
Journal of Applied Mathematics and Physics, 2022, 10, 2581-2603 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2022.109175  Sep. 5, 2022 2581 Journal of Applied Mathematics and Physics 
 

 
 
 

Bose-Einstein Condensates and Atomic and 
Electron Lasers Including Atomic Laser in the 
self-Consistent Gravitation Field 

Boris V. Alexeev 

Russian State Technological University, Moscow, Russia 

 
 
 

Abstract 
The problem of an adequate description of the wave processes in Bose-Einstein 
condensates (CBE), including space-temporal evolution of CBE in the elec-
tron CBE condensate in the self-consistent electrical field and CBE atomic 
condensate in the self-consistent gravitational field is considered. The com-
plete nonlocal system for the CBE evolution is delivered including particular 
case and analytical solutions. 
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1. Introduction 

The phenomenon of condensation of an ideal Bose gas was predicted in 1924 by 
Sh. Bose and A. Einstein [1] [2]. By definition, lasers produce coherent light waves, 
but according to the wave-corpuscle dualism underlying quantum mechanics, 
particles, including atoms, can be considered as waves. Based on this principle, 
the operation of a physical system, defined as the coherent state of propagating 
atoms, is defined as an atomic laser. The effect is based on the Bose-Einstein 
condensate, a state of matter in which a large number of particles occupy the 
same quantum ground state with low energy. 

The first atomic laser was developed at the Massachusetts Institute of Tech-
nology in 1996 by physicist Wolfgang Ketterle and his colleagues. The Nobel 
Prize in Physics 2001 was awarded jointly to Eric A. Cornell, Wolfgang Ketterle 
and Carl E. Wieman “for the achievement of Bose-Einstein condensation in di-
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lute gases of alkali atoms, and for early fundamental studies of the properties of 
the condensates”. 

Since then, several atomic laser designs have been demonstrated. These cohe-
rent “matter bundles” can be useful, for example, in the field of holography, since 
they are able to create holographic images with much higher resolution than 
with the traditional approach. But the atomic lasers developed were only able to 
work for a very short time. Thus, the main problem is the creation of conti-
nuous waves of matter in a Bose-Einstein condensate (CBE) at sufficiently high 
temperatures. Usually, extremely low temperatures are required for the forma-
tion of coherent waves of matter CBE, about one millionth of a degree above 
absolute zero (−273.15˚C). These lasers can create pulses of matter waves, but 
after sending such a pulse, it is necessary to create a new Bose-Einstein con-
densate (CBE) to generate a new pulse. In the past, physicists faced the same 
problem with optical lasers: at first they were only pulsed, and then they be-
came continuous. 

In order for these waves of matter to be used for practical purposes, it is ne-
cessary: 

1) To develop an experimental technique of continuous CBE. 
2) To develop a theory of atomic lasers with a continuous wave—a theory of a 

physical system that provides a continuous beam of coherent particles with a rest 
mass other than zero. 

The article is devoted to the development of the nonlocal theory of coherent 
flows of CBE. Therefore, 

1) The review of experimental achievements in the field of CBE lasers is not 
part of our task. 

2) A review of theoretical papers based on the “corrected” Schrödinger equa-
tion does not make sense. 

I recall the shortcomings of the Schrödinger model: 
1) The Schrödinger equation is a postulate. Another differentiation of the function 

leads to other equations, for example, to equations containing the second derivative 
of time. 

2) The Schrödinger equation does not describe dissipative processes. 
3) The Schrödinger equation is not able to describe the whole complex “nu- 

cleus-electron shell”. 
4) The Schrödinger equation is unable to describe a spatial electron shell without 

the use of additional assumptions such as the Pauli principle. 
5) To a large extent, the quantization result is the result of cutting infinite series 

and turning them into polynomials. 
6) The Schrödinger equation requires setting boundary conditions for the wave 

function at infinity and leads to spreading of wave packets. 

