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Abstract 
In this manuscript, Local dynamic behaviors including stability and Hopf bi-
furcation of a new four-dimensional quadratic autonomous system are stu-
died both analytically and numerically. Determining conditions of equilibrium 
points on different parameters are derived. Next, the stability conditions are 
investigated by using Routh-Hurwitz criterion and bifurcation conditions are 
investigated by using Hopf bifurcation theory, respectively. It is found that 
Hopf bifurcation on the initial point is supercritical in this four-dimensional 
autonomous system. The theoretical results are verified by numerical simula-
tion. Besides, the new four-dimensional autonomous system under the para-
metric conditions of hyperchaos is studied in detail. It is also found that the 
system can enter hyperchaos, first through Hopf bifurcation and then through 
periodic bifurcation. 
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1. Introduction 

Due to some characteristics of chaos, such as the sensitive dependence on initial 
values and the unpredictability of long-term development, chaos is a special 
means suitable for information encryption processing. Chaos has great potential 
in the field of image encryption. So far, the research of chaotic image encryption 
technology still attracts much attention. Hagras and Saber [1] proposed an im-
plementation of the gray image encryption based on the 4D memristor chaotic 
system, and demonstrated that the investigated encryption approach can protect 
high speed and high security against various attack. Zhu et al. [2] proposed an 
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image encryption algorithm combining pixel segmentation operation, block chao-
tic matrix confusion operation and pixel diffusion operation with sinusoidal po-
lynomial composite chaotic system, which has the advantages and effectiveness 
of image encryption algorithm. Based on a sliding-mode-based controller de-
signed for finite-time synchronization of memristor chaotic systems, Li et al. [3] 
proposed and implemented a new image encryption algorithm. Xian et al. [4] 
studied an encryption method with spatiotemporal chaotic system based on 
double parameters fractal sorting vector. Guo et al. [5] studied image encryption 
of the chaotic systems generated by quadratic functions topologically conjugate 
with Logistic map and Tent map, which is poor in resisting the chosen plaintext 
attack. Hyperchaos has better performance in image encryption than chaos. Im-
age encryption technology based on hyperchaos and other current technologies 
has been more widely studied by scholars. An improved image encryption algo-
rithm based on hyperchaotic systems and random walk is proposed by Fan et al. 
[6], which does not have only the original advantages, but can also improve the 
ability to resist attacks. Li et al. [7] proposed an image encryption scheme com-
bining neural network, domain diffusion and fractional-order laser hyperchaos 
system, which offers a new research perspective for optical image encryption. 
Samiullah et al. [8] demonstrated that mostly encryption algorithm based on 
DNA computing and multiple Chaotic Systems has enhanced performance as 
compared to contemporary works in information security. Liu et al. [9] pro-
posed an image encryption scheme that combines 5D hyperchaos system with 
DNA technology, and verified that the scheme can achieve good encryption effect 
and resist various attacks. Gao et al. [10] designed a multi-image encryption 
scheme based on the fractional-order hyperchaotic system and multiple image 
fusion, which increases the efficiency of image encryption and transmission. 

Hopf bifurcation is one of many bifurcation types, which plays an important 
role in the analysis of complex systems. Lv [11] analyzed a diffusion system with 
memory delay and general delay by studying its Hopf bifurcation. Efran and 
Manuel [12] addressed the problem of a robust tracking, surveillance and land-
ing of a mobile ground target by Hopf bifurcation. Li et al. [13] studied an im-
proved wheelset motion model with two degrees of freedom through Hopf bi-
furcation method. By analyzing the existence of Hopf bifurcation, Wang et al. 
[14] studied a delayed diffusive predator-prey model with predator interference 
or foraging facilitation. Huang et al. [15] investigated a diffusive complex Ginz-
burg-Landau model with delayed feedback and phase shift by discussing condi-
tions for the existence of resonant double Hopf bifurcation. Hopf bifurcation is 
also a way to enter chaos, so it is often used to study some chaotic systems. 
Dealing with chaotic fractional-order system in the sense of the Caputo fraction-
al derivative with entanglement function, Shiva et al. [16] derived conditions 
under which the system undergoes a Hopf bifurcation. Wang et al. [17] dis-
cussed a tumor and Lymphatic immune system interaction model with two time 
delays, in which Hopf bifurcation describes the chaotic attractor formation. Ra-
mesh et al. [18] studied Hopf bifurcation of a fractional-order butterfly-fish chao-
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tic system and derived the existence of a chaotic attractor in the system. Amin 
and Saeed [19] presented a four-dimensional quadratic autonomous hyper-chaotic 
system and analyzed the local dynamics of stability and Hopf bifurcation. Hopf 
bifurcation of a Lorenz type system [20] and the Repressilator Model [21] were 
investigated by Calderon-Saavedra et al. and Verdugo, respectively. 

