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Abstract 
The purpose of the research is to show that the general triangle can be re-
placed by the right-angled triangle as the 2D simplex, and this concept can 
be generalized to any higher dimensions. The main results are that such 
forms do exist in any dimensions; meet the requirements usually placed on an 
n-dimensional simplex; a hypotenuse and legs can be defined in these shapes; 
and a formula can be given to calculate the volume of the shape solely from 
the legs by a direct generalization of the Pythagorean Theorem, without com-
puting the Cayley-Menger determinant. 
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1. Introduction 

Various generalizations of the Pythagoras Theorem have been known for centu-
ries. Among these, the construction most relevant to this article investigates a 
trirectangular tetrahedron with three faces of right triangles. The three right an-
gles of the triangles meet at one vertex of the tetrahedron (De Gua [1]). This ex-
tension of the Pythagoras Theorem can also be implemented in higher dimen-
sions, but with results completely different from those described in this article. 

Until recently, the subject of n-dimensional geometries was very alien for me. 
I could not find a perceptible model of the abstract concepts. It reminded me of 
my previous experience with hyperbolic geometry which I could only understand 
through the hemispherical Poincaré model. 

The first idea that led me towards the topic came from my work with spherical 
geometry (Lénárt [2]). A polygon can be defined as a cycle of incidence of alter-

How to cite this paper: Lénárt, I. (2022) 
The Right Triangle as the Simplex in 2D 
Euclidean Space, Generalized to n Dimen-
sions. Journal of Applied Mathematics and 
Physics, 10, 2837-2850. 
https://doi.org/10.4236/jamp.2022.109189 
 
Received: August 29, 2022 
Accepted: September 27, 2022 
Published: September 30, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2022.109189
https://www.scirp.org/
https://doi.org/10.4236/jamp.2022.109189
http://creativecommons.org/licenses/by/4.0/


I. Lénárt 
 

 

DOI: 10.4236/jamp.2022.109189 2838 Journal of Applied Mathematics and Physics 
 

nating points and segments with an even number of elements, vertices and sides 
together. However, in spherical geometry a point on a great circle and two per-
pendicular great circles can both be viewed as special cases of two incident ele-
ments. It follows that a closed cycle of incidence may consist of an odd number 
of elements. 

This conception can be extended to hyperbolic and Euclidean geometry for 
segments of perpendicular straight lines. 

Figure 1 shows a spherical Napier pentagram, Figure 2, a hyperbolic rectan-
gular Napier pentagon, both 5-cycles. (All pentagons on Figure 2 are regular hy-
perbolic Napier pentagons.) The adjacent perpendiculars represent incident ele-
ments, while their point of intersection is omitted from the cycle. 

It follows that spherical or hyperbolic geometry allows 5-cycles to be simplices 
instead of 6-cycles of general triangles with alternating vertices and sides. 

The next step is to apply the same thought to Euclidean plane geometry. The 
Euclidean 5-cycle is a right triangle with two vertices and three sides, including 
the two perpendiculars. But can we proceed to higher dimensions to find shapes 

 

 
Figure 1. Spherical Napier pentagram, a 5-cycle. 

 

 
Source: Lajos Szilassi, personal communication. 

Figure 2. Hyperbolic Napier pentagon, a 5-cycle. 
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whose faces are all right triangles? 
This finding inspired me to explore the shape in 3D Euclidean space and move 

to higher dimensions. 

2. Simplices in n-Dimensional Euclidean Spaces 

The initial idea is based on an axiom of spherical geometry: If two equators are 
perpendicular, the pole point of one is on the equator of the other, and vice 
versa. It follows that the sentences “Two great circles are perpendicular” and “A 
point and a great circle coincide” are equivalent, interchangeable statements about 
points and great circles in the same construction. Two perpendicular straight lines 
represent a special case of the incidence relation. 

