz (82)

as implied by the following chain:

L 1 ao?+alo;?—qa’o;’
=—M._o
ol 2H CF (azo’2+azo’2) -0,
a
1 AH M lof
+—— j fzae —| cosh(Az) —»
2H Smh(AH)O_iGe (ai Oj +an'e ) &
O-e
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1

'\/Ie I\/le aﬁo’;s O
o 2_2 .2 _2
2H |-— 2H a’o;" +ajo.” |0,
i
2_-1
q—— AH Z(T; —= | > .[cosh(Az)
2H SInh(AH)O_io—e (ai O; +an'e ) an'e
1
M, q M, 1
= o.||l— — —
2H —j 2H a’c;? +alo,?
a_Z .—2 aZ _—2
X 2|013 e an 2lil -1 COSh(AZ)
-a’0;%c,|| sinh(AH)|[a%o; o,
At a;/a, >1, the Equation (5.4) reads
1
2H o) o (1—q)+q_L cosh (Az)
M. ||lo —0,0; smh(AH) 0
Using Equation (5.6), we get
2H o] | % (1—q)+q_L e cosh(Az)
M, oo [-o. sinh(AH )| 0
Using Equation (5.7), we get in turn
M AH
O 0, +O,p, = M. = cosh(A,z)

2H sinh(AH)

7. The Asymptotics of Incompressible Ionic Liquid and

Appearance of the Extinction Points of the Density

In this case the solution (2.16) reads

Y = VIR R
] o |[+—=——=——| M, o.|cosh(Az)
Al 2H 2H sinh(A_H)
1 0
and it implies
o,p, M. |[-o;]| M A_H Ue"'&ai
el — M ——————— M, '[cosh(Az)
op|l 2H|o; | 2Hsinh(A H)
0
_|oP)AH_joepetop cosh(Az)
o.p || sinh(A H) 0
as well as
A_H M M.o,
C.p, +0.p; = e%e Vi, cosh(Az)

" sinh (A H) 2H
We, then get, using (6.1)

o o A_H
2H =M. —L+|M_+M —- |——=——cosh(A
p.(2) ‘o J{ e '0'e]sinh(AoQH)coS (42)

e

o

A_H A_H
=M, ——2"_cosh(Aaz)-M, Z-{1-— 22" _cosh(A
esinh(AmH)Cos (42) '0'( sinh(AwH)COS ( Z)J

e

(5.6)

(5.7)

(5.8)

(6.1)

(6.2)

(6.3)

(6.4)
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or else

2Haepe(z)=—Mi0'i+(Miai+Meae)ﬁA|:|_|)Cosh(Az) (6.5)

We see that the local electric charge disappears at the point z=Z7Z_, such
that

(6.6)

M;o; sinh(A_H
AZ,, =cosh™ 19 (4.H)
Mo, +M,c, A_H
In a more general case, when both components a compressible, we have to use
the relationships (2.21).
Then, we arrive at the following analogies of (6.6):
M;a’o;" —M,ao,” sinh(AH)
(Meo'e+Mi0'i)ai2‘7f2 AH

AZ® =cosh™

ext

(6.7)

AZ! —cosh-l|: M.alo," -Mafo;" sinh(AH)
ext
(

M.o, +Mi0'i)a920;2 AH
In terms of Q = M,o, + M, 0;, the pair of Equations (6.7) can be rewritten as

i M,c; (aizo-i‘2 + 6150';2)—Qaezo';2 sinh(AH )

AZ:, =cosh™
o Qa’c”? AH
~cosh? Qajo;* —M,o, (a'c* +ala,” ) sinh (AH)
Qa’o;’ AH
- ., ) (6.8)
Azt — gyt | Mic (@0 +alo®) + Qalo.” sinh (AH)
ext Qa§6;2 AH
— cosh™® Meo-e (ae,?a;z + a‘izo-i72)_Qai20-i72 sinh (AH )

Qajaf AH

At small Q, the Equations (6.8) can be approximated with the following ones:

