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Abstract 
In this paper we refer to equations of motion for the single Stokes pulse from 
the nonlinear optics, called the Stokes pulse system. A fractional-order model 
with Caputo derivative associated to Stokes pulse system (called the fractional 
Stokes pulse system) is proposed. The existence and uniqueness of solution of 
initial value problem for this fractional system are proved. The dynamic be-
havior for a special fractional Stokes pulse system is investigated, including: 
the fractional stability, the stabilization problem using suitable linear controls 
and the numerical integration based on fractional Euler method. 
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1. Introduction 

The theory of fractional differential equations (i.e. fractional calculus) and its 
applications are based on non-integer order of derivatives and integrals [1] [2]. 

The use of fractional models has received a great degree of interest in a series 
of works due to its applications in different fields of science and engineering. For 
example, these models played an important role in applied mathematics [3], ma-
thematical physics [4], theoretical and applied physics [5], study of biological sys-
tems [6], control processing [7], chaos synchronization [8] [9] and so on. The dy-
namics of fractional-order systems associated to dynamical systems (in particu-
lar, Hamilton-Poisson systems) have been studied by many researchers in the 
recent decades [10] [11]. Another series of works deals with the study of dynam-
ical behaviors of classical and fractional differential systems on Lie groups, Lie 
algebroids and Leibniz algebroids [12] [13] [14]. 
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In this paper we consider the single Stokes pulse system [15]. It is described by 
the following differential equations on 3R : 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 3 3 2
2 3 2 3

2 3 1 1 3
3 1 3 1

3 1 2 2 1
1 2 1 2

u t l l u t u t b u t b u t

u t l l u t u t b u t b u t

u t l l u t u t b u t b u t

 = − + −
 = − + −


= − + −







          (1.1) 

where 1 2 3, ,u u u  are state variables, ( ) ( )d di iu t u t t= , ,i il b ∈R  for 1,3i =  are 
parameters and t is the time. 

The Hamilton-Poisson system (1.1) has been studied from mechanical geome-
try point of view [16]. It is associated to this system, the general fractional Stokes 
pulse system. The aim of our paper is focused on the study of a certain type of 
the fractional Stokes pulse system. 

This paper is structured as follows. The Stokes pulse system (2.6) is described 
in Section 2. In Section 3 we define the fractional Stokes pulse system (3.1). The 
existence and uniqueness of solutions of initial value problem for the fractional 
model (3.1) are discussed. Also, are proposed four types of fractional Stokes pulse 
systems which are physically inequivalent. From the four types of fractional 
Stokes pulse systems, we choose a subcase of the second type, called the special 
fractional Stokes pulse system (3.3). The Section 4 is dedicated to analyzing of 
asymptotic stability of equilibrium states for the fractional model (3.3). For sta-
bilization problem of the system (3.3), we associate the fractional Stokes pulse 
system with controls, denoted by (4.2). In Propositions (4.3) - (4.6) are estab-
lished sufficient conditions on parameters k and k1 to control the chaos in the 
fractional system (4.2). Using the fractional Euler’s method, the numerical inte-
gration of the system (4.2) is presented in Section 5. 

2. The Single Stokes Pulse as Hamilton-Poisson System 

For details on Hamiltonian dynamics, see e.g. [17] [18] [19]. 
The equations of motion for the Stokes polarization parameters of a single 

optical beam propagating as a traveling wave in a nonlinear medium (the single 
Stokes pulse) from the nonlinear optics are described by using the Stokes vector 
u and a Hamiltonian function H. 

The Stokes vector is defined using the Pauli spin matrices and is called the 
polarization parameters of the single Stokes pulse. The vector 3u∈R  is as-
sumed to be expressed in a linear polarization basis [15]. Let be A the transition 
matrix from the canonical basis of 3R  to the polarization basis. Since A is 
symmetric, then it one can always transform to a polarization basis in which A 
has the diagonal form ( )1 2 3, ,W diag l l l= , where , 1,3il i =  are the eigenvalues 
of A. 

The Hamiltonian function H is determined by the Stokes vector u, the diagonal 
matrix W, and the constant vectors ( )1 2 3, ,a a a a=  and ( )1 2 3, ,c c c c= . Using 
the vectors a and c, we define the vector ( )1 2 3, ,b b b b=  by: 

,    .b a r c r c= + ⋅ =                      (2.1) 
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The matrix W describes the self-induced ellipse rotation. The vectors a and c 
describes the effects of linear and nonlinear anisotropy, respectively. 

In terms of the Stokes parameters (the components of the vector u), the Ha-
miltonian function ( )3 ,H C∞∈ R R , ( )u H u→ , is defined by [15]: 

( ) 1 ,
2

H u u W = ⋅ + ⋅ 
 
b u                    (2.2) 

where ( )T
1 2 3, ,b b b=b  and Tu=u . 

The diagonal matrix W and the choice of the vectors a and c generates the 
dynamics of the Stokes vector u with the frequence b. 

In the coordinate system 1 2 3Ou u u , the Hamiltonian function H defined by 
(2.2), is written as: 

( ) ( ) ( ) ( )2 2 21 2 3 1 2 3
1 2 3 1 2 3

1 .
2

H u l u l u l u b u b u b u = + + + + +  
      (2.3) 

The dynamics of a single Stokes pulse is written as Hamilton-Poisson system. 
More precisely, the Stokes pulse system is defined on the Lie-Poisson manifold 

( )3so ∗  the dual of Lie algebra ( )3SO  with the following bracket: 

{ }( ) ( ) ( )3, ,    , ,f gf g u u f g C
u u

∞∂ ∂ = ⋅ × ∀ ∈ ∂ ∂ 
R R          (2.4) 

and the Hamiltonian function ( ) 3: 3H so ∗ ≅ →R R  given by (2.3). 
The dynamical system defined on ( )3so ∗  with Poisson bracket {., .} given by 

(2.4), enabling the equations of motion to be expressed in Hamiltonian form: 

{ }, ,u u H=                         (2.5) 

where 3u∈R , t is the time and H is the Hamiltonian function [20]. 
We determine the equations { }, , 1,3i iu u H i= =  of the system (2.5). We 

have: 

{ }

( )

1 2 3
1

1

1 2 3
1 1 2 2 3 3

2 3 3 2
2 3 2 3

, 1 0 0

.

u u u
u Hu H u
u u

l u b l u b l u b

l l u u b u b u

 ∂ ∂
= ⋅ × = ∂ ∂  + + +

= − + −

 

Then, the first equation of the system (2.5) is ( )1 2 3 3 2
2 3 2 3u l l u u b u b u= − + − . 

Finally one obtains the following differential system on 3R : 

( )
( )
( )

1 2 3 3 2
2 3 2 3

2 3 1 1 3
3 1 3 1

3 1 2 2 1
1 2 1 2

u l l u u b u b u

u l l u u b u b u

u l l u u b u b u

 = − + −
 = − + −


= − + −







                (2.6) 

where the parameters ,i il b ∈R  for 1,3i =  are connected with the nature of 
the material and the medium. 

