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Abstract 
The present article is a continuation of a recently published paper [1] in 
which we have modeled the composition and structure of neutrons and oth-
er hadrons using the Rotating Lepton Model (RLM) which is a Bohr type 
model employing the relativistic gravitational attraction between three ul-
trafast rotating neutrinos as the centripetal force. The RLM accounts for 
special relativity and also for the De Broglie equation of quantum mechanics. 
In this way this force was shown to reach the value of the Strong Force while 
the values of the masses of the rotating relativistic neutrinos reach those of 
quarks. Masses computed for twelve hadrons and bosons are in very close 
(~2%) agreement with the experimental values. Here we use the same RLM 
approach to describe the composition and structure and to compute the 
masses of Pions and Kaons which are important zero spin mesons. Contrary 
to hadrons and bosons which have been found via the RLM to comprise the 
heaviest neutrino eigenmass m3, in the case of mesons the intermediate neu-
trino mass eigenstate m2 is found to play the dominant role. This can explain 
why the lowest masses of mesons are generally smaller than those of hadrons 
and bosons. Thus in the case of Pions it is found that they comprise three 
rotating m2 mass eigenstate neutrinos and the computed mass of 136.6 
MeV/c2 is in good agreement with the experimental value of 134.977 
MeV/c2. The Kaon structure is found to consist of six m2 mass eigenstate 
neutrinos arranged in two parallel pion-type rotating triads. The computed 
Kaon mass differs less that 2% from the experimental K± and K° values of 
493.677 MeV/c2 and 497.648 MeV/c2 respectively. This, in conjunction with 
the experimentally observed decay products of the Kaons, provides strong 
support for the proposed K structure. 
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1. Introduction 

The Standard Model (SM) of particle physics has long provided a basis for un-
derstanding the fundamental structure of all observable matter in our Universe. 
Among the indivisable particles it describes are quarks and leptons, which in-
clude electrons, positrons and neutrinos. The SM also describes four forces: grav-
ity which plays a very limited role, electromagnetism which regulates interactions 
between charged particles via photons, the Strong Force which acts between 
quarks via gluons and the Weak Force which involves exchanges of W and Z 
boson and plays an important role in radioactive decay. So far the SM has pro-
vided an excellent basis for researchers to explain their experimental results [2] 
[3]. In recent years, however, there is increasing evidence that the SM in its cur-
rent form is not complete. In fact, the SM does not seem to be compatible with 
special or general relativity and, in addition, it assumes that neutrinos are mass-
less, despite of subsequently established experimental evidence that neutrinos 
possess mass and play a paramount dominant role in our Universe [4] [5] [6] [7] 
[8]. This lack of completeness has led to developing the rotating lepton model 
(RLM) which is a Bohr-type rotating lepton model [9], combining gravity, spe-
cial [10] [11] or general relativity [12] and quantum mechanics [13] in a simple 
manner [1] [14]-[20]. 

Following the general observation [2] [3] that all composite particles even-
tually decay to only up to five lepton types (electrons e−, positrons e+ and the 
three neutrinos) the RLM considers these particles as the only truly undivisable, 
thus fundamental, elementary particles which can synthesize all composite par-
ticles [9] [20] [12]-[17]. The RLM also utilizes the three neutrino eigenmass val-
ues to show that, due to their very small rest masses mo, neutrino masses can 
reach the Planck mass values at modest (up to 313 MeV) energies. 

The latter implies that gravitational forces between ultrarelativistic neutrinos, 
at a distance d, can easily reach the value, 2c d , of the Strong Nuclear Force 
which is the strongest force for creating composite particles. Here   is the 
Planck constant and c is the speed of light. 

Consequently the RLM utilizes only two forces, i.e. gravity and electromag-
netism and shows that matter is created via the rotation of neutrino triads in 
circular orbits with rotational speeds near the speed of light c, and correspond-
ing Lorentz factor ( )( )2 2 1 2

1 v cγ
−

= −  values up to 1010. In this way it turns out 
that the new mass created is ( ) 21 om cγ − . As an example, as shown in the next 
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section, three rotating neutrinos, of rest mass 0.0437 eV/c2 each, form a rotating 
triad with a Lorentz factor γ  equal to 7.163 × 109. The mass of the composite 
particle formed is 3 omγ , i.e. 939.565 MeV/c2 which is the rest mass of a neu-
tron. The importance, simplicity and effectiveness of the RLM has been analyzed 
and discussed recently in Research Features [20]. 