2. The Nonlocal Hydrodynamic Equations 

The generalized hydrodynamic equations (GHE) can be obtained from the non-
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local kinetic equation in the frame of the Enskog procedure, [3] [4] [5] [6] [7]: 
Continuity equation for species α  
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Continuity equation for mixture 
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Momentum equation for species α  
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Momentum equation for mixture 
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Energy equation for α  species 
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The force dimension, ( )1
2

cm
s

Fα
  =  . Here ( )1

αF  are the forces of the non-mag- 

netic origin, B —magnetic induction, I


—unit tensor, qα —charge of the α
—component particle, pα —static pressure for α —component, αε —internal 
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energy for the particles of α —component, 0v —hydrodynamic velocity for 
mixture, ατ —non-local parameter. 

3. System of Non-Local Equations for the Case pα 0= , 0v 0=  

They often talk about a new form of matter. Exactly: 
1) At a very low but finite temperature, a macroscopic number of atoms or 

molecules fill one energy level. 
2) The gas consists of non-interacting particles. 
It would seem that the existence of a finite temperature should inevitably lead 

to thermal chaotic motion of particles. This circumstance caused the rejection of 
the theory by many major theoretical physicists. 

However, subsequent experiments have confirmed the possibility of the exis-
tence of such effects at the macroscopic level. 

In the following we intend to consider the particular case of the basic nonlocal 
equations taking into account the mentioned above features of CBE. 

We assume also that there is no directional motion of the CBE physical system 
with hydrodynamic velocity, 0 0=v . We find: 
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But there is no dependence on velocity, then 
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In the following we intend to consider the coherent wave processes in CBE 
system, where an energetic impulse is expanding with velocity v (see also (4.42)). 
We investigate a creation 

1) The CBE electron beam in the self-consistent electrical field. 
2) The CBE neutral atom beam in the self-consistent gravitational field. 

4. Nonlocal Model of the Electron Bose Laser 

We use the following basic equations for CBE electron beam in the self-consistent 
electrical field: 
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BEC particles have no mutual interactions, then 0Rα = . 
For momentum equation in the absence of an external magnetic field we 

have 
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We should add to the system of equations the relation defining the self-con- 
sistent electrical field E  
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We neglect the time derivative of the logarithm of the numerical density: 
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Remark: 
A non-local parameter ατ  plays the same role as the kinetic coefficients of 

local theories, such as, say, the coefficients of viscosity and thermal conductivity. 
In other words, a non-local parameter is an external parameter of the theory and 
the relation (4.15) is only one of the ways to approximate it. 

Let’s continue the transformation of Equation (4.3) using (4.15) 
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( )
22

2 2 0
ne e en n mn

m m mt t
α α

α α α α α α α α
ε

ε ε
∂ ∂∂

− ⋅ − + ⋅ =
∂∂ ∂

E E E
r

    (4.31) 

or 
2

22 0
n e e en n mn

t t m m mt
α α α α

α α α α α α
ε ε ε∂ ∂ ∂ ∂

+ − ⋅ + ⋅ =
∂ ∂ ∂∂

E E E
r

    (4.32) 

or 
2

2

ln
2 0

n e e em
t t m m mt
α α α α

α α α
ε ε ε∂ ∂ ∂ ∂

+ − ⋅ + ⋅ =
∂ ∂ ∂∂

E E E
r

.      (4.33) 

As before, we neglect the time derivative of the logarithm of the numerical 
density. 

22
2

2 0e em E
m mt

α α
α α

ε ε∂ ∂  − ⋅ + = ∂∂  
E

r
              (4.34) 

or 
2

2

e e
mt

α α
α α

ε ε∂ ∂ = ⋅ − ∂∂  
E E

r
.                 (4.35) 

Equation (4.26) also can be written in the alternative form as a part of the sys-
tem of nonlocal equations 

0

1 enαε
∂
⋅ = −

∂
E

r
,                     (4.36) 

2 2
2

2
0

1n e en n
m mt

α
α α αε

∂ ∂ = − + ⋅ ∂∂  
E

r
,              (4.37) 

2

2

e e
mt

α α
α α

ε ε∂ ∂ = ⋅ − ∂∂  
E E

r
.                 (4.38) 

In the one-dimensional case in the Cartesian coordinate system this system is 
written as 

0

1xE
en

x
α

αε
∂

= −
∂

,                     (4.39) 

2 2
2

2
0

1
x

n ne en E
m m xt

α α
α αε

∂ ∂
= − +

∂∂
,               (4.40) 

2

2 x x
e E eE
m xt

α α
α α

ε ε∂ ∂ = − ∂∂  
.                (4.41) 

