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Abstract 
The characteristics of the nonlinear dynamics in the Heavy Ion Collision 
(HIC) at intermediate energies have been studied by evaluating the produc-
tions of the Generalized Entropy (GE) and the Multifragmentation Entropy 
(ME) as well as the features of the information and fractal dimensions within 
the Isospin Quantum Molecular Dynamical Model compensated by the lattice 
methods. Results demonstrate from various views that the existence of de-
terministic chaos in the dynamical process of reaction. 
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Multifragmentation is an important phenomenon occuring in the Heavy Ion 
nuclear Collisions (HICs) at intermediate energies. The dynamical mechanism 
of the process has been explored for a long time theoretically from both statistics 
and dynamics aspects [1] [2] and such studies are still a current focus [3] [4] [5]. 
The liquid-gas phase transition has been revealed in the fragmentation of the hot 
nuclear matter [6] [7] [8] [9]. Correspondingly, the spinodal instability, non-sta- 
tistical fluctuation, etc., have been explored in the processes of the HICs inten-
sively in the last decades [10] [11]. In fact, such phenomena link intimately to 
the non-linear dynamics or deterministic chaos which is considered as one of the 
possible mechanism of the multifragmentation [12] [13] [14] [15]. The chaos, or 
nonlinear dynamics, which became an independent science in the 70’s of the last 
century [16], has provided us with new perspectives and ways of understanding 
the complex world. Therefore, it will make sense for us to reexamine the dy-
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namical process of the HICs from the viewpoints of the nonlinear science. In 
this letter, we present the production of Generalized Entropy (GE), Multifrag-
mentation Entropy (ME) and the feature of the fractal dimension by simulating 
the simple realistic collision system, 40Ca+40Ca, at incident energy within the 
Isospin Quantum Molecular Dynamical Model (IQMD) compensated by the lat-
tice methods. 

The IQMD model is an extended version of Quantum Molecular Dynamics 
(QMD) model [1] [2] in which the correlations have been kept and thus it is very 
suitable for studying the multifragmentation of HICs at medium energies. Great 
successes have been achieved in the interpretation for the HICs induced particu-
larly by the radioactive beams within the IQMD model [17] [18] [19]. This mod-
el contains two ingredients: density-dependent mean field containing correct isos-
pin terms including symmetry potential and the in-medium nucleon-nucleon 
cross sections which are different for neutron-neutron (proton-proton) and neu-
tron-proton collisions. The potential is  

( ) ,Sky C sym Yuk MDI PauliU U U U U U U= + + + + +ρ              (1) 

where CU , SkyU , YukU , MDIU  and PauliU  are Coulomb potential, Skyrme po-
tential, Yukawa potential, momentum dependent interaction and the Pauli po-
tential, respectively. Their concrete expressions for the potentials and the para-
meters involved in the formulas are given in Refs. [17] [18] [19] [20] [21]. 

There are a variety of expressions for the nucleon-nucleon (NN) cross section 
in the model for studying the intermediate energy nuclear collisions. In the present 
calculation the formula of the isospin dependent NN cross sections proposed in 
Ref. [22] are used. They look like  
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where β  is the ratio of projectile velocity to light velocity and ρ  is nuclear 
matter density in the unit of fm3. nnσ  and npσ  are the neutron-neutron (or 
proton-proton) and the neutron-proton cross sections, respectively. labE  is the 
incident energy in laboratory frame. The quantum Pauli-blocking effects have 
been accounted by embedding a novel energy-dependent factor [23]  

( ) 2 30.644 0.011 1.513 6.214E E E E= + − +ξ                (5) 

which is extracted from the comparison of experiment data and theoretic simu-
lation. The factor ξ  in Equation (5) modifies the uncertainty relation  

r pR R h× ≥ ξ  which represents the quantum property of the nucleon in the phase 
space. Here rR  and pR  are the radius of the Fermi sphere occupied by a nucleon 
in coordinate and momentum space respectively. In the following investigation, 
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our numerical calculations will be performed with these equations and keep the 
relevant parameters unchanged like in Refs [23] [24]. 