2. Rotating Lepton Model of the Neutron, Muon and Pion 
2.1. Neutron 

Within the RLM approach the neutron is modeled as a rotating relativistic neu-
trino triad of the heaviest neutrino mass eigenstate m3 (Figure 1 and Figure 2). 
According to Special Relativity the relativistic mass, mr, of a neutrino is given by 

omγ  and its inertial longitudinal mass is given by 
3

i om mγ=                           (1) 

where mo is the rest mass of the neutrino and γ  is the Lorentz factor 

( )2 2 1 2
1 v cγ

−
= −                        (2) 

In instantaneous reference frames, the above Equation (1), derived initially for 
linear motions [10] [11], remains valid for arbitrary motion [11] [14]. Therefore, 
using the equivalence principle, the gravitational mass, mg, of all particles equals 
their inertial mass, mi, thus 

3
g om mγ=                           (3) 

Using the definition of the gravitational mass, mg, which is the mass value en-
tering Newton’s universal gravitational law, i.e. 

2
2
g

Fdm
G

=                           (4) 

We obtain the following expression for the gravitational force F 
2 6

2
oGm

F
d
γ

=                           (5) 

where G (=6.673 × 10−11 m3∙kg−1∙s−2) denotes the usual gravitational constant. For 
circular motion of three m3 mass neutrinos rotating along a circle of radius r, it 
follows that F is given by 

2

1

6
3

223
Gm

F
r
γ

=                           (6) 

and therefore the equation of motion of each rotating particle is 
2 6

2 3
1 23 23

Gm
m v r

r
γ

γ =                        (7) 

which in turn, yields 

1 2

2
53

2 23 1
Gm

r
c

γγ
γ

 
=  − 

                      (8) 

Solving Equation (8) coupled with the de Broglie quantum mechanics equa-
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tion, i.e. with 

om vrγ =                            (9) 

accounting for the number (three) of quarks in a neutron [2] and denoting by 

nm  the neutron mass, it follows from energy conservation (i.e. from  
2 23n om c m cγ= ) that 3n om mγ=  and thus 

( ) ( )3 2
1 3

1
13 12 2

3 8 1 2

3
3 ; 3 ;

3
n

n n Pl o o
Pl

m
r m c m m m m m

m
= = = =       (10) 

Substituting for the neutron mass 2939.565 MeV cnm =  and for the Planck 
mass 28 21.221 10 eV cPlm = × , one obtains 20.0437 eV com =  and thus,  
( ) 93 7.163 10n om mγ = = × . The so computed relativistic mass omγ  value is of 

the order of quark masses (313 MeV/c2) and the corresponding rest mass mo 
value (0.04372 eV/c2) is in surprisingly good agreement with the heaviest neu-
trino mass m3, as shown in Figure 1. Since this mass differs less than 2% from 
the mass, m3, of the neutrino produced in the W± decay [18] it follows that the 
W± boson comprises, similarly to neutrons and protons, the heaviest mass neu-
trinos 3ν  (Figure 1). 

2.2. Muons 

The algebraic expressions for the masses m1, m2 and m3, also shown and com-
pared in Figure 1 with the Superkamiokande measurements, are obtained by 
modeling the muon structure ( µ± ) which is known to comprise an e±, a eν  and 
a µν  [2] [3]. Thus one considers two gravitating neutrinos, 1ν  and 3ν , of masses 
m1 and m3, respectively and, similarly to Equation (7), we have 

3 3
2 1 3 1 3

1 1 1 23
Gm m

m v r
r
γ γ

γ =                      (11) 

3 3
2 1 3 1 3

3 3 3 23
Gm m

m v r
r
γ γ

γ =                      (12) 

Upon multiplying by parts, taking the square root, considering the limit 1 3,v v c→   
 

 
Figure 1. Neutrino mass eigenstates. Comparison of the Superkamiokande neutrino mass 
measurements with the neutrino mass eigenstate values computed via the corresponding 
RLM mass expressions shown to the right, (mn and mμ are the neutron and muon masses 
respectively). 
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and defining ( )13 1
2

3
1γ γ γ=  and ( )13 1

2
3

1m m m=  one obtains 
2 2 6 2

13 13 13 13 4m c r Gm rγ γ=                    (13) 

Furthermore, by multiplying by parts the two de Broglie wavelength expres-
sions as in Equation (9), we obtain 

13 13m crγ =                          (14) 