We intend to find the wave solutions of this Bose electron physical system us-
ing the relation 

x vtξ = −                         (4.42) 

We transform system of Equations (4.39)-(4.41) using (4.42) 

0

1xE
enα

αξ ε
∂

= −
∂

,                     (4.43) 

2 2
2 2

2
0

1n ne ev n E
m m

α α
α αξε ξξ

∂ ∂
= − +

∂∂
,              (4.44) 
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2
2

2

ev E eE
m

α α
αξ αξ

ε ε
ξξ

∂ ∂ 
= − ∂∂  

.               (4.45) 

We intend writing Equations (4.43)-(4.45) in the dimensionless form using 
scales 

0xE Eα → ; 0n nα → ; 0x vt→ ; 0 0E evtαε → ; 0vtξ → .     (4.46) 

Using (4.42) we have for (4.45) 
2

02
0

v e E E E
t m

α α
αξ αξ

ε ε
ξ ξ

 ∂ ∂
= − ∂ ∂ 

 

 

 

               (4.47) 

Equation (4.47) allows choosing the scale for 0t  in the form 

0
0

mvt
eE

= ,                        (4.48) 

then 
2

2 E Eα α
αξ αξ

ε ε
ξ ξ

 ∂ ∂
= − ∂ ∂ 

 

 

 

                  (4.49) 

Let us consider now Equations (4.40) using (4.42). We find 
2 2

2 2
0 02 22

0 00

1 1 1n ne ev n n E E
m m vtv t

α α
α αξεξ ξ

∂ ∂
= − +

∂ ∂

 





 

          4.50) 

or 
2 2

2 2
0 0 02

0 0

1 1n ne e mvn n t E E
m m v eE

α α
α αξεξ ξ

∂ ∂
= − +

∂ ∂

 





 

           (4.51) 

or 
2 2

2 2
0 02

0

1n ne n n t E
m

α α
α αξεξ ξ

∂ ∂
= − +

∂ ∂

 





 

               (4.52) 

or 
22 2

2
02

0 0

1n ne mvn n E
m eE

α α
α αξεξ ξ

 ∂ ∂
= − + 

∂ ∂ 

 





 

             (4.53) 

or 
22

2
02

0 0

1 1n nmvn n E
m E

α α
α αξεξ ξ

 ∂ ∂
= − + 

∂ ∂ 

 





 

             (4.54) 

or 
2 2

2
022

0 0

1n nmv n n E
E

α α
α αξεξ ξ

∂ ∂
= − +

∂ ∂

 





 

               (4.55) 

and choosing the 0n  scale 
2

0 0
0 2

E
n

mv
ε

= .                       (4.56) 

This choosing leads to equation 
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2
2

2

n n
n Eα α
α αξξ ξ

∂ ∂
= − +

∂ ∂

 





 

                   (4.57) 

and finally for (4.39) we have 

E
nαξ
αξ

∂
= −

∂







.                       (4.58) 

Let us write down the complete system of scales 

0xE Eα → ; 0n nα → ; 0x vt→ ; 0 0E evtαε → ; 

0vtξ → ; 0
0

mvt
eE

→ ; or 
2

0

mv
eE

ξ
 

→ 
 

, 
2

0 0
0 2

E
n

mv
ε

→        (4.59) 

Remark 
1) From the scale system (4.55) only two scales are independent, namely the 

scale of the electrical field intensity 0E  and the phase wave velocity v. 
2) CBE physical system is created from non-interacting particles and then in 

many cases low index α  can be omitted. 
So we have a system of dimensionless ordinary differential equations. 

E
nαξ
αξ

∂
= −

∂







,                       (4.60) 

2
2

2

n n
n Eα α
α αξξ ξ

∂ ∂
= − +

∂ ∂

 





 

,                   (4.61) 

2

2 xE Eα α
αξ α

ε ε
ξ ξ

 ∂ ∂
= − ∂ ∂ 

 

 

 

.                  (4.62) 

It is possible to simplify the system (4.60)-(4.63) and even finding the analyti-
cal solutions. Using (4.60) and (4.61) we have 

23 2

3 2 0x

E E E
Eαξ αξ αξ
αξ ξ ξ

 ∂ ∂ ∂
− − =  ∂ ∂ ∂ 

  