The system (2.6) is called the Stokes pulse dynamical system. 
Acording to [20] there are six types of Equation (2.6) which are physically in-

equivalent and which correspond to different types of optical media [16]. 
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Proposition 2.1. The functions H given by (2.4) and ( )3 ,C C∞∈ R R , de-
fined by: 

( ) ( ) ( ) ( )2 2 21 2 31 ,
2

u C u u u u → = + +    
are constants of the motion (first integrals) for the dynamics (2.6). 

Proof. Indeed, we have 
1 1 2 2 3 3 1 2 3

1 2 3 1 2 3d d 0.H t l u u l u u l u u b u b u b u= + + + + + =       

Also, we have  

( ) ( )
( )

1 1 2 2 3 3

1 2 3 3 2 2 3 1 1 3
2 3 2 3 3 1 3 1

3 1 2 2 1
1 2 1 2

d d

0.

C t u u u u u u

u l l u u b u b u u l l u u b u b u

u l l u u b u b u

= + +

   = − + − + − + −   
 + − + − 

=

  

 

Remark 2.1. By Proposition 2.1, it follows that the trajectories of motion of 
Stokes pulse dynamical system (2.6) are intersections of the surfaces: 

constantH =  and constantC = . 

3. The Fractional Stokes Pulse System 

For basic knowledge on fractional calculus, one may refer to [21] [22]. 
In this paper we consider the fractional derivative operator q

tD  with  
( )0,1q∈  to be Caputo’s derivative. This fractional derivative operator is often 

used in concrete applications. 
Let ( )f C∞∈ R  and , 0q q∈ >R . The q-order Caputo differential operator 

[21], is described by ( ) ( ) ( ) , 0mq m q
tD f t I f t q−= > , where ( ) ( )mf t  represents the 

m-order derivative of the function f, m ∗∈N  is an integer such that  

1m q m− ≤ ≤  and qI  is ( ) ( ) ( ) ( )1

0

1 d
t

qqI f t t s f s s
q

−= −
Γ ∫ , 0q > , 

where Γ  is the Euler Gamma function. If 1q = , then ( )1 d dtD f t f t= . 
The Hamilton-Poisson system (2.6) is modeled by the following fractional dif-

ferential equations: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 3 3 2
2 3 2 3

2 3 1 1 3
3 1 3 1

3 1 2 2 1
1 2 1 2

,       0,1

t
q

t
q

t
q

D u t l l u t u t b u t b u t

D u t l l u t u t b u t b u t q

D u t l l u t u t b u t b u t

 = − + −
 = − + − ∈


= − + −

    (3.1) 

where iu  are the Stokes polarization parameters and ,i il b ∈R  for 1,3i = . 
The system (3.1) is called the fractional Stokes pulse system associated to 

(2.6). 
The initial value problem of fractional model (3.1) can be represented in the 

following matrix form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3
1 2 3 0,    0 ,q

tD u t Au t u t A u t u t A u t u t A u t u u= + + + =   (3.2) 

where 0 1q< < , ( ) ( ) ( ) ( )( )T1 2 3, ,u t u t u t u t= , ( )0,t τ∈  and 

https://doi.org/10.4236/jamp.2022.1010191


M. Ivan 
 

 

DOI: 10.4236/jamp.2022.1010191 2860 Journal of Applied Mathematics and Physics 
 

3 2

3 1 1 3 1

2 1

2 3

2 3

1 2

0 0 0 0
0 ,   0 0 ,

0 0 0 0

0 0 0 0 0
0 0 0 ,   0 0 0 .

0 0 0 0 0

b b
A b b A l l

b b

l l
A A

l l

−   
   = − = −   
   −   

−   
   = =   
   −     

Proposition 3.1. The initial value problem of the fractional Stokes pulse sys-
tem (3.1) has a unique solution. 

Proof. Let ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3
1 2 3f u t Au t u t A u t u t A u t u t A u t= + + + . It is  

obviously continuous and bounded on  

{ }3
0 0| , , 1,3i i iD u u u u iδ δ = ∈ ∈ − + = R  for any 0δ > . We have  

( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )1 1f u t f u t A u t u t x t y t z t− = − + + + , where  
( ) ( ) ( ) ( ) ( )1 1

1 1 1 1x t u t A u t u t A u t= − , ( ) ( ) ( ) ( ) ( )2 2
2 1 2 1y t u t A u t u t A u t= −  and  

( ) ( ) ( ) ( ) ( )3 3
3 1 3 1z t u t A u t u t A u t= − , 

Then 
(1) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 1f u t f u t A u t u t x t y t z t− ≤ ⋅ − + + + , where ⋅  

and denote ⋅  matrix norm and vector norm, respectively. 
It is easy to see that ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1

1 1 1 1 1x t u t u t A u t u t A u t u t= − + − . Then 

(2) ( ) ( ) ( )( ) ( ) ( )1
1 1 1x t A u t u t u t u t≤ + − . 

Similarly, we prove that 
(3) ( ) ( ) ( )( ) ( ) ( )2

2 1 1y t A u t u t u t u t≤ + − . 

(4) ( ) ( ) ( )( ) ( ) ( )3
3 1 1z t A u t u t u t u t≤ + − . 

According to (2)-(4), the relation (1) becomes 

(5) 
( )( ) ( )( ) ( ) ( )( )( ( ) ( )( )

( ) ( )( )) ( ) ( )

1 2
1 1 1 2 1

3
3 1 1

f u t f u t A A u t u t A u t u t

A u t u t u t u t

− ≤ + + + +

+ + ⋅ −
. 

We have ( )2 2 2
1 2 32 :A b b b θ= + + = , 1 3 1A l l= − , 2 1 2A l l= − ,  

3 2 3A l l= − . If { }3 1 1 2 2 3max , ,l l l l l lω = − − − , then iA ω≤  for 1,3i = . 

From the relation (5) we deduce that 

(6) 
( )( ) ( )( ) ( ) ( )( )( ( ) ( )( )

( ) ( )( )) ( ) ( )

1 2
1 1 1

3
1 1

f u t f u t u t u t u t u t

u t u t u t u t

θ ω ω

ω

− ≤ + + + +

+ + ⋅ −
. 

Given that inequalities ( ) ( )1 02iu t u t u δ+ ≤ + , 1,3i = , are valid, the rela-
tion (6) becomes 

(7) ( )( ) ( )( ) ( ) ( )1 1f u t f u t L u t u t− ≤ ⋅ − , 

where ( )03 2 0L uθ ω δ= + + > . 
The inequality (7) shows that ( )( )f u t  satisfies a Lipschitz condition. Using 

Theorems 1 and 2 in [23], it follows that the system (3.1) has a unique solution. 
As with the nonlinear dynamics generated by the Stokes pulse system (2.6) 

there are six types of fractional Equation (3.1) which are physically inequivalent 
and which correspond to different types of optical media. 
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In this section we will refer to the types of fractional Stokes pulse systems for 
which the parameters , 1,3il i∈ =R  meet the following condition 1 2 3 1l l l l≠ ≠ ≠ . 