The entropy is an important thermodynamic quantity. The variation of its’ 
magnitude reflects the confusion in the microscopic state of a system, or the 
equilibrium of the system under certain macroscopic condition. And thus the 
entropy production in the HICs have attracted considerable attentions in both 
nuclear physics and nonlinear dynamics [12] [25]. In 1981, Bertsch and Cugnon 
[26] studied quantitatively the entropy production in the collision 40Ca+40Ca at 
incident energy 800 MeVE =  within cascade model and concluded that the 
generation of the entropy are closely relate to the formation of clusters. In Ref. 
[27], based on the fireball model, the authors investigated the same issue and 
speculated that the amount of the entropy production are not the same during 
the various stage of nuclear reactions and pointed out that there are barely en-
tropy generated in the final stage, expansion stage, since the density of the par-
ticles has become so small that they seldom collide and the Liouville’s theorem 
guarantees that the particle’s density in phase space remains constant in the ab-
sence of collisions. However, S. Das Gupta et al., [28] developed a microscopic 
model for treating the fragmentation of nuclear matter in which both hard colli-
sion and propagation of nucleons are treated. They argued that the mean field 
can lead to fragmentation of nuclear matter and the entropy increase simulta-
neously. Therefore, the mechanisms responsible for, and the significance of, the 
entropy generation in HICs has been a matter of much disputed issue in nuclear 
physics [25]. 

The expression of the entropy for a fermi system is defined by [28]  

( ) ( ) ( )
( )3

d dd ln 1 ln 1 ,     d
2

S f f f f g= − − − − =  π∫
r p


γ γ         (6) 

where ( ),f f= r p  stands for the occupation probability of nucleons in a phase 
space volume of 3h  and 4g =  is the degeneration of the spin-isospin degree of 
freedom. In order to avoid the complicated integration which is very time-con- 
suming, we turn to calculate the temporal evolution of the coarse-grained en-
tropy, namely, the so-called generalized entropy (GE) defined in Ref. [29] and 
adopt the ansantz used in Ref. [28]. Specifically, the available phase space is bro-
ken up into cells of volume 3hβ  with β  is an adjustable parameter. Then the 
entropy becomes  

( ) ( ) ( )4 ln 1 ln 1 ,     
4i i i i i

i

NS n n n n n
R

 = − − − − = ∑β β
         (7) 

where N is the number of nucleons in a cell of volume 3hβ  and R the number 
of runs in our numerical simulation. in  indicates the occupation probability of 
a phase space of volume 3h . 

It’s still not easy to perform the calculation of Equation (7) in the six dimen-
sion space, in particular for a nucleus with large nucleons. Moreover, there is a 
set of parameters , Rβ  including the size of the cells which are all adjustable ar-
tificially. Fortunately, Ref [29] has proved that the trend of the variation of the 
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GE does not depend sensitively on the size of the cells although the magnitude of 
the entropy being determined significantly by the volume of a cell. Coinciden-
tally, our main concern here focus mainly on the tendency of the GE variation 
reflecting the chaotic behavior of the system. Nevertheless, in order to prevent 
our calculations from being too rough and to determine an appropriate size of 
the cells, we first check the results given in the Ref. [26] for the entropy produc-
tion in the reaction 40Ca+40Ca at incident energy 800 MeV/u, and plot our results 
in Figure 1. It shows that the value of the entropy is saturated at 4.0 - 4.4, which 
is a reasonable value quoted in Ref. [26] for 10 events or 800 nucleons. In the left 
panel of Figure 1 the curves from bottom to top correspond respectively to the 
magnitude of the mesh side-length in six dimension space, (a) 35 fmr∆ = ,  

0.29 GeV cp∆ = , (b) 24 fmr∆ = , 0.19 GeV cp∆ = , (c) 17 fmr∆ = ,  
0.15 GeV cp∆ =  and (d) 14 fmr∆ = , 0.15 GeV cp∆ =  with 0.8=β .  