The rest of the manuscript consists of five sections. The new four-dimensional 
quadratic autonomous system and its equilibriums are derived in Section 2. Sta-
bility condition of each equilibrium point is derived in Section 3. Hopf bifurca-
tion is studied in Section 4. Numerical simulations are shown in Section 5. The 
conclusions are drawn in Section 6. 

2. Dynamic Modeling 

Recently, Fang et al. [22] proposed a hyperchaotic system and studied its image 
encryption. Based on this system, a new four-dimensional quadratic autonom-
ous system is presented as follows 

2

2

,
,

,
.

x ay ax z
y bx y xz
z x cz
w w dy

= − +
 = − −
 = −
 = − +









                        (1) 

where ( ) 4, , ,x y z w ∈ , , , ,a b c d ∈ , are constant parameters, determining dy-
namic behaviors of the system (1). 

When 2a c+ > − , the system (1) is dissipativity and symmetrical about z-w 

plane, for ( )2 0x y z wV a c
x y z w
∂ ∂ ∂ ∂

∇ = + + + = − + + <
∂ ∂ ∂ ∂
  

 and invariance under lo-

cal coordinate transformation: ( ) ( ), , , , , ,x y z w x y z w− − → . 

The equilibrium points of system (1) can be described in the following theo-
rem: 

Theorem 1. The equilibrium points of the system (1) depends on parameters 
a, b, c, which are illustrated as follows: 

1) If the system parameters satisfy the following condition 

( )20, 1 4 1 0,a a b c
c
≠ + − <                    (2) 

then there is only one equilibrium point ( )0 0,0,0,0X = . 
2) If the system parameters satisfy the following condition 

( )20, 1 4 1 0,a a b c
c
≠ + − =                    (3) 

then there are two equilibrium points ( )0 0,0,0,0X =  and ( )1 1 1 1 1, , ,X x y z w= , 

where 1
1

2
x

a
= , 

2

1 3

2 1
4
a cy

a c
−

= , 1 1z b= − , ( )( )2
1 1 2 1w b b cd= − − . 

3) If the system parameters satisfy the following condition 

( )20, 1 4 1 0,a a b c
c
≠ + − >                    (4) 
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then there are three equilibrium points ( )0 0,0,0,0X = , ( )2 2 2 2 2, , ,X x y z w= , and 

( )3 3 3 3 3, , ,X x y z w= , where 2
1

2
x

a
− ∆

= , 
( ) ( )22

2 3

2 1 1

4

a c
y

a c

− ∆ − − ∆
= ,  

( )2

2 2

1

4
z

a c

− ∆
= , 

( )( )2 2 2

2 4

2 2 1 2 1

4

d a bc a c a c
w

a c

− + − ∆ − + ∆
= , and  

3
1

2
x

a
+ ∆

= , 
( ) ( )22

3 3

2 1 1

4

a c
y

a c

+ ∆ − + ∆
= , 

( )2

3 2

1

4
z

a c

+ ∆
= ,  

( )( )2 2 2

3 4

2 2 1 2 1

4

d a bc a c a c
w

a c

− + + ∆ − − ∆
= , and 

( )2

2

1 4 1a b c
c

+ −
∆ = . 

Proof 1. Letting the right terms of Equation (1) equal zero, one can obtain 
that 

3

2

2 2 4 6
2

1 ,

1 ,

2 .

y bx x
c

z x
c

bd dw b dx x x
c c

 = −

 =



= − +

                   (5) 

and 

( ) 2 311 0.aa b x x x
c c

− + − =                     (6) 

If condition (1) is satisfied, then 0a
c
≠  and 0∆ < . So Equation (6) has only 

one root 0 0x = . Substituting to Equation (5), one can get there is only one 
equilibrium point 0X ; 

If condition (2) is satisfied, then 0a
c
≠  and 0∆ = . So Equation (6) has two 

roots 0 0x = , 1
1

2
x

a
= . Substituting to Equation (5), one can get there are two 

equilibrium points 0X  and 1X ; 

If condition (3) is satisfied, then 0a
c
≠  and 0∆ > . So Equation (6) has three 

roots 0 0x = , 2
1

2
x

a
− ∆

= , 3
1

2
x

a
+ ∆

= . Substituting to Equation (5), one can 

get there are three equilibrium points 0X , 2X  and 3X . 