Given a system of geometry in which we define the incidence of a point and a 
straight line, and the perpendicular property between two straight lines. Con-
sider both cases as special cases of incidence. A cycle of incidence is an ordered 
series of elements in which any two adjacent elements are incident, including the 
last and the first. 

Any polygon represents a cycle of incidence. A triangle is a 6-cycle, a quadri-
lateral is an 8-cycle, and so on. However, perpendicular straight lines as incident 
elements allow for cycles with an odd number of elements. For example, a trian-
gle with one right angle is a 5-cycle in Euclidean, spherical or hyperbolic geome-
try. The vertex at the intersection of the two legs is not counted, and the cycle 
consists of five elements, namely, two vertices and three sides, including the two 
perpendiculars. 

In this sense, the right triangle is not a special case of the general triangle. On 
the contrary, the right triangle, the 5-cycle is the simplex, and the general trian-
gle, the 6-cycle is a composite shape derived from the right triangle. 

The main subject of this article is the Euclidean case of the 5-cycle as the sim-
plex, which seems to be the least suitable for the purpose. Regular 5-cycles are 
excluded here, since regular right triangles do not exist in Euclidean geometry, 
in contrast with the regular spherical Napier pentagram or the regular hyper-
bolic Napier pentagon. 

The task is as follows: We are looking for a new type of simplex in two-, three-, ... 
n-dimensional Euclidean geometry. Each face is a right-angled triangle, and the 
n-dimensional shape consists of (n + 1) number of (n − 1)-dimensional shapes. 

3. The Simplex in Two Dimensions, n = 2 

The measure of the angles and sides are all correct on the picture (Figure 3). 
Remark. Right angles in the present paper are indicated as arcs between two 

perpendicular sides, regardless of their apparent length. (The usual notations of 
a right angle proved confusing for the drawings.) 

4. The Simplex in Three Dimensions, n = 3 

While the 2D configuration is easy to construct, the 3D shape is by no means 
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trivial. We are looking for a tetrahedron of which all four faces are right triangles. 
This shape does exist and can be constructed in the Euclidean 3D space by cut-
ting a rectangular cuboid of dimensions a, b, c along the plane of a space diago-
nal and a face diagonal (Figure 4 and Figure 5). 

 

 
Figure 3. The Euclidean right triangle with two freely given data as the length of the two 
legs, and the hypotenuse calculated by the Pythagoras Theorem. 

 

 
Figure 4. The initial position of the 3D model of the quadrirectangular tetrahedron. 
Given three non-coplanar and non-concurrent sides, a perpendicular to b, b to c, c to 2D 
subspace ab. 

 

 
Figure 5. The completed quadrirectangular tetrahedron with six sides and four faces of 
right triangles, cut out of a rectangular cuboid of dimensions a, b, c. 
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In the Euclidean 3D space, the shape is a tetrahedron with six sides, (a), (b), 
(c), ( 2 2a b+ ), ( 2 2b c+ ), ( 2 2 2a b c+ + ), and four faces of right triangles, 
( 2 2, ,a b a b+ ), ( 2 2, ,b c b c+ ), ( 2 2 2 2 2, ,a b c a b c+ + + ),  
( 2 2 2 2 2, ,c a b a b c+ + + ). 

Figure 6 shows the configuration on a flat diagram: 
Starting from vertices 1, 2, 3, 4 with sides 12, 23, 34a b c= = =  given, side 41 

can be determined in two ways: either through triangles 123 and 341, - or triangles 
234 and 412. 

In triangle 123 we have legs a, b, and hypotenuse 2 2a b+ ; in triangle 341, 
legs 2 2a b+ , c, and hypotenuse 2 2 2a b c+ + . 

In triangle 234 we have legs b, c, and hypotenuse 2 2b c+ ; in triangle 412, 
legs 2 2b c+ , a, and hypotenuse 2 2 2a b c+ + . 

Both ways yield the same result 2 2 2a b c+ + . 
This 3D shape cannot be realized on a 2D flat surface. 

