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Abstract 
Mie theory is a rigorous solution to scattering problems in spherical coordi-
nate system. The first step in applying Mie theory is expansion of some arbi-
trary incident field in terms of spherical harmonics fields in terms of spher-
ical which in turn requires evaluation of certain definite integrals whose inte-
grands are products of Bessel functions, associated Legendre functions and pe-
riodic functions. Here we present analytical results for two specific integrals 
that are encountered in expansion of arbitrary fields in terms of summation 
of spherical waves. The analytical results are in terms of finite summations 
which include Lommel functions. A concise analytical expression is also de-
rived for the special case of Lommel functions that arise, rendering expensive 
numerical integration or other iterative techniques unnecessary. 
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1. Introduction 

In recent years, generalized multiparticle Mie theory (GMT) [1] has been widely 
used to analyze plasmonic nanoparticle arrays [2] [3]. The first step in applying 
GMT requires the expansion of incident fields in terms of vector spherical wave 
functions (VSWF) [4]. VSWFs constitute a complete orthogonal eigen-basis by 
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which every physically realizable wave can be expanded. Determining the expan-
sion coefficients requires evaluating the inner product of the wave of interest 
with VSWFs. These inner products are definite double integrals where the inte-
grands are products of special functions. With very few exceptions [4] [5] [6] 
these integrals are intractable and have to be evaluated using quadrature me-
thods which itself presents a degree of difficulty due to the fact that evaluating 
special function can be a computationally expensive task. 

In many practical and experimental applications an incident field with a finite 
beamwidth is obtained by placing circular aperture in front of a plane wave. The 
diffracted waves in term act as the incident field for an array of spheres. This 
scattering problem can be evaluated using generalized multiparticle Mie theory 
if we can expand the diffracted fields in terms of spherical harmonics. In doing 
so, we encountered two integrals to which we were not able to find analytical 
solutions in the literature or using several commercial mathematical softwares. 
As noted before numerical evaluations were computationally expensive and also 
precise enough. We were eventually able to obtain closed form expressions for 
these two integrals which greatly reduced the computational burden. These re-
sults were successfully used in two other publications [7] [8], however we did 
not explain in detail how they were obtained. But we felt a detailed derivation of 
these results and the methods used can be beneficial to the scientific community 
and in this paper we present the results along with complete details. 

We assume a mono-chromatic plane wave with time-variation of the form 
e i tω−  and linearly polarized electric field of the form eikz=E x  incident on a 
circular aperture of radius a in the xy-plane at 0z =  from the upper half-space. 
The fields diffracted from the aperture in the lower half-space ( 0z < ) generally 
act as the incident field for an array of spherical particles [7]. We can obtain an 
expression for the far-field approximation diffracted fields which we denote by 

incE  using the Kirchhoff integral [9]: 

inc
ˆ ˆE Eθ φ= +E θ φ                        (1) 

where, 

( )1e sin cos
sin

iiak J ka
E

ρ

θ

θ φ
ρ θ

−
=                   (2) 

( )1e sin sin cos
sin

iiak J ka
E

ρ

φ

θ φ θ
ρ θ

=                  (3) 

where 1J  is the first order Bessel function of the first kind. 
The incident electric field can be expanded in terms of vector spherical basis 

functions ( )1
mnN , and ( )1

mnM  as 

( ) ( ) ( ) ( )1 1
inc

1
, , , ,

n

mn mn mn mn mn
n m n

iE p qρ θ φ ρ θ φ
∞

= =−

 = − + ∑ ∑E N M         (4) 

where ( ), ,r θ φ  are the spherical coordinates and = krρ . The terms mnE , 
( )1
mnN , and ( )1

mnM  are vector spherical wave functions (VSWF) defined as [1] 
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( ) ( ) ( ) ( ) ( )1 ˆ ˆ, , cos cos eim
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where ( )cosm
nP θ  is the associated Legendre function of the first kind of degree 

n and order m, nj  is the spherical Bessel function of the first kind, and  
( ) ( )n njψ ρ ρ ρ=  is the Riccati-Bessel function. In addition, the functions  
( )cosmnπ θ  and ( )cosmnτ θ  are defiend as 

( ) ( )cos cos
sin

m
mn n

m Pπ θ θ
θ

=                    (8) 

( ) ( )dcos cos
d

m
mn nPτ θ θ

θ
=                     (9) 

Vector spherical wave functions ( )1
mnN , and ( )1

mnM  form a complete eigen-basis. 
The expansion coefficients mnp  and mnq  are obtained using the orthogonality 
of VSWFs which leads to 
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In the process of evaluating the expansion coefficients, two integrals are en-
countered that involve Bessel, trigonometric, and associated Legendre functions 
which we denote as ( )1

n αΠ  and ( )2
n αΠ : 

( ) ( ) ( ) ( )( )1
1 1 1

2

0
sin cos cos cos dn n nJα α θ π θ θτ θ θ

π
Π = +∫       (12) 