Therefore, theorem 1 is deduced. 

3. Stability Analysis 

In this section, the stability of the equilibrium points of system (1) is respectively 
studied. 

3.1. Equilibrium Point X0 

First of all, the initial equilibrium 0X  is considered. The Jacobian matrix of 
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system (1) at 0X  is evaluated as 

0

1 0
1 0 0

.
0 0 0
0 0 0 1

a a
b

A
c

− 
 − =
 −
 

− 

                    (7) 

By calculation, it is obtained that the characteristic equation of the Jacobian 
matrix 0A  as follows 

4 3 2
1 2 3 4 0,R R R Rλ λ λ λ+ + + + =                   (8) 

where 

1 2

3 4

2, 2 2 1,
2 , .

R a c R ab ac a c
R abc ab ac a c R abc ac

= + + = − + + + +
= − − + + + = − +

            (9) 

The eigenvalues of the Jacobian matrix 0A  are characterized as follows: 

2
1 2 3,4

1 11, , 4 2 1.
2 2

ac a ab aλ λ λ +
= − = − = − ± + − +        (10) 

If the following conditions are satisfied: 
20, 4 2 1 0,c a ab a> + − + <                   (11) 

or 

21 10, 4 2 1 0,
2 2

ac a ab a+
> − ± + − + <              (12) 

then all the eigenvalues of matrix 0A  have negative real parts, so the equili-
brium point 0X  is asymptotically stable. 

3.2. Equilibrium Point X1 

In the subsection, the equilibrium point 1X  is considered. The Jacobian matrix 
of system (1) at 1X  is evaluated as 

( )

1

2

3

1 0
12 1 1 0

2
1 0 0

2 1
0 0 1

2

a a

b
a

A c
a

a c d

a c

− 
 
 − − −
 
 =  −
 
 − −  

              (13) 

By calculation, it is obtained that the characteristic equation of the Jacobian 
matrix 1A  is as follows 

4 3 2
1 2 3 4

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 0,R R R Rλ λ λ λ+ + + + =                  (14) 

where 

1 2

3 4

1ˆ ˆ2, 2 3 2 1 ,

3 1ˆ ˆ2 2 3 2 , 2 2 .
2 2

R a c R ab ac a c
a

R abc ab ac a c R abc ac
a a

= + + = − + + + + −

= − − + + + − = − + −
    (15) 
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Due to complexity and length of the eigenvalues of the Jacobian matrix 1A , 
the Routh-Hurwitz criterion is adopted. 

According to the Routh-Hurwitz criterion, if the following conditions are sa-
tisfied: 

2 2
1 1 2 3 1 2 3 3 1 4 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0, 0, 0, 0R R R R R R R R R R R> − > − − > >       (16) 

then all the eigenvalues of matrix 1A  have negative real parts, so the equili-
brium point 1X  is asymptotically stable. 

3.3. Equilibrium Point X2 

In the subsection, the equilibrium point 2X  is considered. The Jacobian matrix 
of system (1) at 2X  is evaluated as 

( )

( ) ( )

2

2

2

22

3

1 0

1 11 0
24

1 0 0

2 1 1
0 0 1

2

a a

b
aa c

A
c

a

a cd d

a c

− 
 
 − ∆ ∆ − − −
 
 = − ∆ −
 
 

− ∆ − − ∆ 
− 

 

   (17) 

By calculation, it is obtained that the characteristic equation of the Jacobian 
matrix 2A  as follows 

4 3 2
1 2 3 4 0,R R R Rλ λ λ λ+ + + + =                       (18) 

where 

( )

( ) ( )

( )

2

1 2

2 2

3

2

4

1 12, 2 2 1,
4

1 1 2 21 2 ,
4 4

1 11 .
4

R a c R ab ac a c
ac a

R abc ab ac a c
a ac a

R abc ac
a a

− ∆ − ∆
= + + = − + + + + − +

− ∆ − ∆ − ∆
= − + + − ∆ − + + + + −

− ∆ − ∆
= − + + − ∆ + −

 





 (19) 

Due to complexity and length of the eigenvalues of the Jacobian matrix 2A , 
the Routh-Hurwitz criterion is adopted. 