In this context there are the following four types of fractional Stokes pulse 
systems: 

Type 1. ( )0,0,0b =  and 1 2 3 1l l l l≠ ≠ ≠ ; 
Type 2. ( )20, ,0b b= , 2 0b ≠  and 1 2 3 1l l l l≠ ≠ ≠ ; 
Type 3. ( )1 3,0,b b b= , 1 3 0b b ≠  and 1 2 3 1l l l l≠ ≠ ≠ ; 
Type 4. ( )1 2 3, ,b b b b= , 1 2 3 0b b b ≠  and 1 2 3 1l l l l≠ ≠ ≠ . 
As an example, the fractional system corresponding to type 2, is given by: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 3
2 3 2

2 3 1
3 1

3 1 2 1
1 2 2

,                    0,1

t
q

t
q

t
q

D u t l l u t u t b u t

D u t l l u t u t q

D u t l l u t u t b u t

 = − +
 = − ∈


= − −

        (3.3) 

where 2b ∗∈R  and , 1,3il i∈ =R  such that 1 2 3 1l l l l≠ ≠ ≠ . 
The system (3.3) is called the special fractional Stokes pulse system. It is de-

termined by a single nonzero component of vector b and contains the three non-
linear terms of the system (3.1) (given in general form). 

For the system (3.3) we introduce the following notations: 

( ) ( ) ( ) ( ) ( ) ( )2 3 3 3 1 1 2 1
1 2 3 2 2 3 1 3 1 2 2,  ,  .f u l l u u b u f u l l u u f u l l u u b u= − + = − = − − (3.4) 

Proposition 3.2. The equilibrium states of the special fractional Stokes pulse 
system (3.3) are given as the union of the following three families: 

( ){ }3
1 1

32
2 2

1 2

32
3 3

3 2

: 0, ,0 | ,

: , ,0 | ,

: 0, , | .

m

m

m

E e m m

bE e m m
l l

bE e m m
l l

= = ∈ ∈

   = = ∈ ∈  −   
   = = ∈ ∈  −   

R R

R R

R R

 

Proof. The equilibrium states are solutions of the equations ( ) 0, 1,3if u i= = , 
where , 1,3if i =  are given by (3.4). 

Remark 3.1. If in the fractional model (3.3) we take 1q = , then one obtains 
the system for integer-order derivative which corresponds to type 4 $ of the dy-
namics (1.1). For this dynamical system, the nonlinear stability and the problem 
of existence of periodic solutions are studied, see Theorems 2.4, 3.5-3.7 [16]. 

4. Asymptotic Stability of the Special Fractional Stokes Pulse 
System (3.3) 

Let us we present the study of asymptotic stability of equilibria for the fractional 
system (3.3). Finally, we will discuss how to stabilize the unstable equilibrium 
states of the system (3.3) via fractional order derivative. For this study we apply 
the Matignon’s test [7]. 

In the follows we will use the notations: 

2 3 3 1 1 2: ,    : ,    : .l l l l l lα β γ= − = − = −                (4.1) 
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With the notations (4.1), the Jacobian matrix associated to system (3.3) is: 

( )

3 2
2

3 1

2 1
2

0
0 .

0

u u b
J u u u

u b u

α α
β β

γ γ

 +
 

=  
 −   

Proposition 4.1. ([7]) Let eu  be an equilibrium state of system (3.3) and  
( )eJ u  be the Jacobian matrix ( )J u  evaluated at eu . 
(i) eu  is locally asymptotically stable, iff all eigenvalues of the matrix ( )eJ u  

satisfy: 

( )( )( )arg .
2e

qJ uλ π
>

 
(ii) eu  is locally stable, iff either it is asymptotically stable, or the critical ei-

genvalues of ( )eJ u  which satisfy ( )( )( )arg
2e

qJ uλ π
=  have geometric mul-

tiplicity one. 
Proposition 4.2. The equilibrium states , 1,3m

ie i =  are unstable ( ) ( )0,1q∀ ∈ . 
Proof. The characteristic polynomial of the matrix  

( )
2

1

2

0 0
0 0 0

0 0

m

m b
J e

m b

α

γ

+ 
 =  
 − 

 is  

( ) ( )( ) ( )( )2 2 2
1 1 2 2det mp J e I m b m bλ λ λ λ αγ γ α = − = − − − − −  . For 0m = , the 

characteristic polynomials of the matrix ( )0J e  is ( ) ( )2 2
0 2p bλ λ λ= − + . 

The characteristic polynomials of matrices ( )2
mJ e  and ( )3

mJ e  are the fol-
lowing: 

( ) ( )2 2
2p mλ λ λ βγ= − −  and ( ) ( )2 2

3p mλ λ λ αβ= − − . 

The equations ( )0 0p λ =  and ( ) 0, 1,3ip iλ = =  have the root 1 0λ = . Since 

( )1arg 0
2

qλ π
= <  for all ( )0,1q∈ , by Proposition 4.1 follows that the equili-

brium states 0e  and , 1,3m
ie i =  are unstable for all ( )0,1q∈ . 

In the case when eu  is a unstable equilibrium state of the fractional system 
(3.3), we associate to (3.3) a new fractional system, called the special fractional 
Stokes pulse system with (external) controls and given by: 

( )

1 2 3 3 1
2 1

2 3 1 2

3 1 2 1 3
2 1

,                 0,1

t
q

t
q

t
q

D u u u b u k u

D u u u ku q

D u u u b u k u

α

β

γ

 = + +
 = + ∈


= − +

             (4.2) 

where , ,α β γ  are given in (4.1) and 1,k k ∈R  are controls. 
If one selects the parameters 1,k k  which then make the eigenvalues of the 

Jacobian matrix of fractional model (3.3) satisfy one of the conditions from 
Proposition 3.1, then its trajectories asymptotically approaches the unstable 
equilibrium state eu  in the sense that ( )lim 0t eu t u→∞ − = , where ⋅  is the 
Euclidean norm. 
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The Jacobian matrix of the fractional model (4.2) with the controls 1,k k  is 

( )

3 2
1 2

3 1
1

2 1
2 1

, , .
k u u b

J u k k u k u
u b u k

α α
β β

γ γ

 +
 

=  
 −   

Proposition 4.3. Let be the fractional Stokes pulse system (4.2) with the con-
trols 1,k k ∗∈R . 