Comparing the behaviors of each curves we can learn that the sensitivity of the 
variation of the GE to the mesh size since the function ( )lni in n  depends sensi-
tively on the value of the distribution in , as has illustrated in Figure 1 of Ref. 
[26]. Figure 1 here shows that the magnitude of the entropy tends to saturation 
with decrease of the size of the cell. Of course, it can be expected that the loca-
tion and the magnitude of the peak of the S will vary with the size of cells if we 
keep the size going down so that the most cells would be empty. But we are not 
going to do so because we have come to a reasonable range in the case (d) with 
the 4.0 ~ 4.4S ≈  which is consistent well with the value given in Ref. [26]. We 
also notice that the increment 0.1 ~ 0.2S∆ ≈  produced in the expansion stage 
of the reaction [28] has been confirmed in our calculation.  

 

 
Figure 1. The variation of the Generalized Entropy (GE) with respect to time in the 
central collision of 40Ca+40Ca at incident energy E = 800 MeV/u. Left panel: the GE 
created in full phase space. Right panel: the GE created in position space (solid line) 
and in the momentum space (dashed line). 
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Our results, obtained by using IQMD combining with the lattice method, dem-
onstrate explicitly the production of the GE during the whole reaction process, 
i.e., the rapid increase in the stage of the collision phase and the slow growth in 
the expansion stage of the reaction. 

As has pointed out by Schuster [30] that entropy increases not only because of 
the increase of the number of particles, but also because of the dynamical fluctu-
ations. We therefore consider a multifractal description of that fluctuation and 
focus on the fractal dimension of the system. Fractal geometry is also a new 
science that comes with chaos which devotes to answer the question how the 
microscopic behavior is related to what we observe on the macroscopic scale. 
According to the Fractal theory the information dimension ID  is defined by 
[31]  

( )0
lim

lnI
SD

→
= −

δ δ
                        (8) 

with δ  being the size of each cell. In Figure 2 we show the result for the cen-
tral collision of 40Ca+40Ca at incident energy 800 MeV uE =  at time  

100 fm ct =  when the generalized entropy has come at plateau. In this figure 
the straight line is the fitted results with our computed results indicated by the 
scattering points and the extracted information dimension is 0.484ID = . ID  
is not a integral meaning that the existence of the self-similarity in the distribu-
tion of the available phase space. 

In 1999, Y.G. Ma introduced a method [32] to diagnose a nuclear liquid gas 
phase transition by multiplicity entropy (ME),  

( )ln ,b i i
i

H k p p= ∑                       (9) 

which determines the critical point by finding the maximum value of multiplici-
ty entropy in a certain state of the system. In this definition bk  is Boltzmann 
constant and the probability distribution ip  is the ratio of the number of “i” 
particles produced by iN  to the total number of particles produced by N, i.e. 

i ip N N=  and 1 1N
ii p

=
=∑ . He used the ME to study of the liquid gas phase 

transition of nuclei in the framework of the isospin dependent lattice gas model 
and the molecular dynamical model and concluded for the first time that the 
maximum of the ME indicates that the system comes at a largest fluctuation/sto- 
chasticity/chaoticity in the event space at this time. It is naturally making 
sense to check such behavior of the ME and compare of the values of the ME 
with GE in a given reaction system under the same incident conditions exact-
ly. The calculated results for the ME in the reaction system are plotted in Figure 
3.  

Figure 3 shows clearly that there is a maximum of the ME appearing at the 
time 20 fm ct ≈ , in the compressing stage of the reaction. The peak is a signifi-
cant indicator of phase transition since the maximum of the ME represents 
the largest fluctuation of the multiplicity probability distribution in the critical 
point. Comparing the behaviors of the variations of the GE shown in Figure 1 
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and the ME displayed in Figure 3, we can see that both kinds of entropies have a 
common feature that increase rapidly in the compress stage of the reaction and 
arrive at their respective maximum values at almost the same moment. Follow-
ing their peaks, the ME decrease while the GE still increase slowly due to the 
viscous interaction in the mean field of the nuclear matter. Anyway, the produc-
tion of both types of the entropy is responsible for the increase in disorder or 
chaoticity. 

 

 

Figure 2. The information dimension corresponding the Generalized 
Entropy at time = 100fm ct  in the same collision as given in Figure 
1. 