According to the Routh-Hurwitz criterion, if the following conditions are sa-
tisfied: 

2 2
1 1 2 3 1 2 3 3 1 4 40, 0, 0, 0R R R R R R R R R R R> − > − − > >                 (20) 

then all the eigenvalues of matrix 2A  have negative real parts, so the equili-
brium point 2X  is of asymptotic stability. 

3.4. Equilibrium Point X3 

Finally, the equilibrium point 3X  is considered. The Jacobian matrix of system 
(1) at 3X  is evaluated as 
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( )

( ) ( )

2

2

3

22

3

1 0

1 11 0
24

1 0 0

2 1 1
0 0 1

2

a a

b
aa c

A
c

a

a cd d

a c

− 
 
 + ∆ − − ∆ − −
 
 = + ∆ −
 
 

+ ∆ − + ∆ 
− 

 

  (21) 

By calculation, it is obtained that the characteristic equation of the Jacobian 
matrix 3A  as follows 

4 3 2
1 2 3 4 0,R R R Rλ λ λ λ+ + + + =                 (22) 

where 

( )

( ) ( )

( )

2

1 2

2 2

3

2

4

1 12, 2 2 1,
4

1 1 2 21 2 ,
4 4

1 11 .
4

R a c R ab ac a c
ac a

R abc ab ac a c
a ac a

R abc ac
a a

+ ∆ + ∆
= + + = − + + + + − +

+ ∆ + ∆ + ∆
= − + + + ∆ − + + + + −

+ ∆ + ∆
= − + + + ∆ + −

  (23) 

Due to complexity and length of the eigenvalues of the Jacobian matrix 3A , 
the Routh-Hurwitz criterion is adopted. 

According to the Routh-Hurwitz criterion, if the following conditions are sa-
tisfied: 

2 2
1 1 2 3 1 2 3 3 1 4 40, 0, 0, 0R R R R R R R R R R R> − > − − > >       (24) 

then all the eigenvalues of matrix 3A  have negative real parts, so the equili-
brium point 3X  is of asymptotic stability. 

4. Hopf Bifurcation Analysis 

In this section, Hopf bifurcation of the equilibrium point 0X  of system (1) is 
studied. At the other equilibrium points, the situations are so similar to 0X  
that they are not studied below. 

According to the Hopf bifurcation theory, Hopf bifurcation may occur while 
the characteristic equation has a pair of purely imaginary eigenvalues and two 
eigenvalues with negative real parts. As a result, Hopf bifurcation of system (1) 
may occur when condition (10) satisfies 

1 2 3,41, 0, 1 ,c b iλ λ λ= − = − < = ± −               (25) 

that is 

1, 0, 1.a c b= − > >                      (26) 

Choosing the system parameters 1a = − , 2b = , 2c = , 1d = , then the ei-
genvalues 1 1λ = − , 2 2λ = − , 3,4 iλ = ± , where 1i = − . Next, Hopf bifurcation 
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at the point 0X  is investigated with Poincaré-Birkhoff normal form theorem. 
The three-dimensional truncation of Equation (1) is presented as 

( ) ( )

( ) ( ) ( ) ( )

T

4

, , , , ,
1 1, , , ,
2 6

X X X X x y z w

X X X X X X X

= + =

= + +

  

   
          (27) 

where 

( ) ( )2

2

1 1 1 0 0 0
2 1 0 0 2 0

, , , , , .
0 0 2 0 2 0
0 0 0 1 2 0

xz
X X X X X

x
y

−     
     − −     = = =
     −
     

−     

      (28) 

Letting ( )T 4
1 2 3 4, , ,Q q q q q= ∈  be the complex eigenvector corresponding 

to the eigenvalue 3 iλ = , there exists ( )T 4
1 2 3 4, , ,P p p p p= ∈  so that 

4

1

T T

, 1, , ,

, ,
, , .

i i
i

P Q P Q p q

Q iQ Q iQ
P i P P i Pω ω ω

=

= =

= = −
= − = ∈

∑



 
 

              (29) 

where and below ⋅  is represented to the conjugate symbol. According to con-
ditions (29), Q and P are calculated as follows 

T T1 1 1 1,1,0,0 , ,1,0,0 ,
2 2 2 2

Q i Q i   = + = −   
   

           (30) 

T T1 1 1 2 1 1 1 2, , ,0 , , , ,0 ,
2 2 5 5 2 2 5 5

P i i i P i i i   = − − + = − + − −   
   

      (31) 