From Equations (13) and (14) it follows 

6
13 132

3

1
1 3

113

3
4 ; 2 Plmc

mGm
γ γ

 
= =  

 

                  (15) 

where ( )1 2
Plm c G=  . Consequently, the muon mass is computed from 

( ) ( )
1 3 1 31 3 2

13 13 13 1 32 2Pl Plm m m m m m mµ γ= = =            (16) 

and, therefore, using the experimental muon mass, 2105.6 V c6 Memµ =  and the 
m3 mass eigenstate value of 0.0437 eV/c2 [14] [15] [17] [18], we obtain 

1
3

2
3

0.001 05 e
2

V1 c
Pl

m
m

m m
µ= =                  (17) 

Interestingly the same result for the muon mass obtained from Equation (16) 
can also be reached by considering two rotating neutrinos, each with rest mass 
m2. In this case, similarly to Equation (7), we have 

2 6
2 2 2

2 2 2 22 ;
4

Gmm v r m vr
r
γ

γ γ= =                  (18) 

resulting to 
1 6

1 32 6
2 2 2 2

2

4 ; 2 cc Gm
Gm

γ γ
 

= =  
 




                (19) 

and, therefore, to 

( )2 1

2 2 2

3 22 105.6 M V c6 ePlm m m mµ γ= = =             (20) 

Then, from Equations (16) and (20) it follows that 

( )2 3
22

1
1 0.00695 eV cm m m= =                 (21) 

The above equation suggests that two neutrinos, of masses m1 and m3 each, 
can hybridize to form two neutrinos with equal masses ( )2 3

2
1

1m m m= . The oc-
curence of neutrino hybridization can be attributed to the need of synchroniza-
tion when two neutrinos of different initial masses are caught on the same cir-
cular orbit in the process of forming a bound rotational state [14] [17] [18]. The 
phenomenon of hybridization is quite common in chemistry [21]. The pheno-
menon of neutrino hybridization may be related to the very important pheno-
menon of neutrino oscillations [4] [5] [6] [7] [8] [22]. 

2.3. Pions 

Interestingly, the same m1 mass value obtain in Equation (17) can be computed 
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by modeling the structure of the pion, which is a meson, comprising (Figure 2) 
three rotating neutrinos [2] [3] which, as shown by the RLM, form a rotating 
triad. The analytical computation of the pion mass is shown below. 

We consider three rotating neutrinos on a circle of radius r, two of which have 
the mass m1 and the third with a mass m3 as shown in Figure 2(c) and Figure 3. 

The gravitational forces between the three rotating particles are shown in 
Figure 3, i.e. 

( )
3 32 6

21 3 1 31 1
11 13 232 2 2 2; sin 2

4 sin sin
Gm mGmF F F

r r
γ γγ

ϕ
ϕ ϕ

= = =          (22) 

and thus 

( )
3

11 1 1
3 2

13 3 34 sin 2
F m
F m

γ
γ ϕ

=                     (23) 

From Figure 3 it also follows 

2 sinrα ϕ=                          (24) 

( )sin sin 90 2
α β
ϕ ϕ
=

−
                     (25) 

Thus, 
 

 
Figure 2. Rotating neutrino model geometry for a proton (a) [14], for a muon µ+  (b) 
before (top) and after (bottom) hybridization and for a pion π +  (c) [16] [17]. The cen-
tral positron is at rest with respect to the observer ( 1γ = ) and, thus, it adds little (0.511 
MeV/c2) to the total mass of the composite state. Similarly to hybridization in Chemistry 
[21], the rotating 1ν  and 3ν  neutrinos, with masses m1 and m3 respectively, become 

hybridized in the µ+  and π +  structures [16] [17] due to rotational synchronization. In 
this way pairs of m1 and m3 mass eigenstate neutrinos produce two m2 mass eigenstate 
neutrinos [16] [17] [18], a phenomenon potentially related to neutrino oscillations [4] [5] 
[6]. 
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Figure 3. The isosceles triangle geometry of the pion structure. 