(i) If 10, 0k k< < , then 0e  is asymptotically stable ( ) ( )0,1q∀ ∈ ; 

(ii) If 10, 0k k< >  and 2
0

1

2 arctan
b

q
k

=
π

, then: 

(1) 0e  is asymptotically stable ( ) ( )00,q q∀ ∈  and it is stable for 0q q= . 
(2) 0e  is unstable ( ) ( )0 ,1q q∀ ∈ . 
(iii) If 0k >  and 1k ∗∈R , then 0e  is unstable ( ) ( )0,1q∀ ∈ . 
Proof. The characteristic polynomial of the Jacobian matrix ( )0 1, ,J e k k  is  
( ) ( ) ( )2 2

0 1 1 2, ,p k k k k bλ λ λ = − − − +  . The roots of the equation  
( )0 1, , 0p k kλ =  are 1 kλ = , 2,3 1 2k ibλ = ± . 

(i) We suppose 0k <  and 1 0k < . In this case we have ( )Re 0iλ <  for  

1,3i = . Since ( )arg , 1,3
2i

q iλ π
= π > =  for all ( )0,1q∈ , by Proposition 4.1(i), 

it implies that 0e  is asymptotically stable for all 1,k k ∗∈R . 
(ii) We suppose 0k <  and 1 0k > . In this case we have 1 0λ <  and  

( )2,3Re 0λ > . Applying Proposition 4.1(i), 0e  is locally asymptotically stable, 

for 00 q q< < , where 2
0

1

2 arctan
b

q
k

=
π

. If 0q q= , 0e  is stable. For  

0 1q q< < , 0e  is unstable ( ) 1,k k ∗∀ ∈R . Hence, the assertion (ii) holds. 

(iii) We suppose 0k >  and 1k ∗∈R . Since ( )0 1, ,J e k k  has at least a posi-
tive eigenvalue, it follows that 0e  is unstable. Hence, (iii) holds, ( ) ( )0,1q∀ ∈ . 

Proposition 4.4. Let be the fractional Stokes pulse system (4.2) with the con-
trols 1,k k ∗∈R , ( )1 0, ,0me m=  and ( )( )1 2 2m b m bα γ∆ = + − . 

1. Let 1 0∆ <  and ( )0,1q∈ . 
(i) If 0k <  and 1 0k < , then 1

me  is asymptotically stable. 

(ii) Let 10, 0k k< >  and 1
1

1

2 arctanq
k
−∆

=
π

. 

(1) If 2 0, 0b α γ
αγ
+

> >  and 2 2,
b bm
α γ

 
∈ − 
 

, then 1
me  is asymptotically sta-

ble ( ) ( )10,q q∀ ∈ , stable for 1q q=  and unstable ( ) ( )1,1q q∀ ∈ . 

(2) If 2 0, 0b α γ
αγ
+

< >  and 2 2,
b bm
γ α

 
∈ − 
 

, then 1
me  is asymptotically sta-

ble ( ) ( )10,q q∀ ∈ , stable for 1q q=  and unstable ( ) ( )1,1q q∀ ∈ . 

(iii) If 0k >  and 1k ∗∈R , then 1
me  is unstable ( ) ( )0,1q∀ ∈ . 

2. Let 1 0∆ >  and ( )0,1q∈ . 
(i) If 10, 0k k< <  and 2

1 1k > ∆ . 
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(1) If 2 0, 0b α γ
αγ
+

> >  and 2 2, ,
b bm
α γ

  ∈ −∞ − ∪ ∞  
   

, then 1
me  is asymptot-

ically stable. 

(2) If 2 0, 0b α γ
αγ
+

< >  and 2 2, ,
b bm
γ α

   ∈ −∞ ∪ − ∞   
  

, then 1
me  is asymp-

totically stable. 

(ii) Let 2
1 1 10, 0,k k k< < ≤ ∆  and 0α γ

αγ
+

> . If 2 0b > ,  

2 2, ,
b bm
α γ

  ∈ −∞ − ∪ ∞  
   

 or 2 0b < , 2 2, ,
b bm
γ α

   ∈ −∞ ∪ − ∞   
  

, then 1
me  is 

unstable. 
Proof. The characteristic polynomial of (4.2) at 1

me  is  

( )
1 2

1 1

2 1

0
, , 0 0

0

m

k m b
J e k k k

m b k

α

γ

+ 
 =  
 − 

 whose characteristic polynomial is  

( ) ( )( ) ( ) ( ) ( )( )2
1 1 1 1 1 2 2, , det , ,mp k k J e k k I k k m b m bλ λ λ λ α γ = − = − − − − + −  . 

The roots of the characteristic equation ( )1 1, , 0p k kλ =  are 1 kλ = ,  

2,3 1 1kλ = ± ∆ , where ( )( )1 2 2m b m bα γ∆ = + − . 

1. Case 1 0∆ <  and ( )0,1q∈ . We have the following two situations: 

(1) if 2 0, 0b α γ
αγ
+

> > , then 1 0∆ <  for all 2 2,
b bm
α γ

 
∈ − 
 

; 

(2) if 2 0, 0b α γ
αγ
+

< > , then 1 0∆ <  for all 2 2,
b bm
γ α

 
∈ − 
 

. 

In this case, 1 kλ = , 2,3 1 1k iλ = ± −∆ . 
(i) We suppose 0k <  and 1 0k < . In this case we have 1 0λ <  and  

( )2,3Re 0λ < . Since ( )arg , 1,3
2i

q iλ π
= π > =  for all ( )0,1q∈ , by Proposition 

4.1(i), it implies that 1
me  is locally asymptotically stable for all m ∗∈R . 

(ii) (1)-(2). For 0k <  and 1 0k > , we have 1 0λ <  and ( )2,3Re 0λ > . Apply-

ing Proposition 4.1(i), 1
me  is asymptotically stable, for 10 q q< < , where 

 
1

1
1

2 arctanq
k
−∆

=
π

. If 1q q= , then 1
me  is stable. For 1 1q q< < , 1

me  is unstable. 

(iii) Let 0k >  and 1k ∗∈R . Since 1 0λ > , ( )1 1, ,mJ e k k  has at least a posi-

tive eigenvalue and so 1
me  is unstable. Hence, the assertions (i)-(iii) hold. 

2. Case 1 0∆ >  and ( )0,1q∈ . Then 1 kλ = , 2,3 1 1kλ = ± ∆ . We have the 
following two situations: 

(1) if 2 0, 0b α γ
αγ
+

> > , then 1 0∆ >  for all 2 2, ,
b bm
α γ

  ∈ −∞ − ∪ ∞  
   

; 

(2) if 2 0, 0b α γ
αγ
+

< > , then 1 0∆ >  for all 2 2, ,
b bm
γ α

   ∈ −∞ ∪ − ∞   
  

. 

https://doi.org/10.4236/jamp.2022.1010191


M. Ivan 
 

 

DOI: 10.4236/jamp.2022.1010191 2865 Journal of Applied Mathematics and Physics 
 

(i)-(ii) The eigenvalues , 1,3i iλ =  are all negative if and only if 10, 0k k< <  

and 2
1 1k > ∆ . In these hypotheses it folows that 1

me  is asymptotically stable. 