  

              (4.63) 

Let us consider identity 
22 2

22 2
E E E

Eαξ αξ αξ
αξξ ξ ξ ξ

 ∂ ∂ ∂∂
≡ +   ∂ ∂ ∂ ∂ 

  



   

.             (4.64) 

Using (4.64) we simplify equation (4.63) 
3 2 2

3 2

1 0
2

E Eαξ αξ

ξ ξ
∂ ∂

− =
∂ ∂

 

 

                    (4.65) 

and after integration 

21
2

E
E A Bαξ
αξ ξ

ξ
∂

− = +
∂



  



.                  (4.66) 

with dimensionless constants A  and B . Using (4.60) we reach the analytical 
solution 
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21 0
2

n E A Bα αξ ξ+ + + =  

 .                  (4.67) 

In the dimension form the first two terms in the left hand side of Equation 
(4.67) takes the form 

2 22
20

2 2 2
0 0 0 0 0

1 1
2 2

E Emvn mn v
E E E

α α
α α

ε
ε ε

 
+ = + 

 
.           (4.68) 

From (4.67) follows 

2

0

1
2

B E nαξ α
ξ =

 = − + 
  

 

                    (4.69) 

or 
2

20
2

0 0

1
2

x t

E
B mn v

E
α

α
ε

ε
=

 
= − + 

 




                 (4.70) 

or 

2
0 0

BB
Eε

=                         (4.71) 

and 
2

20

2
x t

E
B mn vα

α
ε

=

 
= − + 

 




                  (4.72) 

A term 21
2

Eαξ
  according to the Umov-Poynting theorem is a dimensionless 

density of electromagnetic energy in the absence of a magnetic field. It is known 
that in Maxwell theory Umov-Poynting vector represents the directional energy 
flux (the energy transfer per unit area per unit time). Two terms in the round 
bracket of relation (4.72) correspond to the electric and kinetic densities of the 
BEC physical object. 

Let us introduce 
2

20

2 total
E

mn vα
α

ε
+ = Σ  as the total energy density. Then 

, 0totalB ξ == −Σ


                       (4.73) 

From (4.63) follows 

2

0

d 1
2d

A n Eα αξ
ξξ =

  = +  
   

 





                  (4.74) 

Equation (4.66) is independent ordinary differential equation of the first order 
and can be easily numerically integrated using for example the Maple possibilities. 

We reach the following system of equations 

21
2

E
E A Bαξ
αξ ξ

ξ
∂

− = +
∂







,                  (4.75) 

2

2 xE Eα α
αξ α

ε ε
ξ ξ

 ∂ ∂
= − ∂ ∂ 

 

 

 

.                 (4.76) 

Using (4.63) we indicate conditions and particular cases in the constant choice: 
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21
2

A B Eαξξ− − ≥    ;                     (4.77) 

210
2

B Eαξξ = → − ≥   ;                    (4.78) 

210
2

A B Eαξξ ξ> → − − ≥     .                 (4.79) 

Let us show a numerical result for the case 1A B= = −   obtained with the 
Maple help (see Figure 1). 

Obviously in this case we reach nonnegative numerical density for the wave 
x tξ = −



 . This typical example shows that the wave solution exists in the bounded 
ξ  domain. This fact allows estimating the analytical solution for the energy 
Equation (4.60). As a result we obtain the better understanding the solution be-
havior. 

Let us consider in the energy equation Eαξ
  as an average constant avE  in 

the domain of the wave regime existing and transform the corresponding linear 
equation. 

2

2 av avE Eα αε ε
ξ ξ

 ∂ ∂
= − ∂ ∂ 

 

 

 

.                  (4.80) 

We introduce the dependent variable 

avy Eαε ξ= + 

                       (4.81) 

and transform (4.80) 
 

 

Figure 1. The dimensionless electrical intensity ( )E
αξ

ξ . 
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2

2 av
y yE

ξ ξ
∂ ∂

=
∂ ∂



 

                       (4.82) 

or 

av
y E y С
ξ
∂

= +
∂





.                      (4.83) 

We introduce a new variable 

av

Сy z
E

= −


.                       (4.84) 

and write 

av
z E z
ξ
∂

=
∂





.                       (4.85) 

After integration we obtain 

1e avE Сz ξ +=
                         (4.86) 

or after substitutions 

1e avE С

av

Сy
E

ξ ++ =




                     (4.87) 

or 

2e avE
av

av

СE C
E

ξ
αε ξ+ + =









,                  (4.88) 

or 

2e avE
av

av

СC E
E

ξ
αε ξ= − −









,                 (4.89) 

( ) ( )2e avE x t
av

av

СC E x t
Eαε

−= − − −










 



.              (4.90) 

From estimation (4.90) follows that 

2
av

СC
Eαε = −



                       (4.91) 

if x t=  . Estimations (4.90) and (4.91) can be useful in applications. 