With the center manifold theorem [23] [24] [25], 4 c su= ⊕   , where c  
is the tangent space of  , su  is the residual subspace. For any 4X ∈ , 
X Y uQ uQ= + + , u∈ , where cY ∈ , suuQ uQ+ ∈ . u means the coordi-

nate of { }Re , ImQ Q  on su . Due to , 0P Y =  and , 0P Q = , so one can 
get 

, ,

, , .

u P X

Y X P X Q P X Q

=

= − −
                  (32) 

Combining with condition (27), the coordinate variable u is developed into 

( ) ( )2 2
20 11 02

1 1 , , , , ,
2 2

u iu G u G uu G u u P Q Y u P Q Y= + + + + + +
   (33) 

and the system is developed into 

2 2
20 11 02

1 1 .
2 2

Y Y H u H uu H u= + + + +

              (34) 

where 

( )

( )
( )

20

11

02

, , ,

, , ,

, , ,

G P Q Q

G P Q Q

G P Q Q

=

=

=
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( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

20

11

02

, , , , , ,

, , , , , ,

, , , , , ,

H Q Q P Q Q Q P Q Q Q

H Q Q P Q Q Q P Q Q Q

H Q Q P Q Q Q P Q Q Q

= − −

= − −

= − −

  

  

  

         (35) 

( )

0

, , , .
2
2

x x
xz zx y y

X Y X Y
xx z z
yy w w

′     
     ′ ′ ′− −     = = =
     ′ ′
     ′ ′     

            (36) 

Since 20 02H H= , 11 11H H= , without losing generality, the main order of Y 
can be expressed as 

( ) ( )
( )

3

2 2
20 11 02

, ,

1 1, ,
2 2

Y u u u

u u W u W uu W u

= +

≡ + +

 


              (37) 

and 

20 11 02, 0, , 0, , 0.P W P W P W= = =              (38) 

Considering condition (34) and ( ) ( ), ,u u u u
Y u u

u u
∂ ∂

= +
∂ ∂

 



 
, it can be ob-

tained that constraint conditions is as the following 

( )

( )

1
20 20

1
11 11

1
02 02

2 ,

,

2 .

W iI H

W H

W iI H

−

−

−

 = −
 = −


= − −







                    (39) 

On those conditions the restricted condition of coordinate variable is shown 
as 

( ) ( )( )

2 2
20 11 02

2
11 20

1 1
2 2

1 2 , , , , .
2

u iu G u G uu G u

P Q W P Q W z z

= + + +

+ + +



 
         (40) 

Next, by substituting conditions (30), (31) into conditions (35), (36), (39), the 
specific results of those expressions are given as follows 

( ) ( ) ( )
0 0 0
0 0 0

, , , , , ,
1

2 2 2

Q Q Q Q Q Q
i i

     
     
     = = =
     −
     
     

            (41) 

20 11 02
2 1 1 2 2 1, , ,
5 5 5 5 5 5

G i G i G i= − = − − = − +            (42) 

T

20
1 2, , , 2 ,
5 5

H i i i = − 
 

                    (43) 

T

11
1 2, ,1, 2 ,
5 5

H  = − 
 

                     (44) 
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T

02
1 2, , , 2 ,
5 5

H i i i = − − 
 

                    (45) 

T

20
1 1 1 1 1 1 2 4, , , ,
20 20 10 10 4 4 5 5

W i i i i = − − + + − 
 

           (46) 

T

11
1 1 1, , , 2 ,

10 5 2
W  = − 

 
                    (47) 

T

02
1 1 1 1 1 1 2 4, , , ,
20 20 10 10 4 4 5 5

W i i i i = − + − − + 
 

           (48) 

Therefore the first Lyapunov coefficient is 

( ) ( )( )
( ) ( )( )

1
1

1

0 Re , , ,

1 Re , , 2 ,
2
1 0,

80

L P Q Q Q

P Q iI Q Q

−

−

= −

+ −

= − <

  

              (49) 

in which we can see the Hopf bifurcation is supercritical at the point ( )0 0,0,0,0X . 

5. Numerical Simulations 

In the section, the time histories, Lyapunov exponential spectrums, projections 
of four-dimensional phase portrait and bifurcation diagrams are studied by nu-
merical simulation. By considering the same initial value ( )0.01,0,0,0  and 
different situations which depend on different parameters a, b, c, and d, using 
the fourth-order Runge-Kutta method, numerical simulations including time 
histories, Lyapunov exponential spectrums and projections of phase portrait ve-
rify the results of the above analysis. And the ways to enter chaos can be seen 
through bifurcation diagrams. 

