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Abstract 
This paper concerns the full interaction of a flux of photons onto any metal 
whose extraction potential is known. The photons are described with a full 
wavefunction, including all states of polarization, and the ejected electrons are 
considered with their two spin states. The purpose is to give a full theoretical 
description of the interaction of the photoelectric effect, known since a long 
time, it verifies that the electron of any peculiar metal can escape if a thre-
shold is met. These wavelengths are accessible for many metals, the photoe-

lectrons exist if the condition: 0
0

hc
U

λ λ≤ = . 0U  is the extraction potential 

given in eV , these are tabulated. The system wavefunction (electron + pho-
ton) a product of the electron free wave and of the photon, taken as  

1, 1,0J M ±= , is defined, and the total ( )tΨ  is truncated as required by the 

condition 0
0

hc
U

λ λ≤ = . It is possible to use any combination of polarization 

states for the photon, with at maximum a mixture of all possible polariza-
tions, which is linear and right and left circular. The method applied takes 
into account the basic electron photon interaction, the free electron, which is 
the ejected electron, is described by a free wave, restricted to the first mo-
menta. The quantum theory of the interaction needs to evaluate the integrals: 

max 3
0

e e di
r iiI r r⋅⋅= ∫ K rK r  , where maxr  is a cut-off parameter to insert to enable 

finite values of these integrals. The I is calculated on the variables , ,r θ φ , and 

the 3r  concerns the radial volume multiplied by the r coming from the dipolar 
interaction. It follows that using the Fermi golden rule leads to an estimate of the 
probability of escape of an electron ijP , assuming that the normalisation factor 

of the A  the electomagnetic vector is 
3

max4
3
r

V
×

= . The results for copper 

metal are given, the probabilty of escape, ijP  has the correct dimension 1
T

. 
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1. Introduction 
The interpretation of the photoelectric is historically the first discovery of 
quanta as explained by Albert Einstein (1905). Extracted electrons from the 

metal are subject to the law: 0
hch Uν
λ

= ≥ , where the energy of the photon 

converted in eV has to be greater than the 0U  extraction potential. These po-
tentials are known for most metals. The author proposes to deepen this basic 
electron photon interaction using all possible states of polarization of photons (J 
= 1 is the photon spin: thus 2 1 3g J= × + = . and the two states of the electron: 

2
σ = ±

 . This approach implies at least six states to deal with the photon elec-

tron interaction. This interaction is defined using the electromagnetic field 

( )tA , the electron is considered as a free wave whose energy and impulse K


 

result from the simple energy balance: 
2 2 2

0 2 2
e

e

m V Kh U
m

ν − = =
 . It is known  

that normalizing a free wave for the electron written as: eiK r⋅   is a difficult 
problem when the r radial coordinate goes to infinity. The results are given for a 
quantity: maxr , that is the position of the electron over the metal, it is a probabil-
ity to find the ejected electron at a given place. 

This paper shows how to improve the photoelectric effect on the theoretical 
side, it uses the full photon wavefunction quantum description, dealing with the 
three states of polarization (or any combination of these), classically the photon 
exists linearly polarized: 1, 0J M= = , and left circular and right circular  

1, 1J M= ± , for what concerns the escape electron, its wavefunction is consi-
dered as a free wave, it is not anymore at the metal surface. The electron wave-

function as a free wavefunction has two spin states: 
2

σ = ±
 , the so-called pola-

rized electrons. The useful wavelengths that give rise to the phenomenon of elec-

trons extraction are such that: 0
0

hc
U

λ λ≤ = , this is the basis of the Einstein inter-

pretation of the photoelectric effect and consequently appears the Planck constant. 
In these early days the quantum field of radiation and the Born interpretation of 
the existence probability of such particles (electron, photon, proton) are not 
known, in the Born view, if a wavefunction exists for a particle it should verify: 

* 2
0

d d .1r r
∞
ΨΨ Ω =∫  

For a free photon with the basic wavefunction: eiK r

V
ψ

⋅

=




, integrated on the  

whole space variables, the existence probability tends to ∞ , this divergence is 
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the major theoretical problem posed by the wave theory of photons in the wave 
corpuscule duality. If a photon is not absorbed or emitted, the free wave descrip-
tion does not match the Born condition. In our paper, the photon interacts with 
the electron on the metal surface, thus it is localized enabling a free wave with no 
divergence when integrated. 

2. Describing a Photon by Its Angular Wavefunction  

We consider the following angular wavefunction 1, 1,0J M= = ±  for a pho-
ton with its different 3 polarization states, orthogonal to each others. These are 
spherical harmonics ( )1

1 ,m
lY θ φ=±
= , these give the circular right and circular left 

the linear is ( )0
1 ,m

lY θ φ=
= . One considers the photon as a boson, thus with ainteg-

er spin 1J = , with three independent states. 
The following equations describe the photon with all its polarized states with 

an equal proportion for these states. 