5. Displaying Right-Angled n-Dimensional Shapes on  
Regular Planar Polygons 

In order to proceed to higher dimensions, it is of advantage to turn to regular 
Petrie polygons (cf. Coxeter [4]). The idea is to display right-angled shapes in 
distorted form. The vertices, faces and edges of the shape are represented by 
the sides, diagonals and angles of regular polygons on flat surface. Visualization 
is more difficult in 2D and 3D cases, but generalization is easier in higher di-
mensions. 

n = 2 
The right-angled 2D triangle is displayed on the sides and angles of a regular 

2D triangle with sides and angles distorted (Figure 7, cf., Figure 3). This shape 
has 3 vertices, 1 face of a right-angled Euclidean triangle, and 3 sides. It can be 
realized in 2D Euclidean plane. 

n = 3 
The quadrirectangular tetrahedron is displayed on a regular 2D square with 

sides, diagonals and angles distorted (Figure 8, cf., Figure 6). This shape has 4 
vertices, 4 faces of right-angled Euclidean triangles, and 6 edges. It can be 

 

 
Figure 6. The quadrirectangular tetrahedron on a flat diagram. 
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Figure 7. Right triangle displayed on a regular 2D triangle with sides and angles distorted. 

 

 
Figure 8. Quadrirectangular tetrahedron displayed on a regular 2D square with distorted 
sides, diagonals and angles distorted. 

 
realized in 3D Euclidean space, but not on 2D Euclidean plane. 

6. The 4D Right-Angled Pentachoron 

n = 4 
This shape has 5 vertices, 10 faces of Euclidean triangles and 10 edges, just as 

with the general pentachoron. Each face is a right triangle, so the entire shape 
has a total of 10 right angles. It requires four dimensions to construct, and can-
not be realized in 3D Euclidean space. 

Enter four independent data a, b, c, d for which the segment of length a is 
perpendicular to b, b to c, c to d. Any four vertices determine a quadrirectangular 
tetrahedron. Figure 9 shows the initial position, while Figure 10 shows the 
completed construction. 

Any four vertices determine a right-angled tetrahedron. Table 1 shows the 
defining equations of the sides of the four right triangles for each tetrahedron, as 
illustrated on the completed pentachoron on Figure 10. 

7. Generalizing to n Dimensions. Hypotenuse and Legs 

Theorem 1: 
Any n-dimensional right-angled simplex can be decomposed into (n − 1)  
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Figure 9. Initial configuration of constructing a right pentachoron. 

 

 
Figure 10. The completed construction of a right pentachoron with 10 right angles. 

 
Table 1. Defining equations of the four right triangles for the five tetrahedrons of the 
pentachoron. 

1234 

123 ( ) ( ) ( )2 2 2 2a b a b=+ +
 

234 ( ) ( ) ( )2 2 2 2b c b c=+ +
 

341 ( ) ( ) ( )2 2 2 2 2 2a b c a b c= ++ + +
 

412 ( ) ( ) ( )2 2 2 2 2 2a b c a b c=+ + + +
 

2345 

234 ( ) ( ) ( )2 2 2 2b c b c=+ +
 

345 ( ) ( ) ( )2 2 2 2c d c d=+ +
 

452 ( ) ( ) ( )2 2 2 2 2 2b c d b c d= ++ + +
 

523 ( ) ( ) ( )2 2 2 2 2 2b c d b c d=+ + + +
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3451 