 

 
Figure 3. The variation of the Multifragmentation Entropy (ME) in 
term of the time in the central collision of 40Ca+40Ca at incident 
energy E = 800 MeV/u.  
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Intermittency is a manifestation of the scale invariance of the physical process 
and randomness of underlying scaling law. According to nonlinear dynamics 
theory [33], the emergence of the intermittency during the spatial-temporal evo-
lution of a dynamics system is considered as a indicative sign of chaotic beha-
vior, similar to the period-doubling bifurcation. The original idea of studying 
intermittency in nuclear collisions came from the work of Bialas and Peschanski 
[34] who looked at the rapidity distributions of produced particles in cosmic ray 
experiments. They proposed using scaled factorial moments of these rapidity 
distributions to study the possible appearance of intermittent behavior in such 
collisions and evidence for non-Poissonian fluctuations. The greatest merit of this 
method is that the scaled factorial moments filter out the statistical fluctuations 
and retain only dynamical fluctuations which are just the most essential concerns 
of the chaotic dynamics. The intermittent behaviour and the self-similarity pat-
tern of the fluctuations in the charge distribution in the breakup of 197

79 Au  nuc-
lei of energy at 1 GeV uE =  in a nuclear emulsion [35] have been explained by 
scaled factorial moments method based on the percolation model [34] [35] [36] 
and microcanonical model of the thermal breakup of the nucleus [37]. The scaled 
factorial moments which defined as [34] [37] [38]  

( ) ( )
( ) ( )

1 1 1 1
1 1

M
m m mq m

q

n n n q
F M

N N N q
− =

− − +
=

− − +
∑ 



               (10) 

The range Z∆  of the distribution of fragment charges Z is divided in to M 

bins with each of interval ZZ
M
∆

=δ . mn  is the multiplicity of fragments in the 

mth bin, ( )1m Z Z m Zδ δ− < < . The angle bracket denotes the average over 
events. We calculate the scaled factorial moments for the central collision of 
40Ca+40Ca at incident energy 800 MeV uE =  by using IQMD. Figure 4 is the 
results obtained by analyzing the 1000 events.  

 

 

Figure 4. The scaled factorial moments in 40Ca+40Ca at E = 
800 MeV/u. 
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Table 1. The intermittency exponents and fractal dimensions. 

q 2 3 4 5 6 

qα  0.018 0.043 0.074 0.107 0.142 

qd  0.018 0.022 0.025 0.026 0.028 

 
Each curve corresponding to different q in Figure 4 looks roughly like a straight 

line indicates that a power-like increase of the scaled factorial moments with de-
creasing bins size. The slops of these fitted lines, qα , termed as the intermitten-
cy exponent [39], can be express as  

( ) .q
qF Z −∝ αδ                         (11) 

This is just the typical characteristics of the self-similarity [40] emerged at all 
scales in the distribution. The fractal dimension can be derived from the formula  

( )1 .q qd q= −α                        (12) 

Both the intermittency exponent qα  and fractal dimension qd  for various q 
are listed in Table 1.  

As shown by Table 1 the fractal dimension qd  is not integrals this fact indi-
cates that there is scale invariance in the fragmentation pattern. 

In summary, we have observed quantitatively the typical characteristics of de-
terministic chaos in the HICs at intermediate energy with the help of the isospin 
quantum molecular dynamical model compensated with the lattice methods. The 
generalized entropy(GE) and multifragmentation entropy (ME), the information 
dimension and the fractal dimension have been evaluated simulating the central 
collision of 40Ca+40Ca at incident energy 800 MeV uE = . The scale invariance 
of the fragmentation and the randomness of the scaling law have simultaneously 
demonstrated in both the phase space and the event space for the certain reac-
tion at exactly the same incident conditions. Comparing the various behaviors of 
GE in the position space and momentum space, it is clearly shown that the pro-
duction of GE in the compress stage of the reaction in the phase space comes 
from the combination of the collisions and attracting mean field. By the way, al-
though the reaction system we have selected here is not too complicated, the 
features we have obtained are general and universal for such collisions and the 
extension of the method to other reaction colliding systems, e. g. the heavier and 
isospin-dependent reaction systems, is straightforward. 
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