Also, if 2
1 1k ≤ ∆ , then 1

me  is unstable. Therefore, the assertions (i)-(ii) hold. 
Proposition 4.5. Let be the fractional Stokes pulse system (4.2) with the con-

trols 1,k k ∗∈R , 2
2 , ,0m be m

γ
 

=  
 

 and ( )2 2
2 1 4k k mβγ∆ = − + . 

1. Let 0βγ <  and m ∗∈R . 

(i) Let 2 0∆ <  and ( )0,1q∈ . 

(1) If 0k <  and 1 0k < , then 2
me  is asymptotically stable  

( ) 1 1, ,
2 2
k k k km

βγ βγ

   − −
∀ ∈ −∞ ∪ ∞      − −   

. 

(2) If 1 10,k k k< >  and 1 0k k+ < , then 2
me  is asymptotically stable  

( ) 1 1, ,
2 2
k k k km

βγ βγ

   − −
∀ ∈ −∞ ∪ ∞      − −   

. 

(3) If 1 10, 0, 0k k k k< > + > , 2
2

1

2 arctanq
k k
−∆

=
π +

 and  

1 1, ,
2 2
k k k km

βγ βγ

   − −
∈ −∞ ∪ ∞      − −   

, then 2
me  is asymptotically stable  

( ) ( )20,q q∀ ∈ , stable for 2q q=  and unstable ( ) ( )2 ,1q q∀ ∈ . 

(ii) Let 2 0∆ ≥  and ( )0,1q∈ . 

(1) If 1 0k k< <  and 1 0k < , then 2
me  is asymptotically stable  

( ) 1 1,
2 2
k k k km

βγ βγ

 − −
∀ ∈  

− −  
. 

(2) If 1 10,k k k< >  and 1 0k k+ < , then 2
me  is asymptotically stable 

( ) 1 1,
2 2
k k k km

βγ βγ

 − −
∀ ∈  

− −  
. 

(3) If 1 10, 0, 0k k k k< > + >  or 1 0k > , k ∗∈R , then 2
me  is unstable. 

2. Let 0βγ > , m ∗∈R  and ( )0,1q∈ . 

(i) Let 10, 0k k< <  and ( )2
1 2 0k k+ > ∆ > . 

(1) If 1k k< , 1 1,
2 2
k k k km

βγ βγ

 − −
∈  

− −  
, then 2

me  is asymptotically stable. 

(2) If 1k k> , 1 1,
2 2
k k k km

βγ βγ

 − −
∈  

− −  
, then 2

me  is asymptotically stable. 

(ii) Let ( )2
1 1 1 20, 0,k k k k k< + > + ≤ ∆  or 1 0,k k ∗> ∈R . If 1k k< ,  

1 1,
2 2
k k k km

βγ βγ

 − −
∈  

− −  
 or 1,k k>  1 1,

2 2
k k k km

βγ βγ

 − −
∈  

− −  
, then 2

me  is unsta-

ble. 
Proof. The Jacobian matrix of (4.2) at 2

me  is  
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( )

2
1 2

2 1

1

0

, , 0
0

m

bk b

J e k k k m
m k

α
γ
β

γ

 + 
 
 =
 
 
 
 

 

whose characteristic polynomial is  

( ) ( ) ( )2 2
2 1 1 1 1, ,p k k k k k kk mλ λ λ λ βγ = − − − + + −  . The roots of the equation 

( )2 1, , 0p k kλ =  are 1 1kλ = , 
( )1 2

2,3 2
k k

λ
+ ± ∆

= , where  

( )2 2
2 1 4k k mβγ∆ = − + . 

1. Case 0βγ < . 

(i) Case 2 0∆ <  and ( )0,1q∈ . Then 1 1kλ = , 
( )1 2

2,3 2
k k i

λ
+ ± −∆

= . We 

have 2 0∆ <  if and only if 1 1, ,
2 2
k k k km

βγ βγ

   − −
∈ −∞ ∪ ∞      − −   

 when 1k k<  or 

1 1, ,
2 2
k k k km

βγ βγ

   − −
∈ −∞ ∪ ∞      − −   

 when 1k k> . 

(1) We suppose 1 0k k< < . In this case we have 1 0λ <  and ( )2,3Re 0λ < . 

Since ( )arg , 1,3
2i

q iλ π
= π > =  for all ( )0,1q∈ , by Proposition 4.1(i), it im-

plies that 2
me  is locally asymptotically stable for all  

1 1, ,
2 2
k k k km

βγ βγ

   − −
∈ −∞ ∪ ∞      − −   

. 

(2) We suppose 1 10,k k k< >  and 1 0k k+ < . In this case we have 1 0λ <  and 

( )2,3Re 0λ < . Applying the same reasoning as in the case (i)(1), one obtains that 

2
me  is locally asymptotically stable for all  

1 1, ,
2 2
k k k km

βγ βγ

   − −
∈ −∞ ∪ ∞      − −   

. 

(3) We suppose 1 0, 0k k< >  and 1 0k k+ > . In this case, 2 0∆ <  if and 

only if 1 1, ,
2 2
k k k km

βγ βγ

   − −
∈ −∞ ∪ ∞      − −   

. Then 1 0λ <  and ( )2,3Re 0λ > . 

Applying Proposition 4.1(i), 2
me  is locally asymptotically stable, for 20 q q< < , 

where 2
2

1

2 arctanq
k k
−∆

=
π +

. If 2q q= , then 2
me  is stable. For 2 1q q< < , 2

me  

is unstable. 

(ii) Case 2 0∆ ≥  and ( )0,1q∈ . Then 1 1kλ = , 
( )1 2

2,3 2
k k

λ
+ ± ∆

= . We 

have 2 0∆ ≥  if and only if 1 1,
2 2
k k k km

βγ βγ

 − −
∈  

− −  
 when 1k k<  or  
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1 1,
2 2
k k k km

βγ βγ

 − −
∈  

− −  
 when 1k k> . 

(1) and (2). In these cases, if 0k <  and 1 0k < , then 2 3 0λ λ+ <  and  
2

2 3 1 0kk mλ λ βγ= − > . It follows 0, 1,3i iλ < = . Then, 2
me  is locally asymptoti-

cally stable. 
(3) Let 1 0, 0k k< >  and 1 0k k+ >  or 1 0k >  and k ∗∈R . Then  

( )2 1, ,mJ e k k  has at least a positive eigenvalue and so 2
me  is unstable. Hence, the 

assertion (ii) holds. 
2. Case 0βγ > , m ∗∈R  and ( )0,1q∈ . In this case 2 0∆ ≥ . 
(i) We suppose 1 0k < . We have 2 0λ <  and 3 0λ <  if and only if  

2 3 0λ λ+ <  and 2 3 0λ λ > . Then 1 0k k+ <  and ( )2
1 2 0k k+ − ∆ > . It follows 

0, 1,3i iλ < =  for all m ∗∈R  such that ( )2
1 2k k+ > ∆ . Hence, 2

me  is locally 
asymptotically stable. 