AZ¢ — cosht M0, a’o;% +a’o;? sinh(AH )}
Xt T —
) | Q a’c)’ AH
—cosh™| — M,o, a’c;” +a’c,” sinh(AH)
Q a’o;’ AH
r M 22, 22 2 cinh(AH (6.9)
i NoX - ‘o ° SIn
2 e | M e e s (4
. Q ao, AH
— cosh! ' M,o, alo,” +a%c;” sinh(AH)
Q alo,’ AH

The relationships (6.9) imply, that in the asymptotic case Q — 0, the extinc-
tion point of the “/” component can appears if ;Q >0; the extinction point of
the “€” component can appears if ¢,Q >0. The clause “can appear” means that
corresponding values of the inverse hyperbolic cosine “cosh™ ” are real. How-

ever, to be physically meaningful the corresponding values of Z, or Z.

DOI: 10.4236/jamp.2022.1010193 2891 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.1010193

M. Grinfeld, P. Grinfeld

should be less than A: but, in fact, they tend to infinity at Q — 0. This fact im-
plies that for sufficiently small Q the equilibrium configurations have no extinc-
tion points.

8. Calculation of the Pressure

If we consider the isothermal processes at T =T,, where T, is the base tem-

perature, we arrive at the relationships:

1 1 1
Ve (pe)_‘//eo = aZ _(pe ~ Peo )2 + Peo (___J

e
2
Pe Peo  Pe (7.1)
1 2 1 1
AV :ai22_pi(pi ~Po) + P [P_lo_;J
and then
1
P.(p) =8l (Pl =Pl )+ P (pW.),, = = const
(7.2)
1
p(p) =23’ E(piz _pizo)"‘ Pios (P, )pp =a/ =const
Using (2.16), we get for the case of the electrically neutral ionic substance:
0
g E=S +i—. AH ?||cosh(Az)
Al 2H|M;| 2H sinh(AH)]| 0
M AH
1 [M,—=——cosh (AZ) ﬁ— h(AH cosh (AZ) (7.3)
= ®sinh(AH) _[2H sinh(aH)
M, M
2H
Using (7.3), we get
2 (2)=[ Mo * M, 0, M,0,+Ma, A,Hcosh(4,z)
P 20, ) "2Ho,  Ho, sinh (A, H)
[ 1Mo, +Mio; A, Hcosh(A,z) ’
2  Ho, sinh(A,H) )’
(7.4)

N

P_Z(z):(ﬂszr M, o, Mo, + M0, a; o; A H cosh(A z)
' 2H

2
+[1 Mo, +Mo, & o, A H cosh(sz)J

2Ho, Ho, a’o, sinh(AH)
2  Ho, a’ o, sinh(A_H)

Using (7.4), we get
1
P (£) = Pio zaiZE(Pi2 _Pizo)
~Laz|[ Mo 2—,o.2 vt Mif o “M.o, +Mio; A, Heosh(4,2)
2" |\2H Y1 4H o, Ho, sinh (A, H)

9, Conclusion

We found an exact 1D equilibrium solution for two-component gaseous plasma
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situated between two parallel planes. We supposed that each of the plasma
components has the EOS, postulated in the paper by Grinfeld [5]. The equili-
brium densities are described by the Equations (2.16). This solution is physically
meaningful if the corresponding densities are positive everywhere. This situation
definitely takes place if the net charge of plasma is sufficiently small. Otherwise,
the solution (2.16) should be corrected by calculating the points of extinction in
the spirit of the report Grinfeld [4]. The exact solution presented above can be
recommended for validation and verification of numerical code when dealing
with more complex equations of state, external electrostatic field, and the geo-

metry of the vessels.
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Notation

T—the absolute temperature

H—thickness of the layer

Q—the full charge of the plasma per unit cross-section

o,,0; —charge densities of the components per unit mass
Pe, o, —mass densities of the components

M., M; —total mass of the components per unit cross section
a’,a’ —compressibilities of the components

@ —electrostatic potential
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