5. Nonlocal Model of the Gravitational Bose Laser 

Next, we intend to construct a theory of atomic Bose lasers in a self-consistent 
gravitational field. In general terms, the construction of the theory is similar to 
the theory of section 4. However, the difference in both results and mathematical 
transformations are very significant. The mentioned system of equations has the 
form 

α α
∂

= − Ψ
∂

g
r

,                       (5.1) 

4 Gmnα α
∂ ∂

Ψ =
∂

π⋅
∂r r

,                    (5.2) 
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Continuity equation for species α  

( ) 0.
n

n n
t t

α
α α α α ατ τ

∂∂ ∂ − + ⋅ = 
∂ ∂ ∂ 

g
r

              (5.3) 

Momentum equation for species α  

( ) 0.
n

n n
t t

α
α α α α α ατ τ

∂∂  − − = ∂ ∂ 
g g                (5.4) 

Energy equation for α  species 

( ) [ ] 0n n n
t tα α α α α α α α α α α α αε τ ε τ ε τ ρ∂ ∂ ∂ − + ⋅ − ⋅ = ∂ ∂ ∂ 

g g g
r

      (5.5) 

Unknown values are 

: , , , ,nα α α α ατ εΨg .                     (5.6) 

Let us transform Equation (5.4) 

( ) n
n n

t t
α

α α α α α α ατ τ
∂∂

+ =
∂ ∂

g g g                 (5.7) 

or 

( )2
n

n n
t t
α

α α α α α α ατ τ
∂ ∂

+ =
∂ ∂

g g g                 (5.8) 

or 

( )ln
2

n
t t
α

α α α α ατ τ
∂ ∂

+ =
∂ ∂

g g g                  (5.9) 

We neglect the time derivative of the logarithm of the numerical density. 

( )
t α α ατ∂

=
∂

g g                       (5.10) 

or 

t t
α α

α α α
τ

τ
∂ ∂

+ =
∂ ∂
g

g g                    (5.11) 

or 

ln
1

t t
α α

α
τ

τ
∂ ∂

+ =
∂ ∂

g
,                    (5.12) 

We neglect the time derivative of the logarithm of the gravitational accelera-
tion. 

Then as before we can use approximation: 

tατ = .                         (5.13) 

Let ‘s continue the transformation of the equations. Using (5.13) we fined 

α α
∂

= − Ψ
∂

g
r

,                      (5.14) 

4 Gmnα α
∂ ∂

Ψ =
∂

π⋅
∂r r

,                  (5.15) 
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( ) 0.
n

n t t n
t t

α
α α α

∂∂ ∂ − + ⋅ = 
∂ ∂ ∂ 

g
r

              (5.16) 

( ) 0.
n

tn n t
t t

α
α α α α

∂∂  − − = ∂ ∂ 
g g                (5.17) 

( ) [ ] 0n t n t n t
t tα α α α α α α α α αε ε ε ρ∂ ∂ ∂ − + ⋅ − ⋅ = ∂ ∂ ∂ 

g g g
r

      (5.18) 

Let us transform (5.16) 

( )
2

2 0.
n

t t n
t
α

α α
∂ ∂

− + ⋅ =
∂∂

g
r

                  (5.19) 

or 

( )
2

2 .
n

n
t
α

α α
∂ ∂

= ⋅
∂∂

g
r

                    (5.20) 

Let us return now to the energy Equation (5.18) 