(ii) We suppose 1 10, 0k k k< + >  or 1 0,k k ∗> ∈R . Then, ( )2 1, ,mJ e k k  has at 

least a positive eigenvalue and so 2
me  is unstable. Therefore, the assertion (ii) 

holds. 
Proposition 4.6. Let be the fractional Stokes pulse system (4.2) with the con-

trols 1,k k ∗∈R , 2
3 0, ,m be m

α
 = − 
 

 and ( )2 2
3 1 4k k mαβ∆ = − + . 

1. Let 0αβ <  and m ∗∈R . 

(i) Let 3 0∆ <  and ( )0,1q∈ . 

(1) If 1 0k k< < , then 3
me  is asymptotically stable  

( ) 1 1, ,
2 2
k k k km

αβ αβ

   − −
∀ ∈ −∞ ∪ ∞      − −   

. 

(2) If 1 10,k k k< >  and 1 0k k+ < , then 3
me  is asymptotically stable  

( ) 1 1, ,
2 2
k k k km

αβ αβ

   − −
∀ ∈ −∞ ∪ ∞      − −   

. 

(3) If 1 10, 0, 0k k k k< > + > , 3
3

1

2 arctanq
k k
−∆

=
π +

 and  

1 1, ,
2 2
k k k km

αβ αβ

   − −
∈ −∞ ∪ ∞      − −   

, then 2
me  is asymptotically stable  

( ) ( )30,q q∀ ∈ , stable for 3q q=  and unstable ( ) ( )3 ,1q q∀ ∈ . 

(ii) Let 3 0∆ ≥  and ( )0,1q∈ . 

(1) If 1 0k k< <  and 1 0k < , then 3
me  is asymptotically stable  

( ) 1 1,
2 2
k k k km

αβ αβ

 − −
∀ ∈  

− −  
. 

(2) If 1 10,k k k< >  and 1 0k k+ < , then 3
me  is asymptotically stable  

( ) 1 1,
2 2
k k k km

αβ αβ

 − −
∀ ∈  

− −  
. 

(3) If 1 10, 0, 0k k k k< > + >  or 1 0k > , k ∗∈R , then 3
me  is unstable. 
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2. Let 0αβ > , m ∗∈R  and ( )0,1q∈ . 
(i) Let 10, 0k k< <  and ( )2

1 3 0k k+ > ∆ > . 

(1) If 1k k< , 1 1,
2 2
k k k km

αβ αβ

 − −
∈  

− −  
, then 3

me  is asymptotically stable. 

(2) If 1k k> , 1 1,
2 2
k k k km

αβ αβ

 − −
∈  

− −  
, then 3

me  is asymptotically stable. 

(ii) Let ( )2
1 1 1 30, 0,k k k k k< + > + ≤ ∆  or 1 0,k k ∗> ∈R . If 1k k< , 

 
1 1,

2 2
k k k km

αβ αβ

 − −
∈  

− −  
 or 1k k> , 1 1,

2 2
k k k km

αβ αβ

 − −
∈  

− −  
, then 3

me  is un-

stable. 
Proof. The Jacobian matrix of (4.2) at 3

me  is  

( )
1

3 1

2
2 1

0
, , 0

0

m

k m
J e k k m k

b b k

α
β

γ
α

 
 
 

=  
 
 − −
 

 

Whose characteristic polynomial is  

( ) ( ) ( )2 2
3 1 1 1 1, ,p k k k k k kk mλ λ λ λ αβ = − − − + + −  . The roots of the equation 

( )3 1, , 0p k kλ =  are 1 1kλ = , 
( )1 3

2,3 2
k k

λ
+ ± ∆

= , where  

( )2 2
3 1 4k k mαβ∆ = − + . 

1. Case 0αβ < . 

(i) Case 3 0∆ <  and ( )0,1q∈ . Then 1 1kλ = , 
( )1 3

2,3 2
k k i

λ
+ ± −∆

= . We 

have 3 0∆ <  if and only if 1 1, ,
2 2
k k k km

αβ αβ

   − −
∈ −∞ ∪ ∞      − −   

 when 1k k<  or 

1 1, ,
2 2
k k k km

αβ αβ

   − −
∈ −∞ ∪ ∞      − −   

 when 1k k> . 

(1) We suppose 1 0k k< < . In this case we have 1 0λ <  and ( )2,3Re 0λ < . 

Since ( )arg , 1,3
2i

q iλ π
= π > =  for all ( )0,1q∈ , by Proposition 4.1(i), it im-

plies that 3
me  is locally asymptotically stable for all  

1 1, ,
2 2
k k k km

αβ αβ

   − −
∈ −∞ ∪ ∞      − −   

. 

(2) We suppose 1 10,k k k< >  and 1 0k k+ < . In this case we have 1 0λ <  

and ( )2,3Re 0λ < . Applying the same reasoning as in the case (i)(1), one obtains 

that 3
me  is locally asymptotically stable for all  

1 1, ,
2 2
k k k km

αβ αβ

   − −
∈ −∞ ∪ ∞      − −   

. 

(3) We suppose 1 0, 0k k< >  and 1 0k k+ > . In this case, 3 0∆ <  if and only 
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if 1 1, ,
2 2
k k k km

αβ αβ

   − −
∈ −∞ ∪ ∞      − −   

. Then 1 0λ <  and ( )2,3Re 0λ > . Apply-

ing Proposition 4.1(i), 3
me  is locally asymptotically stable, for 30 q q< < , where 

3
3

1

2 arctanq
k k
−∆

=
π +

. If 3q q= , then 3
me  is stable. For 3 1q q< < , 3

me  is unst-

able. 

(ii) Case 3 0∆ ≥  and ( )0,1q∈ . Then 1 1kλ = , 
( )1 3

2,3 2
k k

λ
+ ± ∆

= . We 

have 3 0∆ ≥  if and only if 1 1,
2 2
k k k km

αβ αβ

 − −
∈  

− −  
 when 1k k<  or  

1 1,
2 2
k k k km

αβ αβ

 − −
∈  

− −  
 when 1k k> . 