( ) ( ) ( ) ( )( )2
1 1 1

2

0
sin cos cos cos dn n nJα α θ τ θ θπ θ θ

π
Π = +∫       (13) 

Integrals (12) and (13) are encountered are encountered when evaluating the 
integrals for mnp  and mnq  and closed form expressions for them are not avail-
able in the literature, including mathematical handbooks, and cannot be found 
using commercial software package such as Mathematica. Here we obtain ana-
lytical expressions for these integrals in terms of finite summations involving 
Lommel functions. In general, evaluation of Lommel functions is a numerically 
expensive task; however it is possible to derive a concise analytical expression for 
the particular order of Lommel functions that were encountered here. There 
have been several publications in recent years on related integrals [10] [11]. The 
availability of these analytical expressions can be valuable in different fields of 
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physics such as electromagnetics or optics which require wave expansions in 
terms of spherical harmonics. 

2. Evaluation of ( )n
1 αΠ  

We start by considering integral (12) and rewriting the integrand in terms of 
( )1 cosnP θ  using (8) and (9) 

( ) ( ) ( ) ( )1 1
1

1
2

0

cos d cos
sin cos d

sin d
n n

n

P P
J

θ θ
α α θ θ θ

θ θ
π  

Π = + 
  

∫       (14) 

Here we adopt the convention for the associated Legendre function which 
omits the ( )1 m−  term [12] 

( ) ( ) ( )
22 d1

d

mmm
n nmP x x P x

x
= −                  (15) 

where nP  represents the Legendre polynomial of order n. In the remainder of 
the paper for the sake of brevity we forgo writing the argument for functions 

mnπ , mnτ , m
nP , and nP . Unless otherwise stated, it is always assumed that these 

functions have cosθ  as their argument. As the next step, we consider Legen-
dre's differential equation [13] 

( )dd sin 1 sin
d d

n
n

P
n n Pθ θ

θ θ
  = − + 
 

               (16) 

By performing the differentiation in (16) and using 1d
d

n
n

P
P

θ
= − , it can be shown 

that 

( )
1 1

1d
cos 1 cos sin

sin d
n n

n n
P P

n n P Pθ θ θ
θ θ
+ = + +             (17) 

Thus ( )1
n αΠ  can be decomposed as 

( ) ( ) ( )2 2 1
1010

1 sin cos d sin sin dn nn n J P J Pα θ θ θ α θ θ θ
π π

+ +∫ ∫      (18) 

Here we define two auxiliary functions ( )n αΩ  and ( )n αΞ  based on the 
two integrals in (18) 

( ) ( )1
2

0
sin cos dn nJ Pα α θ θ θ

π
Ω ≡ ∫                 (19) 

( ) ( ) 1
1

2

0
sin sin dn nJ Pα α θ θ θ

π
Ξ ≡ ∫                 (20) 

From Gradshteyn and Ryzhik [14] we have the following expansion for 
( )nP x  

( ) ( ) ( )
( ) ( )

2
2

0

1 2 2 !1
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n
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n k
P x x

k n k n k
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−

=

− −
=

− −∑               (21) 

where ⋅    denotes the floor function. 
We start by considering ( )n αΩ  where, by using (21), the integrand in (19) 

can be expressed as a finite summation. Furthermore, due to the linearity of the 
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integral operation, the order for the integration and summation can be reversed. 
As a result, the problem is reduced to dealing with a summation of integrals of 
the form 

( ) ( )2 1
1

2

0
cos sin dn t Jθ α θ θ−π +

∫                  (22) 

The integral in (22) can be evaluated using the following result [14] 

( )( ) ( ) ( ) ( )
( )

, 11 2 12

0 1 1sin sin cos d
2

s z
J z

z
µ ν ν µµ ν

µ µ νθ θ θ θ
µ

+ − +− +

−

π

+=
Γ∫        (23) 

where Γ  is the gamma function and ( ),s zµ ν  is the Lommel function defined 
as 

( ) ( ) ( ) ( ) ( )
0 0, d d

2
z z

s z Y z z J z z J z z Y z zµ µ
µ ν ν ν ν ν

 = −  
π

∫ ∫        (24) 

and Yν  is the Bessel function of the second kind of order ν . Letting 1µ = , 
2 2n tν = − , and z α=  in (23) we arrive at 

( ) ( )
( )

12

0

,
2 22 1

1
1

2

cos sin d
n nt t

n t
nt

s

J

α

θ α θ θ

α

 − + − − +  
 − +

π

 
 

=∫            (25) 

Numerical evaluation of Lommel functions can be in general a challenging 
undertaking. However, at this point a closer inspection of (25) reveals that it is 
only necessary to consider Lommel functions of the form 1,sν ν+ . Based on the 
integral definition given in (24) we have 