 

( )
( )

cos 2
sin 2sin 2
ϕ αβ α
ϕ ϕ

= =                  (26) 

and from Equation (24) 

( )
sin

sin 2
r ϕβ

ϕ
=                         (27) 

Then, the tangential force at B in obtained from 

( ) ( )11 13sin 90 sin 2F Fϕ ϕ⋅ − =                  (28) 

or 

( )11 13cos sin 2F Fϕ ϕ⋅ =                     (29) 

and, therefore, 

( )
( )

3
11 1 1

3 2
13 3 3

sin 2
cos 4 sin 2

F m
F m

ϕ γ
ϕ γ ϕ

= =                (30) 

giving 

( )3 3
1 1

3
3 3

4sin 2
cos

m
m

ϕ γ
ϕ γ

=                       (31) 

In view of the de Broglie condition 

1 1 3 3m cr m crγ γ= =                       (32) 
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we have 

1 1 3 3m mγ γ=                          (33) 

and since 

3 1 3

0.0437 37.22
1.174 10

m m −= =
×

                  (34) 

it follows that 

( )3sin 2
4 37.22

cos
ϕ
ϕ

=                      (35) 

which, by trial and error, gives 

89.95ϕ =                            (36) 

Considering the equations of motion of the three particles and assuming 1v c≈ , 

3v c≈ , it follows that 

( )
3 3

2 1 3 1 3
3 3

2
4cos 2
Gm m

c m c r
γ γ

γ
ϕ

= =                   (37) 

and also 

( ) ( ) ( )

23 32 622 2 1 3 1 31 1
1 1 4sin 4cos 2

Gm mGmc m c r
γ γγ

γ
ϕ ϕ

 
= = + 

  
            (38) 

After multiplying by parts, accounting for the fact that 

1 1 3 3m m
rc

γ γ= =
                        (39) 

and defining 

1 1

3 3

;
mx y
m

γ
γ

= =                        (40) 

we obtain 

( )

( ) ( ) ( )

63
2 3 2 3 6 18
1 3 1 3 33 6 18

33 3

5 15 4 12 3 9

3 2 2 3

2 2
4 sin cos 2 cos 2 sin cos 2

Plc m
m m r c

mG m

x y x y x y

γ γ γ
γ

ϕ ϕ ϕ ϕ ϕ

− 
= =  

 
 

= + + 
  



  (41) 

Accounting for the condition 1xy = , it follows from Equation (41) that 

( ) ( ) ( )

3 10 8 6

2 6 2 2 3
3 3

1 2
32 sin cos 2 cos 2 sin cos 2

c y y y
Gm γ ϕ ϕ ϕ ϕ ϕ

  
= + +  

    

    (42) 

and after substitution for 89.95ϕ =  , we obtain 
3

14 4
2 6 2 6
3 3 3 3

2.37 10 ; 6.19 10c c
Gm Gmγ γ
 

= × = × 
 

             (43) 

Thus, it turns out that 
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12

3 4
3

6

3

1 3
1 0.159

6.19 10
Pl Plm m

m m
γ

    
 = =   

×     
            (44) 

and, therefore, 

( )3

12 3

3 33 3 0.159 0.159Pl nm m m m mπ γ= = × =             (45) 

Consequently, it was computed that 
2136. V c6 Memπ =                      (46) 

in good agreement with 2134.9 Me c77 Vm
π
=



 which is the experimental 
value [2] [3] and with the mass value of 137.82 MeV/c2 computed via the use of 
equilateral triangular geometry and hybridization between m1 and m3 neutrinos 
leading to m2 neutrinos [16] [17]. 

3. Kaon Decay Products 

In this section we use the RLM to investigate the structure and mass of the Kaons. 
Kaon is a meson, that comes in two types: The charged Kaon (K+ or K−), which 

has a mass of 493.677 MeV/c2, and the neutral Kaon (Ko), which has a mass of 
497.648 MeV/c2. 

Out of these two types, only the charged one is known to decay into a charged 
pion and a neutral pion. The charge of the pion depends on the charge of the 
Kaon that decays. 

Therefore, for the charged Kaon structure, one can consider six of these hy-
bridized neutrinos (two trios, one staggered onto the other), all rotating around 
a common axis, as shown in Figure 4 and Figure 5. Moreover, for the charged  

 

 
Figure 4. Normal triangular octahedron structure of the Kaon showing (left) the three C4 rotational 
axes labeled 11’, 22’ and 33’ and (right) the four C3 rotational axes labeled (123)-(456), (124)-(356), 
(136)-(245) and (146)-(235). Thus there are seven rotational axes. Particle radius r is determined by 
the particle de Broglie wavelength 2 2 2.38 fmm cγ = . 
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(a) 

 
(b) 

Figure 5. Computation of F4 (top), and of F3 (bottom); m denotes m2. 
 