Choosing parameters 0.9a = − , 2b = , 2c =  and 1d = , the time histories, 
Lyapunov exponential spectrums, two-dimensional projections and three-di- 
mensional projections of four-dimensional phase portrait are shown in Figures 
1-4. From Figure 1 and Figure 2 one can see the system in this situation is in an 
asymptotically stable state. From Figure 3 and Figure 4 one can know the system 
motion gradually converges to the equilibrium point ( )0 0,0,0,0X  as time 
goes by, which verifies the analytical results. 

Choosing parameters 1a = − , 2b = , 2c =  and 1d = , the time histories, 
Lyapunov exponential spectrums, two-dimensional projections and three-di- 
mensional projections of four-dimensional phase portrait are shown in Figures 
5-8. From Figures 5-8, one can see the system in this situation is under periodic 
motions and is also in a stable state. In the situation, there will occur the Hopf 
bifurcations in the system if the system is subjected to minor disturbance, which 
verifies the theoretical analysis in Section 4. 

Choosing parameters 12a = , 45b = , 4c =  and 1d = , the time histories, 
Lyapunov exponential spectrums, two-dimensional projections and three-di- 
mensional projections of four-dimensional phase portrait are shown in Figures 
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9-12. From Figure 9 one can see time histories are in a disordered state. Figure 10 
shows that the system in this situation is hyperchaotic. From Figure 11 one can see 
plane projection on x-y plane is a family of quasi symmetric cumulative bicyclo 
and plane projection on z-w plane is in disorder. From Figure 11 one can see 
spatial projection in x-y-z space and spatial projection in x-y-w space are in a 
chaotic state. 

 

 
Figure 1. The time histories for ( ) ( ), , , 0.9,2,2,1a b c d = − . 

 

 

Figure 2. The Lyapunov exponential spectrum for ( ) ( ), , , 0.9,2,2,1a b c d = − . 
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Figure 3. two-dimensional projections of four-dimensional phase portrait for ( ) ( ), , , 0.9,2,2,1a b c d = − . (a) Plane 

projection projected on x-y plane; (b) plane projection projected on z-w plane. 
 

 
Figure 4. Three-dimensional projections of four-dimensional phase portrait for ( ) ( ), , , 0.9,2,2,1a b c d = − , (a) spatial 

projection projected in x-y-z space; (b) spatial projection projected in x-y-w space. 
 

 

Figure 5. The time histories for ( ) ( ), , , 1,2,2,1a b c d = − . 
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Figure 6. The Lyapunov exponential spectrum for ( ) ( ), , , 1,2,2,1a b c d = − . 

 

 
Figure 7. Two-dimensional projections of four-dimensional phase portrait for ( ) ( ), , , 1,2,2,1a b c d = − . (a) Plane pro-

jection projected on x-y plane; (b) plane projection projected on z-w plane. 
 

 
Figure 8. Three-dimensional projections of four-dimensional phase portrait for ( ) ( ), , , 1,2,2,1a b c d = − . (a) Spatial 

projection projected in x-y-z space; (b) spatial projection projected in x-y-w space. 
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Figure 9. The time histories for ( ) ( ), , , 15,25,5,1a b c d = . 

 

 

Figure 10. The Lyapunov exponential spectrum for ( ) ( ), , , 15,25,5,1a b c d = . 

 

 
Figure 11. Two-dimensional projections of four-dimensional phase portrait for ( ) ( ), , , 15,25,5,1a b c d = . (a)Plane projection 

projected on x-y plane; (b) plane projection projected on z-w plane. 
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Figure 12. Three-dimensional projections of four-dimensional phase portrait for ( ) ( ), , , 15,25,5,1a b c d = . (a) Spatial projection 

projected in x-y-z space; (b) spatial projection projected in x-y-w space. 

6. Conclusion 

With analytical and numerical methods, stability and Hopf bifurcation analysis 
of a new four-dimensional autonomous system are investigated in this manu-
script. Determining conditions of equilibrium points on different parameters are 
derived at the beginning. Next stability conditions and bifurcation conditions are 
investigated successively. It is found that Hopf bifurcation on the initial point is 
supercritical in this four-dimensional autonomous system. The theoretical results 
are verified by numerical simulation. Besides, the new four-dimensional auto-
nomous system under the parametric conditions of hyperchaos is investigated in 
detail. It is found that the system can enter hyperchaos, first through Hopf bi-
furcation and then through periodic bifurcation. 
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