345 ( ) ( ) ( )2 2 2 2c d c d=+ +
 

451 ( ) ( ) ( )2 2 2 2 2 2 2 2a b c d a b c d+ + + = + + +
 

513 ( ) ( ) ( )2 2 2 2 2 2 2 2a b c d a b c d+ + + = + + +
 

134 ( ) ( ) ( )2 2 2 2 2 2a b c a b c=+ + + +
 

4512 

451 ( ) ( ) ( )2 2 2 2 2 2 2 2a b c d a b c d+ + + = + + +
 

512 ( ) ( ) ( )2 2 2 2 2 2 2 2a b c d b c d a+ + + = ++ +
 

124 ( ) ( ) ( )2 2 2 2 2 2a b c b c a=+ + + +
 

245 ( ) ( ) ( )2 2 2 2 2 2b c d b c d= ++ + +
 

5123 

512 ( ) ( ) ( )2 2 2 2 2 2 2 2a b c d b c d a+ + + = ++ +
 

123 ( ) ( ) ( )2 2 2 2a b a b=+ +
 

235 ( ) ( ) ( )2 2 2 2 2 2b c d b c d=+ + + +
 

351 ( ) ( ) ( )2 2 2 2 2 2 2 2a b c d a b c d+ + + = + + +
 

 

 
Figure 11. 5D Rectangular simplex (hexachoron). 

 
dimensional simplices. 

The proof is based on induction: Suppose that the statement is valid for all (n 
− 1) dimensional right-angled simplices. The detailed proof for arbitrary n is 
very clumsy to describe, so I illustrate the pattern for the n = 6 case (Figure 11). 
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Table 2 shows the defining equations of the sides of the five right triangles for 
each pentachoron, as illustrated on the completed hexachoron on Figure 12. 

Definition. The element 6,1d =  can be called the hypotenuse, and the other sides 

12 23 56, , ,d a d b d e= = =  the legs of the n-dimensional right-angled simplex. By 
the same logic, the right-angled simplices can be called Pythagorean shapes in 
n-dimensional space (Pythagorean triangle, Pythagorean tetrahedron, Pythagorean 
pentachoron, etc.). 

On Figure 12, side 2 2 2 2 2a b c d e+ + + +  is the 5D hypotenuse, a, b, c, d, e
are the legs. The hypotenuses of the building pentachorons are listed in Table 

3. 
The same pattern can be applied to arbitrary dimension, with  

2 2 2 2 2
12 23 1, , 1 1,1, , , , ,n n n n nd d d d d− + +  as distances of sides between the adjacent vertices, 

and 2 2 2 2 2
1,1 12 23 1, , 1n n n n nd d d d d+ − += + + + + . 

8. Volume of a Right-Angled Simplex  
in 3D Euclidean Space 

Apply the Cayley-Menger determinant to determine the volume by the length of 
sides for the 3D tetrahedron: 

 
Table 2. Defining equations of the five right triangles for the six pentachorons of the 
hexachoron. 

Pentachoron Sides 

12345 2 2 2 2, , , ,a b c d a b c d+ + +  
23456 2 2 2 2, , , ,b c d e b c d e+ + +  
34561 2 2 2 2 2 2 2, , , ,c d e a b c d e a b+ + + + +  
45612 2 2 2 2 2 2 2, ,a b c d e a b c+ + + + +  
56123 2 2 2 2 2 2 2, , ,a b c d e a b c d+ + + + +  
61234 2 2 2 2 2 2 2, , , ,a b c d e a b c d e+ + + + +  

 
Table 3. Hypotenuses in the six pentachorons of the hexachoron. 

Pentachoron Hypotenuse 

12345 2 2 2 2a b c d+ + +  

23456 2 2 2 2b c d e+ + +  

34561 2 2 2 2 2a b c d e+ + + +  

45612 2 2 2 2 2a b c d e+ + + +  

56123 2 2 2 2 2a b c d e+ + + +  

61234 2 2 2 2 2a b c d e+ + + +  
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( )
( )

2 2 2 2 2 2
23

2 2 2 2 2
3, 3 1

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

2 2 2

2 2 2

0 1 1 1 1
1 0

2 3!
1 0

1 1 0
1 0

1 1 0
1 0 1
1 0 1 0
1 0 1 0

1 0
1 0
1

CM

a a b a b c
D V a b b c

a b b c
a b c b c c

a a b a b c a b a b c
b b c a b b c

b c a b c
b c c a b c c

a a b c
a b c

a b b c

+

+ + +
= +

− +
+ + +

+ + + + + +
+ +

= − +
+

+ + +

+ +
+

−
+

=

2 2 2

2 2

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 3 2 2 2

1 0
1 0
1 0

1 0 1

4 4 0 0 2

a a b
a b

a b b
a b c b c a b c b c c

a b c a b c a b c

+

+
+

+ + + + + +

= × × + × × + + = × × ×

 (1) 

Remark. The proof can be checked by a determinant calculator with arbitrary 
input data. 