(1) and (2). In these cases, if 0k <  and 1 0k < , then 2 3 0λ λ+ <  and  
2

2 3 1 0kk mλ λ αβ= − > . It follows 0, 1,3i iλ < = . Then, 3
me  is locally asymptoti-

cally stable. 
(3) Let 1 0, 0k k< >  and 1 0k k+ >  or 1 0k >  and k ∗∈R . Then 

 
( )3 1, ,mJ e k k  has at least a positive eigenvalue and so 3

me  is unstable. Hence, the 

assertion (ii) holds. 
2. Case 0αβ > , m ∗∈R  and ( )0,1q∈ . In this case 3 0∆ ≥ . 
(i) We suppose 1 0k < . We have 2 0λ <  and 3 0λ <  if and only if  

2 3 0λ λ+ <  and 2 3 0λ λ > . Then 1 0k k+ <  and ( )2
1 3 0k k+ − ∆ > . It follows 

0, 1,3i iλ < =  for all m ∗∈R  such that ( )2
1 3k k+ > ∆ . Hence, 3

me  is locally 

asymptotically stable. 

(ii) We suppose 1 10, 0k k k< + >  or 1 0,k k ∗> ∈R . Then, ( )3 1, ,mJ e k k  has 

at least a positive eigenvalue and so 3
me  is unstable. Therefore, the assertion (ii) 

holds. 
Example 4.1. (i) Let be the special fractional Stokes pulse system (4.2). We 

select 1 2 31, 0.5, 1.5l l l= = =  and 2 1b = . Then 1, 0.5α β γ= − = = . We have 
 

1α γ
αγ
+

=  and ( )( )1 1 0.5 1m m∆ = − + − . 

(i) Chosing 10.15, 0.4k k= − = −  and 1.6m = , it follows that 1 0.12∆ =  and 
2

1 10.16k = > ∆ . According to Proposition 4.4, 2.(i)(1) it follows that the equili-

brium state ( )1 0,1.6,0e =  is asymptotically stable for 0.8q = . 

(ii) For 11, 0.3k k= − = −  and 1.6m = , follows t 1 0.12∆ =  and  
2

1 10.09k = < ∆ . 

The conditions of Proposition 4.4, 2.(i)(2) are achieved. Then ( )1 0,1.6,0e =  

is unstable for 0.75q = . 
Using Matlab, in Table 1 we give a set of values for the parameters  

2 1, , , , 1,3il b k k i = , the equilibrium states and corresponding eigenvalues of spe-
cial fractional Stokes pulse system (4.2). 
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Table 1. The controls 1,k k , equilibrium states m
ie  and corresponding eigenvavues. 

2 1, , , , 1,3il b k k i =  , 1,3i iλ =  
,m q  

m
ie  Stability 

1 1l = , 2 0.5l = , 3 0.5l = −  2 1b = , 3k = − , 1 0.32k = −  −3, 
−0.32 ± i 

0m = , 
0.45q =  ( )0 0,0,0e =

 
asym. 
stable 

1 1l = , 2 0.5l = , 3 0.5l = −  2 1b = , 3k = − , 1 1.73k =  −3, 
1.73 ± i 

0m = , 

0 0.33q = , 0.3q =  ( )0 0,0,0e =
 

asym. 
stable 

1 1l = , 2 0.5l = , 3 0.5l = −  2 1b = − , 3k = − , 1 1.73k =  −3, 
1.73 ± i 

0m = , 

0 0.33q = , 0.7q =  ( )0 0,0,0e =
 

unstable 

1 1l = , 2 0l = , 3 0.5l =  2 1b = , 2k = − , 1 0.8k = −  −2, 
−0.8 ± 0.5291i 

0.6m = , 
0.4q =  

( )1 0,0.6,0e =
 

asym. 
stable 

1 1l = , 2 0.5l = , 3 .51l =  2 1b = , 0.15k = − , 1 0.4k = −  −0.15, 
−0.4 ± 0.3464i 

1.6m = , 
0.8q =  

( )1 0,1.6,0e =
 

asym. 
stable 

1 1l = , 2 0.5l = , 3 .51l =  2 1b = , 1k = − , 1 0.3k = −  −1, 
−0.3 ± 0.3464i 

1.6m = , 
0.8q =  

( )1 0,1.6,0e =
 

unstable 

1 1l = , 2 0.2l = , 3 0.25l = −  2 1b = − , 0.35k = − , 1 0.1k = −  −0.1, 
−0.225 ± 0.1561i 

0.2m = , 
0.6q =  

( )2 0.2, 1.25,0e −=
 

asym. 
stable 

1 1l = , 2 0.2l = , 3 0.25l = −  2 1b = − , 3k = , 1 1k = −  −1, 
1 ± 1.0307i 

2.25m = , 

2 0.5q = , 0.45q =  ( )2 2.25, 1.25,0e −=
 

asym. 
stable 

1 1l = , 2 0.2l = , 3 0.25l = −  2 1b = − , 3k = , 1 1k = −  −1, 
1 ± 1.0307i 

2.25m =  

2 0.5q = , 0.75q =  ( )2 2.25, 1.25,0e −=
 unstable 

5. Numerical Integration of the Special Fractional Stokes 
Pulse System (4.2) 

In this section we start with some mathematical preliminaries of the fractional Eu-
ler’s method for solving initial value problem for fractional differential equations. 

Consider the following general form of the initial value problem (IVP) with 
Caputo derivative: 

( ) ( )( ) ( ) [ ]0, ,   0 ,   0, ,  0,q
tD y t f t y t y y t I T T= = ∈ = >        (5.1) 

where : , :n n ny I f→ →R R R  is a continuous nonlinear function and  
( )0,1q∈ , represents the order of the derivative. 

The right-hand side of the IVP (5.1) in considered examples is Lipschitz func-
tions and the numerical method used in this works to integrate system (5.1) is 
the Fractional Euler’s method. 

Since f is assumed to be continuous function, every solution of the initial value 
problem given by (5.1) is also a solution of the following Volterra fractional integral 
equation: 

( ) ( ) ( )( )0 , ,q
ty t y I f t y t= +                   (5.2) 

where q
tI  is the q-order Riemann-Liouville integral operator, which is expressed 

by: 
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( ) ( ) ( ) ( )( ) [ ]1

0

1 , d ,   0,   0, .
t

qq
tI f t t s f s y s s q s T

q
−= − > ∈

Γ ∫       (5.3) 

Moreover, every solution of (5.2) is a solution of the (IVP) (5.1). 
To integrate the fractional Equation (5.1), means to find the solution of (5.2) 

over the interval [ ]0,T . In this context, a set of points ( )( ),j jt y t  are produced 
which are used as approximated values. In order to achieve this approximation, 
the interval [ ]0,T  is partitioned into n subintervals 1,j jt t +    each equal width  

, j
Th t jh
n

= =  for 0,1, ,j n= 
. 