Kaon (K+ or K−) there is a small charged particle (e+ or e−) at the center of this 
configuration, not shown in Figure 4, which dictates the Kaon charge. This e± 
particle does not rotate and, thus, it contributes little by the electron or positron 
rest mass of (~0.511 MeV/c2) to the Kaon mass. 

The decay products of the Ko and oK  (mass 497.65 MeV/c2) are ππ   
( 118.95 10 so

oK −= × ) and eeπ ν , µπµν  and πππ  ( 85.11 10 so
iK −= × ) [2] [3]. 

These decay products, i.e. the muon and the pion, have recently been shown [16] 
[17] to contain exclusively the above intermediate mass neutrinos (i.e. with mass 
m2 (≈6.95 × 10−3 eV/c2) in the normal hierarchy) [14] [15] [16] [17]. 

From the principal hadronic decay ( oπ π+ ) of the K+, since the pion comprises 
three hybridized neutrinos [16], one may conclude that the Kaons comprise six 

eµν  hybridized neutrinos. This is also confirmed by the leptonic Kaon decay [2] 
[3]. According to the RLM [17], it is possible to make an estimate of the order of 
magnitude of the K mass via the expression 

https://doi.org/10.4236/jamp.2022.109187


C. G. Vayenas et al. 
 

 

DOI: 10.4236/jamp.2022.109187 2815 Journal of Applied Mathematics and Physics 
 

( )2
2

1 3
6K Plm m m≈                       (47) 

Using 2281.221 e c10 VPlm = ×  and Equation (21) one obtains  
2503. V c3 MeKm ≈  and this value without any detailed modeling differs al-

ready, only approximately 1% and 1.5% from the experimental values [2] [3] of 
497.65 MeV/c2 and 493.57 MeV/c2, respectively, of the neutral Kaon Ko and of 
the charged Kaon K+. 

4. RLM Model for the Kaon Structure and Mass Computation 

The simplest geometric model for accommodating six rotating neutrinos placed 
on two equilateral triangles is a normal triangular octahedron (Figure 4 and 
Figure 5). We therefore hypothesize that the K structure comprises six neutri-
nos of mass m2 arranged at the six vertices of a rotating normal triangular oc-
tahedron (Figure 4 and Figure 5). This structure corresponds to one of the five 
platonic solids and belongs to the Oh symmetry point group [21]. Therefore it 
comprises three C4 rotational axes (Figure 4, left) and four C3 axes (Figure 4, 
right). 

Consequently, any of the six neutrinos can be rotating on a total of seven dif-
ferent axes. The energy equipartition theorem suggests that all these axial rota-
tions contribute equally to the energy of each Kaon particle. 

The total kinetic energy of the six neutrinos with rest mass m2 each, corres-
ponds to the rest energy, E, of the composite particle and is given by 

2
26E m cγ=                         (48) 

where γ  denotes a mean Lorentz factor value accounting for the rotation of all 
six neutrinos. 

Due to the Kaon particle symmetry, the Lorentz factor γ  of each rotating 
particle can be computed by considering the projection of each force on the 
seven planes of rotation (Figure 5). 

Consequently, in order to find first the speeds 4v  and 3v  as well as the cor-
responding Lorentz factor values 3γ  and 4γ , we compute, from Figure 5(a), 

2
2

3 2

1 1 1
3 3 3 3 6

GmF
r

 
= + + 

 
                  (49) 

where F3 is the centripetal force exerted on each of the rotating particles in the 
C4 mode by all the other five particles. Then, similarly as in Equation (52) be-
low, we obtain 

2 62
2 3

3 2 2

1 1 1
3 3 3 6 3

Gmcm
r r

γ
γ  

= + + 
 

              (50) 

We also have from Figure 5(b) that 
2
2

4 2

2 2 1
3 6

GmF
r

 
= + 

 
                     (51) 

where F4 is the centripetal force exerted on each of rotating particles in the 3 
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mode by all the other five particles. 
Accounting for the fact that 2 2F mv r mc rγ γ= ≈  we obtain for each par-

ticle the equation 
2 62
2 4

4 2 2

2 2 1
3 66

2

Gmcm
rr
γ

γ
 

= + 
 

                 (52) 

Using the De Broglie angular momenta quantization equation (i.e. the De Brog-
lie equation) (see Figure 5(a) & Figure 5(b)), we obtain 

3 2

r
m cγ

=
                          (53) 