[ ] ( ) [ ] 0n t n t n t
t t tα α α α α α α α α αε ε ε ρ∂ ∂ ∂ ∂ − + ⋅ − ⋅ = ∂ ∂ ∂ ∂ 

g g g
r

    (5.21) 

or 

( ) [ ]
2

2 0t n t n t
t α α α α α α α αε ε ρ∂ ∂

− + ⋅ − ⋅ =
∂∂

g g g
r

          (5.22) 

or 

( ) [ ]
2

2 0n n
t α α α α α α α αε ε ρ∂ ∂

− ⋅ + ⋅ =
∂∂

g g g
r

.           (5.23) 

or 

[ ]
2 2

2 2 2

0

n n
n n

t tt t

n

α α α α
α α α α α

α α α α α α

ε ε
ε ε

ε ρ

∂ ∂ ∂ ∂ ∂
+ + − ⋅

∂ ∂ ∂∂ ∂
∂ − ⋅ + ⋅ = ∂ 

g
r

g g g
r

         (5.24) 

or using (5.20) 
2

2 2 0
n

n n mn
t tt

α α α
α α α α α α α

ε ε
ε

∂ ∂ ∂ ∂ + − ⋅ + ⋅ = ∂ ∂ ∂∂  
g g g

r
      (5.25) 

or 
2

2

ln
2 0

n
m

t t t
α α α

α α α α
ε ε

ε
∂ ∂ ∂ ∂ + − ⋅ + ⋅ = ∂ ∂ ∂∂  

g g g
r

.        (5.26) 

As before, we neglect the time derivative of the logarithm of the numerical 
density nα . Then: 

2

2 0m
t
α

α α α α
ε

ε
∂ ∂ − ⋅ + ⋅ = ∂∂  

g g g
r

.              (5.28) 

We obtain the transformed system of equations 

α α
∂

= − Ψ
∂

g
r

,                      (5.29) 
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4 Gmnα α
∂ ∂

Ψ =
∂

π⋅
∂r r

,                   (5.30) 

( )
2

2 .
n

n
t
α

α α
∂ ∂

= ⋅
∂∂

g
r

                    (5.31) 

2

2 0m
t
α

α α α α
ε

ε
∂ ∂ − ⋅ + ⋅ = ∂∂  

g g g
r

.              (5.32) 

In the one-dimensional case in the Cartesian coordinate system we have 

g
xα α
∂

= − Ψ
∂

,                      (5.33) 

2

2 4 Gmn
x α α
∂

Ψ = π
∂

,                    (5.34) 

( )
2

2 .
n

n g
xt

α
α α

∂ ∂
=
∂∂

                    (5.35) 

2
2

2 0g mg
xt

α α
α α

ε ε∂ ∂
− + =

∂∂
,                 (5.36) 

where the measured value of the gravitational constant G is known with some 
certainty to four significant digits. In SI units, its value is approximately 6.674 × 
10−11 m3∙kg−1∙s−2. 

We intend finding the wave solution of this system of equations using the va-
riable x vtξ = − . We obtain from (5.33)-(5.36) 

gα αξ
∂

= − Ψ
∂

,                      (5.37) 

2

2 4 Gmnα αξ
∂

Ψ = π
∂

,                    (5.38) 

( )
2

2
2 .

n
v n gα

α αξξ
∂ ∂

=
∂∂

                   (5.39) 

2
2 2

2 0v g mgα α
α α

ε ε
ξξ

∂ ∂
− + =

∂∂
,                (5.40) 

Equations (5.37)-(5.40) can be written in the dimensionless form using the 
scales 

0∞Ψ →Ψ ; 0n nα → ; 0x vt→ ; 0g g→ ; 0 0g vtαε → ; 0vtξ → . 

We fined from (5.37) 

0
0

0

,g g
vtα αξ
Ψ∂

= − Ψ
∂







                   (5.41) 

Then 

0 0 0vt gΨ =                        (5.42) 

and 

gα αξ
∂

= − Ψ
∂







.                      (5.43) 
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Equation (5.38) takes the form 
2

2 2
0 02

0 0

14 Gmn n v t
vt gα αξ

∂
πΨ =

∂
,               (5.44) 

then 

0
0

04
g

n
Gmvtπ

=                       (5.45) 

and 
2

2 nα αξ
∂

Ψ =
∂







.                      (5.46) 

Let us consider now momentum Equation (5.39) 

( )
2

2
02

0

.
n

v g n g
vt
α

α αξ ξ
∂ ∂

=
∂ ∂



 