( ) ( ) ( ) ( ) ( )1 1
1, 0 0

d d
2

z z
s z Y z z J z z J z z Y z zν ν
ν ν ν ν ν ν

+ +
+

π  = −  ∫ ∫       (26) 

Fortunately both integrals encountered in (26) have closed form solutions 

( ) ( )1 1
1dp p

p px Z x x x Z x+ +
+=∫                   (27) 

where pZ  represents an arbitrary Bessel function of order p. In evaluating (26) 
using (27), we encounter a 0×∞  indeterminate form due to the term  

( )1
1z Y zν

ν
+

+  when evaluated at 0z = . In this case the small argument limit of 
( )Y zν  [13] can be used to show that 

( ) ( ) 1
1

10

1 2
lim
z

z Y z
ν

ν
ν

ν +
+

+→

−Γ +
=

π
                 (28) 

After some algebra, the Lommel functions may be written in the form 

( ) ( ) ( )1, 2 1s z z J zν ν
ν ν νν+ = − Γ +                 (29) 

Combining all the results and after some further simplifications we arrive at 
the following expression for ( )n αΩ  

( ) ( ) ( )
( ) ( )

( )2

2
2

10 2

1 2
21 2 2 !1 1

! ! 2 !2

n t
n
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 − +=  
 

 Γ − + 
 − −

Ω = −
− −∑    (30) 

Next we consider the function ( )n αΞ  defined in (20). By differentiating (21) 
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with respect to θ  and using the fact that 1 d
d

n
n

P
P

θ
= −  the following expansion 

for 1
nP  can be obtained: 

( ) ( ) ( )
( ) ( ) ( )

1
2

2 11
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1 2 2 !sincos cos
! ! 2 1 !2
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n n
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n t
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Using this expansion for 1
nP , the integrand in (20) can be cast in the form of 

the summation given below: 

( ) ( ) ( ) ( )( )

( ) ( )

1
2 12 2

1

0

sin sin 1 2 2 ! cos
! ! 2 1 !2

n
t n t

n
t

J n t
t n t n t

α θ θ θ
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=

− −
− − −∑          (32) 

As done previously, the order of integration and summation can be reversed. 
The integrals inside the summation can be evaluated using the following result 
[14] 

( )( ) ( ) ( ) ( )
( ) ( )1 2 1 12

0 1sin sin cos d 2 1J Jµ ρ ρρ
µ ρ µα θ θ θ θ ρ α α+ + − −π

+ += Γ +∫   (33) 

Setting 1µ =  and 1
2
n tρ = − −  leads to 
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0
sin sin cos d 2
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n nt tn t
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Finally by using this result we arrive at the following expression for ( )n αΞ  
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Thus we have obtained the solution for ( )1
n αΠ  defined by integral (12) as 

( ) ( ) ( ) ( )1 1n n nn nα α αΠ = + Ω +Ξ                 (36) 

where ( )n αΩ  and ( )n αΞ  were shown to have closed form representations 
given by (30) and (35) respectively. 

3. Evaluation of ( )n
2 αΠ  

To evaluate ( )2
n αΠ , we start by writing (13) as 

( ) ( )2
1 1

12
0

sin d
cos sin d

sin d sin
n n

n

J P Pα θ
α θ θ θ

θ θ θ
π  
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∫          (37) 

It can easily be shown that 

( )
1 1

1d dcos sin sin
d sin d

n n
n

P P
Pθ θ θ

θ θ θ
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+ = 
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              (38) 

Using Legendre’s differential Equation (16) and 1d
d

n
n

P
P

θ
= −  it can be shown 

that 
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( )
( ) ( )1

2
2

0
sin d

1
n

nJ P
n n

α
α θ θ

πΠ
=

+ ∫                  (39) 

Evaluating the integral in (39) follows a very similar procedure to that already 
presented in Section 2 for ( )n αΩ . We start by using the expansion in (21) to 
rewrite the integrand as a summation. Reversing the order of summation and 
integration, the resulting integrals can be evaluated using (23). As before, Lom-
mel functions of the form ( )1,s zν ν+  are encountered in the results, which can 
be evaluated using (29). Combining all the results and upon further simplifica-
tions, we arrive at 

( )
( )

( ) ( )
( ) ( )

( )
1

2
12 2

2
1

0 2

1 2
21 2 2 !1 1

1 ! ! 2 !2
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n
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n n t n t n t

α
α

α
α

− − 
  

−   −   
 

+ −=  
 

+ Γ − 
 Π − −

= −
+ − −∑   (40) 

4. Conclusions and Suggestions 

In this paper, we obtained analytical results for two definite integrals which in-
clude products of Bessel, Legendre, and trigonometric functions. These integrals 
are encountered when expanding aperture-diffracted fields in terms of VSWF. 
These results are especially important for electromagnetic and optical scattering 
problems involving general Mie theory with arbitrary incident fields, but may 
also have applications in other branches of physics. 
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