For the fractional-order q and 0,1,2,j = 
, it computes an approximation 

denoted as 1jy +  for ( )1 , 0,1, 2,jy t j+ =  . 
The general formula of the fractional Euler’s method for to compute the ele-

ments jy , is: 

( ) ( )( )1 1, ,   ,   0,1, , .
1

q

j j j j j j
hy y f t y t t t h j n
q+ += + = + =

Γ +
      (5.4) 

For more details, see [24] [25]. 
For the numerical integration of the special fractional Stokes pulse system (4.2), 

we apply the fractional Euler method (FEM). For this, consider the following 
fractional differential equations: 

( ) ( ) ( ) ( )( ) ( ] ( )
( ) ( ) ( ) ( )( )

1 2 3
0

1 2 3
0 0 0 0

, , ,   1,3,    , ,   0,1

, , ,

q i
t iD u t F u t u t u t i t t q

u t u t u t u t

τ = = ∈ ∈


=

   (5.5) 

where 

( )( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

2 3 3 1
1 2 3 2 1

3 1 2
2 3 1

1 2 1 3
3 1 2 2 1

,                         0,1

F u t l l u t u t b u t k u t

F u t l l u t u t ku t q

F u t l l u t u t b u t k u t

 = − + +
 = − + ∈


= − − +

    (5.6) 

where 2 1, ,b k k ∗∈R  and , 1,3il i∈ =R  such that 1 2 3 1l l l l≠ ≠ ≠ . 
Since the functions ( )( ) , 1,3iF u t i =  are continuous, then the initial value 

problem (5.5) is equivalent to system of Volterra integral equations, which is 
given as follows: 

( ) ( ) ( ) ( ) ( )( )1 2 30 , , ,     1,3.i i q
t iu t u I F u t u t u t i= + =          (5.7) 

The system (5.7) is called the Volterra integral equations associated to special 
Stokes pulse system (4.2). 

The problem for solving the system (5.5) is reduced to one of solving a se-
quence of systems of fractional equations in increasing dimension on successive 
intervals ( ), 1j j +   . 

For the numerical integration of the system (5.6) one can use the fractional 
Euler method (the formula (5.4), which is expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )( )1 2 31 , , ,     1,3
1

q
i i

i
hu j u j F u j u j u j i
q

+ = + =
Γ +

   (5.8) 
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where 0,1, ,j N= 
, Th

N
= , 0T > , 0N > . 

More precisely, the numerical integration of the fractional system (5.5) is giv-
en by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
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2 1

11
1

11 ,                  0,1
1

11
1

0 ,      1,3,

q

q

q

i i
e

u j u j h u j u j b u j k u j
q

u j u j h u j u j ku j q
q

u j u j h u j u j b u j k u j
q

u u i

α

β

γ

ε

 + = + + + Γ +


+ = + + ∈ Γ +


+ = + − +
Γ +


= + =

 (5.9) 

where 2 3: l lα = − , 3 1: l lβ = − , 1 2: l lγ = − . 
Using [21] [24], we have that the numerical algorithm given by (5.9) is con-

vergent. 
Example 5.1. Let us we present the numerical integration of the special frac-

tional Stokes pulse system with controls which has considered in Example 4.1(i). 
For this we apply the algorithm (5.9) and software Maple. Then, in (5.9) we take: 

1 1l = , 2 0.5l = , 3 1.5l = , 2 1b = , 0.15k = − , and 1 0.4k = − . It is known that 
the equilibrium state ( )1 0,1.6,0e =  is asymptotically stable. 

For the numerical simulation of solutions of the above fractional model we 
use the rutine Maple. spec-fract-Stokes-pulse-system-with-controls, denoted by 
[sp-fr.Stokes-pulse syst]. Applying this program for 0.01h = , 0.01ε = ,  

( )1 0u ε= , ( )2 0 1.6u ε= + , ( )3 0u ε= , 100N = , 102t = , one obtain the or-
bits ( )( )1,n u n , ( )( )2,n u n  ( )( )3,n u n  and ( ) ( ) ( )( )1 2 3, ,u n u n u n , for  

0.8q = . 
Finally, we present the rutine [sp-fr.Stokes pulse syst]: 

#  Fractional equations associated to Stokes pulse system for 0.8q =  
Du1/dt=(l2-l3)*u2*u3 + b2*u3 + k1* u1; 
Du2/dt=(l3-l1)*u1*u3 + k* u2; 
Du3/dt=(l1-l2)*u1*u2 - b2*u1 + k1* u3; 
> with (plots): 
> l1:=1.; l2:=0.5; l3:=1.5; alpha:=l2-l3; beta:=l3-l1; gamma:=l1-l2;  b2:=1.; 
k:=-0.15; k1:= -0.4; q:=0.8; u1e:=0.; u2e:=1.6; u3e:=0.; 
> with (stats): 
> h:=0.01; epsilon:=0.01; n:=100:t:=n+2; u1:= array (0 .. n): u2:= array (0 .. n): 
u3:= array (0 .. n): u1[0]:=epsilon + u1e; u2[0]:=epsilon + u2e; u3[0]:=epsilon + 
u3e; 
> for  j  from  1  by  1 to  n  do 
> u1[j]:= u1[j-1] + h ∧q *(alpha* u2[j-1]*u3[j-1] + b2*u3[j-1] + k1* 
u1[j-1])/GAMMA(q+1); 
u2[j]:= u2[j-1] + h ∧q *(beta* u1[j-1]*u3[j-1] +  k* u2[j-1])/GAMMA(q+1); 
u3[j]:= u3[j-1] + h ∧q *(gamma* u1[j-1]*u2[j-1] - b2*u1[j-1] + k1* 
u3[j-1])/GAMMA(q+1); 
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od: 
> plot (seq([j,u1[j]], j = 0 .. n), style = point, symbol = point, scaling = 
UNCONSTRAINED); 
plot (seq([j,u2[j]], j = 0 .. n), style = point, symbol = point, scaling = 
UNCONSTRAINED); 
plot (seq([j,u3[j]], j = 0 .. n), style = point, symbol = point, scaling = 
UNCONSTRAINED); 
pointplot 3d ( {seq([u1[j], [u2[j], [u3[j]],  j = 0 .. n)}, style = point, symbol = 
point, scaling = 
UNCONSTRAINED, color = red); 

Remark 5.1. Appyling (5.9) and Maple for the numerical simulation of solu-
tions of fractional model (4.2) for each set of values for parameters 1 2 3 2, , , ,l l l b k  
and 1k , given in the Table 1, it will be found that the results obtained are valid. 

Conclusions. This paper presents the fractional Stokes pulse system (3.1) as-
sociated to system (2.6). The special fractional Stokes pulse system (3.3) was stu-
died from fractional differential equations theory point of view: asymptotic sta-
bility, determining of sufficient conditions on parameters 1,k k  to control the 
chaos in the proposed fractional system and numerical integration of the frac-
tional model (4.2). By choosing the right parameters k  and 1k  in the frac-
tional model (4.2), this work offers a series of chaotic fractional differential sys-
tems. The other types of systems mentioned in the four types of fractional mod-
els will be studied in future works. 
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