 

                 (5.47) 

Then 

0
0

vg
t

=                          (5.48) 

and 

( )
2

2 .
n

n gα
α αξ ξ

∂ ∂
=

∂ ∂



 

 

                    (5.49) 

We transform now the last equation in the system 
2

2 g gα α
α α

ε ε
ξ ξ

 ∂ ∂
= − ∂ ∂ 

 

 

 

,                   (5.50) 

So, we have a system of dimensionless ordinary differential equations. 

gα αξ
∂

= − Ψ
∂







,                      (5.51) 

2

2 nα αξ
∂

Ψ =
∂







,                      (5.52) 

( )
2

2 .
n

n gα
α αξ ξ

∂ ∂
=

∂ ∂



 

 

,                    (5.53) 

2

2 g gα α
α α

ε ε
ξ ξ

 ∂ ∂
= − ∂ ∂ 

 

 

 

                   (5.54) 

with the complete scale system 

2vαΨ → ; 2
0

1
4

n
Gmtα π

→ ; 0x vt→ ; 
0

vg
t

→ ; 2vαε → ; 0vtξ →  (5.55) 

with two independent scales 0,v t . The system of Equations (5.51)-(5.54) has an 
analytical solution. 

After differentiating the left and right sides of Equation (5.51) 

2

2

gα αξ ξ

∂ ∂
= − Ψ

∂ ∂








                    (5.56) 
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and comparing with (5.52) we find 

n gα αξ
∂

= −
∂




.                      (5.57) 

Let us transform (5.53) using (5.57) 
2

2 0
n n

nα α
αξ ξ ξ

 ∂ ∂∂
+ = ∂ ∂ ∂ 

 



  

.                  (5.58) 

or 
n n

n Aα α
αξ ξ

∂ ∂
+ =

∂ ∂

 



 

                     (5.59) 

or 
21

2
n n

Aα α

ξ ξ
∂ ∂

+ =
∂ ∂

 

 

                     (5.60) 

or 

21
2

n n A Bα α ξ+ = +                      (5.61) 

or 
2 2 2 2 0n n A Bα α ξ+ − − =

                    (5.62) 

From the algebraic Equation (5.62) follows 

( );1,2 1 1 2n A Bα ξ= − ± + +                  (5.63) 

with the conditions 

0A Bξ + >                         (5.64) 

( )1 2 1n A Bα ξ= + + −

 .                  (5.65) 

Let us write down other form of the system using (5.65) and (5.57) written in 
the form 

( )1 2 1A B gαξ
ξ
∂

+ + − = −
∂







.                (5.66) 

We have 
2

2
2 0g gα α

α α
ε ε
ξ ξ

∂ ∂
− + =

∂ ∂

 

 

 

,                  (5.67) 

( )1 2 1 0g A Bα ξ
ξ
∂

+ + + − =
∂







.               (5.68) 

As we see from (5.67) the energy ~ constαε  if the dimensionless gravita-
tional acceleration 0gα = . One obtains in the Maple realization (see Figure 2). 
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Figure 2. Dependences ( )g ξ , ( )ε ξ , 
g n
ξ
∂

= −
∂






; 1A B= = ; ( )g Gξ ↔ , ( ) Vε ξ ↔ , 

g DG
ξ
∂

↔
∂




. 

 
That’s convention in the Schrödinger theory that a free, unbound electron has 

zero energy. This means that we need to add energy to make the bound state 
free, which corresponds to raising its energy to zero. In this theory we take a 
convention that energy ( )0 0ε = . It means in other words that in Boson wave 

( ) 0ε ξ =  if x t=  . 
If A and B are small values we find 

n A Bα ξ= +                        (5.69) 

or 

( )n A x t Bα = − +                       (5.70) 

or for the wave with 0ξ ≥  

( ) , 0
0

n
n x t nα
α α ξ

ξξ =
=

 ∂
= − + ∂ 









  



.                (5.72) 

Using (5.68) we fined for this case 

A B gαξ
ξ
∂

+ = −
∂







.                     (5.73) 

and 

21
2

A B C gαξ ξ+ + = − 

 .                   (5.74) 
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As we see the energetic impulse expanding is convoying by the self-consistent 
gravitational wave. 