For example, 3, 4, 3, 2n a b c= = = = : 
Calculate the volume with the Cayley-Menger determinant: 

( )
( )

( )

23
2

3 1

23 2 2

2

0 1 1 1 1
1 0 16 25 29

2 3!
1 16 0 9 13

1 1 25 9 0 4
1 29 13 4 0

1 16 25 29 1 0 25 29 1 0 16 29 1 0 16 25
1 0 9 13 1 16 9 13 1 16 0 13 1 16 0 9
1 9 0 4 1 25 0 4 1 25 9 4 1 25 9 0
1 13 4 0 1 29 4 0 1 29 13 0 1 29 13 4

2304 2304 0 0 4608 2 3! 288

288 16, 16, 4.

V

V V

V V

+−

= − + − +

= + + +

=

× × =

=

×

×

= =

= =

 (2) 

Now calculate the same volume with the generalized Pythagoras Theorem: 

( )23 2 2 2 3 2 2 2 3 2

2 2

2 2 4 3 2 4608 2 3!

288 288 16, 16, 4.

a b c V

V V V

× × × = × × × = = × ×

= × = × = =
        (3) 

9. The Generalized Pythagoras Theorem in n-Dimensional 
Euclidean Spaces 

Theorem 2: 
Given a right-angled simplex with 1n +  vertices of the defining Petrie poly-

gon in an n-dimensional Euclidean space. Denote , 1i id +  the distance between 
adjacent vertices i and i+1, and 1,1nd +  between the last and the first. Assume 
that 2 2 2 2 2

1,1 12 23 1, , 1n n n n nd d d d d+ − += + + + + . Define 1,1nd +  as the hypotenuse of the 
simplex, while the other sides are the legs (Figure 12). The volume of the simplex 
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Figure 12. The initial configuration of a rectangular simplex in 2, 3, 4, ... , n, ... dimensions. 
Arcs always indicate right angles. 

 
can be calculated by direct generalization of the Pythagoras Theorem, multiplying 
the squares of the legs, and dividing the product by ( )2!n : 

( )22 2 2 2 2
, 12 23 1, , 12 2 !n n

n CM n n n nD d d d d n V− += × × × × × = × ×

 
 
Proof: 
The general case is rather clumsy to describe, so I give two numerical exam-

ples instead which can readily be extended to any n. 
Example 1: 

12 23 312, 5, 4, 3n d d d= = = =  (the right triangle on the plane with the Pytha- 
gorean triplet 3, 4, 5). 

The volume calculated by the Cayley-Menger determinant: 

( )
( )

,

22
2 2

2 1

0 1 1 1
1 0 25 9

576
1 25 0 16
1 9 16 0

2 2!
16 16 36, 36 6.

1

n CMD

V V V+

= = −

= = − = − × = =
−

           (3) 

The volume calculated by the generalized Pythagoras Theorem: 

( )
2

2

1 16 9 36, 36 6.
2!

V V= × × = = =  

Example 2: 

5, 8, 5, 4, 3, 2n a b c d e= = = = = =  
The volume calculated by the Cayley-Menger determinant: 
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( )
( )

5,

25
2 2 2

5 1

0 1 1 1 1 1 1
1 0 64 89 105 114 118
1 64 0 25 41 50 54

294912001 89 25 0 16 25 29
1 105 41 16 0 9 13
1 114 50 25 9 0 4
1 118 54 29 13 4 0

2 5!
32 120 460800 64, 8.