4 2

6
2

r
m cγ

=
                         (54) 

and, thus, Equations (52) and (50), yield respectively 

6
32

2

1 1 1
3 3 3 6 3

c
Gm

γ  
= + + 

 

                  (55) 

and 

6
42

2

12
4

c
Gm

γ  = +  

                       (56) 

Accounting for the fact that 2
Plc G m= , we establish the following expres-

sions for the two Lorentz factors 

3
2

1 3

1 6

1

1 1 1
3 3 3 6 3

Plm
m

γ
 

=  
   + + 
 

               (57) 

1 3

4
2

1 6

1
12
4

Plm
m

γ
 

=  
   +  

                   (58) 

On using the energy equipartition principle and recalling that there are four 
3p axes and three 4p axes, the total energy per particle E is given by the expres-
sion 

2 2
3 2 4 24 3 7E m c m cγ γ = +                    (59) 

where the values of 3γ  and 4γ  are computed from Equations (57) and (58) as 
1

3

3

2

1.0166 Plm
m

γ
 

=  
 

                     (60) 

1

4

3

2

0.9186 Plm
m

γ
 

=  
 

                     (61) 

Then, it turns out that 

3 4
2 2

1 3 1 3
4 3 0.9746
7 7

Pl Plm m
m m

γ γ γ
    = + =         

            (62) 
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and, thus, accounting for the six particles in the Kaon, it follows that 
6

2
2 26 0.9746 503 eV c M10 490.5 eV cKm mγ= = × × =        (63) 

which differs less than 0.7% from the experimental value of 493.677 MeV/c2 [2] 
[3]. 

Consequently, the final formula for the Kaon mass is 

( )2
21 6 1 6

1 3

2

4 1 3 16
7 7 11 1 1 2

43 3 3 6 3

490. Me c5 V

K Plm m m

 
 
 = + 

    ++ +       
=

      (64) 

If we add the mass of the central e+, then the computed mK value attains the 
value 2491. V c0 MeKm =  and the deviations from the experimental K± value 
is 0.55%, while from the experimental Ko value is 1.4%. 

5. Conclusions 

The present study shows that the Rotating Lepton Model (RLM) which com-
bines the de Broglie wavelength equation, which has been the basis of quantum 
mechanics, with special relativity and with Newton’s Universal gravitational Law, 
provides, without any adjustable parameters, a very good fit to the masses of Pions 
and of Kaons. Kaons are found to be three-dimensional rotating structures 
comprising hybridized rotating relativistic neutrinos with a mass corresponding 
to the m2 neutrino mass of the normal hierarchy. So far the RLM has been used 
to model only one 3D particle structure, i.e. that of the Higgs boson [19]. 

The neutrinos of the Kaon structure result from the hybridization of the m1 
and m3 flavor type neutrinos, and are the same ones used already to compute the 
masses of muons [16] and pions [16]. It is worth noting that, similarly to the cases 
of the proton and the neutron masses, (938.272 MeV/c2 and 939.565 MeV/c2 re-
spectively), which comprise only mass m3 neutrinos and where the neutral com-
posite particle (n) is heavier, here also the neutral composite particle (Ko) has 
higher mass than the charged one (K±). This has been attributed to the fact that 
electrostatic forces (between quarks [2] [3], or resulting from charge-induced di-
pole interactions, similar to van der Waals forces in chemistry, [21], enhance the 
total attraction and thus lower the required γ  value for the gravitational con-
finement of the rotating neutrinos [14]. 

In conclusion, it should be pointed out that various Yukawa-type potentials 
[4] [23] have been proposed to model the rapid decay of strong nuclear force at a 
rate much faster than the inverse square low (~1/r2) of Coulombic interactions 
for separation distances at the femtometer range. This is done by solving a “ho-
mogeneous” Helmholtz equation involving an additional phenomenological coef-
ficient. An alternative nonlocal gradient intreaction force has been introduced 
more recently [24] leading to an “in homogeneous” Helmholtz equation, the so-
lution of which also involves an adjustable phenomenological coefficient, which 
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conveniently serves to effectively interpret non-Coulombic internuclear interac-
tions. The RLM free-parameter approach can be directly used to properly de-
termine the values of the aformentioned phenomenological coefficients. 

The present study also confirms the conclusion [17] that neutrinos, electrons 
and positrons are apparently the only undividable elementary particles, as evi-
denced by examining the decay products of all the Tables of Elementary particles 
[2] [3]. Consequently these elementary particles are the equivalent of atoms in 
chemistry. 
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