6. The CBE Theory from the Position of Nonlocal Physics 

We intend to investigate the pressure p evolution for the CBE case. Then we 
should suppose that: hydrodynamic velocity 0 0=v , the external forces are ab-
sent, stationary case. 

In the local case we should add the condition 0ατ = . In the local case the left 
hand side of the energy Equation (2.6) turns into identical zero. 

In nonlocal case we find 

5 0.
2

p p
n m
α α

α α
α α α

τ ε
 ∂ ∂

⋅ ⋅ + Ι = ∂ ∂  
∑



r r
               (6.1) 

For the one component system one obtains 

5 0.
2

p p
n m

τ ε∂ ∂  ⋅ ⋅ + Ι = ∂ ∂  



r r
                  (6.2) 

Let be constτ = , then 

5 0.
2

p p
n m

ε∂ ∂   ⋅ + Ι =  ∂ ∂   



r r
                  (6.3) 

For the 1D case 
2

2

d 5 0
2d

p p
n mx

ε  + =    
                    (6.4) 

and after integration we reach algebraic relation 

5 .
2

p p Ax B
n

ε + = + 
 

                    (6.5) 

Obviously 

d 5
d 2

pA p
x n

ε  = +    
                    (6.6) 

and 

0
0

5
2 x

x

pB p
n

ε =
=

 = + 
 

                    (6.7) 

Relation (6.5) written as 

0
0

5 d 5 5
2 d 2 2 x

x

p p pp p x p
n x n n

ε ε ε =
=

      + = + + +            
        (6.8) 

can be rewritten as 

0
0

5
2d 5ln

5d 2
2

x
x

p p
npp x p

px n
n

ε
ε

ε

=
=

 +     = + +       + 
 

           (6.9) 

or 
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0
0

5 5d ln
2 2

5d ln
2

x
x

p pp p
n np

px
n

ε ε

ε

=
=

    + +        = +
 + 
 

.          (6.10) 

Omitting the small first term in the right hand side of relation (6.10) we find 

0
0

5
2

5
2

x
Bose x

p
np p

p
n

ε

ε

=
=

 + 
 ≅

+
                  (6.11) 

or 

0 0

0

5
2
5
2

B

Bose x

B

k T
p p

k T

ε

ε
=

+
≅

+
.                  (6.12) 

From relation (6.10) follows: 
1) The CBE pressure is damping very slowly with the distance growing. 
2) The CBE pressure is damping with the temperature growing as 1/T. 
Individual atoms of an ideal gas have only the kinetic energy. In the general 

case particles possess rotational or vibrational degrees of freedom, and can be 
electronically excited to higher energies. Therefore, the internal energy ε  of 
an ideal gas depends solely on its temperature and numerical density of gas 
particles. 

The critical temperature in the CBE theory is written usually as 

2 2 3

3.3125c
B

nT
mk

=


,                    (6.13) 

where n is the particle density,   the reduced Planck constant and m the mass 
per boson. In literature you can find other estimations of cT . Obviously 

2 5 3

3.3125c
np
m

=
 ,                    (6.14) 

The cT  and cp  existing defines the Cauchy condition 0xp =  in (6.12). 

7. Conclusion 

The nonlocal theory of the wave processes in Bose-Einstein condensate is created. 
Adequate description of the wave processes in Bose-Einstein condensates (CBE) 
leads to the theory of CBE lasers. Space-temporal evolution of CBE in the elec-
tron CBE condensate in the self-consistent electrical field and CBE atomic con-
densate in the self-consistent gravitational field is considered. The complete 
nonlocal system for the CBE evolution is delivered including particular cases and 
analytical solutions. The stable wave regime exists in the bounded domain of the 
wave independent variable. The complete system of equations is delivered. For 
the 1D case the analytical solutions are obtained. 
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The operation of Bose-effect lasers requires very low temperatures. In other 
words, a) electron and gravitational lasers may have a natural origin in cosmic 
space. Effects of gas flows ejected from the upper atmospheres of stars are 
known in astrophysics. Different types of stars have different types of stellar 
winds. Stellar winds and bipolar outflows can be considered as candidates for 
CBE lasers. b) Electronic and gravitational lasers in the technological version can 
be created for use in cosmic space. c) In any case, you should use the created 
theory. 
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