1

CMD

V V V+

= =

= = × × = × =
−  

The volume calculated by the generalized Pythagoras Theorem: 

( )
( )

( )
2

2 2

1 164 25 16 9 4 921600 64, 8.
5! 5!

V V= × × × × × = = =
 

10. Decomposing a General Tetrahedron into Pythagorean 
Tetrahedrons 

In 2D Euclidean space, on a flat surface a triangle can be decomposed into two 
Pythagorean triangles by an altitude of the triangle (Figure 13). 

In the 3D Euclidean space, a similar method gives six right-angled Pythago-
rean tetrahedra (Figure 14). 

 

 
Figure 13. Decomposing a 2D triangle into two right triangles. 

 

 
Figure 14. Decomposing a tetrahedron into six Pythagorean tetrahedra. 
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On Figure 14, tetrahedron ABCD is divided into six Pythagorean (quadrirec-
tangular) tetrahedra. 

Drop a perpendicular from vertex A to plane BCD, and label O the foot of A 
on plane BCD. Drop a perpendicular from A to side BC, and label M the point of 
intersection. Connect foot O with vertex B and point M. Now consider, for ex-
ample, tetrahedron ABMO. The construction gives that angles > AOM and >AOB 
are right angles regardless of whether O is the orthocentre of triangle BCD or 
not. By the same construction, angles > AMB and >OMB are also right angles. 
It follows that tetrahedron ABMO is a Pythagorean, quadrirectangular tetrahe-
dron with hypotenuse OM, and legs BM, MO, OA. 

Example 1. Apply the method to calculate the volume of the regular tetrahe-
dron with unit sides: 

The Pythagorean tetrahedron ABMO has legs  
1 1 1, ,
2 6 3

BM MO OA= = = . so its volume can be calculated by the general-

ized Pythagorean theorem: 

( )

2 22
2

2 3

1 1 1 1 1 3 6 18 1 .
36 36 9 2592362 6 33!

PV
      = × × × = × × = =             

The volume of the regular tetrahedron ABCD is equal to six times the volume 

PV  of the Pythagorean tetrahedron ABMO: 

( )22 2 1 1 2 26 6 , .
2592 72 144 12PV V V= = = = =  

Example 2. Apply the method to calculate the volume of the trirectangular 
tetrahedron with three unit sides meeting at the vertex with three right an-
gles:  

( )

2 22
2

2

1 1 1 1 1 3 .
36 362 6 33!

PV
      = × × × = ×             

The volume of the regular tetrahedron ABCD is equal to six times the volume 

PV  of the Pythagorean tetrahedron ABMO: 

( )22 2 1 1 16 6 , .
36 36 6PV V V= = × =

 

The decomposition can be generalized in like manner to higher dimensions. 

11. Conclusions 

The article offers a new kind of simplex in n-dimensional spaces and a generali-
zation of the Pythagorean Theorem. The main results are that simplices with solely 
rectangular faces exist for arbitrary dimensions, and a formula is given to gener-
alize the Pythagorean Theorem. It states that the square of the volume of a rec-
tangular simplex with a hypotenuse and legs can be calculated in the same way 
as in the 2D case, multiplying the squares of legs, and dividing the product  
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by 
( )2

1
!n

, without computing the Cayley-Menger determinant. 

This option leads to an alternative construction of multidimensional geome-
tries using rectangular simplexes as building blocks, instead of the traditional 
general triangles. It can simplify theorems and techniques in other areas of mul-
tidimensional geometries and their applications, in determinant theory or n- 
dimensional calculus. Moreover, it can be connected with recent tendencies of 
using Euclidean geometry, “euclidicity” in the four-dimensional space of the 
Theorem of Relativity (Machotka [5]). Another challenge is whether Pythagorean 
shapes can be applied in the theory of the Cayley-Menger determinant in spheri-
cal and hyperbolic spaces (cf. Tao [6] or Audet [7]). 
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