1 0 11, 1 1,0 1,1a a a−Ψ = − + +                   (1) 

22 2*
1 1 0 1a a a−ΨΨ = + + =                    (2) 

The product * 1ΨΨ =  means that the photon exists, with an equal polariza-
tion probablility, a photon beam linearly polarized implies 1 1 0a a− = = . it fol-
lows:  

1 0 1 1
1
3

a a a a− −= = = =                      (3) 

In order to precise this wavefunction, it is useful to write:  

H EΨ = Ψ                           (4) 

d
d

H i
t

= −                            (5) 

H ωΨ = Ψ                          (6) 

Therefore the solution for Ψ  with d
d

i
t

ω− = Ψ  , gives d di tωΨ
=

Ψ
, integrat-

ing gives log i tωΨ = , thus ( ) ei tt ωΨ = , thus verifying the condition  
* 1ΨΨ =  and taking into account the cut in frequencies involved by the thre-

shold: 0 0 0h Uν ω= ≥  

0U  is the extraction potential of metals, meaning that the electrons before the 
illumination are kept inside the metals. The cutting parameter for the frequen-

cies are 0
0

U
ω =



, (to obtain homogeinity 0U  should be written in Joules). The 

wavefunction is modified this way:  

( ) [ ]0 0,t UnitStepω ω ωΨ = −                   (7) 

( ) ( ) [ ]* 2
0 0 0, ,t t UnitStepω ω ω ωΨ Ψ = −               (8) 

1 0 1 1
1
3

a a a a− −= = = =                     (9) 
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The Mathematica function [ ]0UnitStep ω ω−  is the same as the Heaviside dis-
tribution, it means that:  

[ ] [ ]0 0 0 00 for , 1 forUnitstep Unitstepω ω ω ω ω ω ω ω− = < − = ≥ . 

Finally including the cutting frequency 0ω  (that depends of the irradiated 
metal), the photon wave function is written down: 

( ) ( )T
0 1 0 1, , 1, 1 1,0 1,1 ei tt N a a a ω

ωω ω −Ψ = − + +          (10) 

Nω  is the number of photons at the frequency ω . 
The factor Nω  insures that ( )

2T
0, , t Nωω ωΨ = , that is the wavefunction 

for Nω  photons of the same mode. 
It is possible to perform the Fourrier transform of the function:  
( ) ( ) [ ]* 2

0 0 0, ,t t UnitStepω ω ω ωΨ Ψ = −  
This Fourier transform ( )0 ,G tω  is: 

( ) ( ) ( )0
0

2sin
, 2

t
G t t

t
ω

ω δ= π −
π

                  (11) 

3. The Free Electron Wavefunction  

The energy balance of the photoelectric effect is: 
2 2 2

0 2 2e e

P Kh U
m m

ν − = =
 . When  

the mechanics of the photon electron interaction takes place, the ejected electron 
obtain an impulse P K= 

 , K


 serves to build the free wave function ot the 
electron, that is with the Dirac ket representation: ,iK σ , this ket includes the  

two possible spin states 
2

σ = ±
 . Finally the electron wavefunction is:  

( )
1
2, e i

s

siK r
e i mKφ σ χ

=⋅=




                     (12) 

This wavefunction can be developed on partial waves as shown:  
( )cose e ii iK riK r θ⋅ =



                        (13) 

( ) ( ) ( ) ( )cos

0
e 2 1 cosiiK r l

l l i
l

i l P j K rθ θ
∞

=

= +∑                (14) 

Else for small impulses iK , that concerns an electron near the threshold of 
the ejection mechanism, one can write: 

( ) ( )
( )( ) ( )( )

2
3cos cos

e 1 cos cos
2

i iiK r
i i

K r
iK r O iK rθ θ

θ θ= + − +       (15) 

Spherical Harmonics Description for Kets JM   

First of all setting: 1 1 0
1
3

a a a− = = = , these values mean an equal polarization 

for each independent states, then the photon wavefunction with 1J =  is de-
fined by:  

( )11 ,
JJ MM Y θ φ=                      (16) 
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1,0JM = ±                         (17) 

The full wave function is: 

( ) ( ) ( ) ( ) [ ]T 1 1 1
0 1 1 0 0 1 1 0, , , , , , ei tt a Y a Y a Y UnitStep ωω θ φ θ φ θ φ θ φ ω ω− −Ψ = + + × − (18) 

Explicitly:  

( )1 31 0 cos
2JM θ= =

π
                    (19) 

( )e 31 1 sin
2

i

JM
φ

θ
−

= = −
π

                  (20) 

( )e 31 1 sin
2

i

JM
φ

θ
−

= − =
π

                  (21) 

4. Quantum Theory of the Interaction Electron Photon  

The phenomenon of ejecting an electron from the metal is governed by the di-
pole operator to a good approximation: D er=



 , and the energy associated with 
the interaction mechanism is:  

V D E= ⋅                           (22) 

Since from electromagnetic field theory it is well established that: 
1 AE
c t

∂
= − ×

∂



 , 

with: 

( )
0e iKr tA A ω−=







 , and introducing the normalizing factor: 0
02

A
Vω

=



, then  

( )
0

1 ei Kr tAE i A
c t

ωω −∂
= − =

∂









 , finally the expression of the interaction energy is:  

V D E= ⋅
 

                         (23) 

( )
0ei Kr tV eir A

c
ωω −= −





                      (24) 

1One obtains the probability for an electron to be ejected from the irradiated 
metal by the calculation of:  

( )
2T

0, ,iProb K erE tσ ω ω= Ψ
 

                (25) 

V erE=


                          (26) 

( )
0ei Kr tE i A

c
ωω −=







                       (27) 

( )
2 22 T

0 02 e , , eiKr i t
iProb A K r t

c
ωω σ ω ω= ⋅ Ψ






           (28) 

( )
2 2T

02
0

e , , e
2

iKr i t
i

eProb K r t
V c

ωω σ ω ω= ⋅ Ψ





 


         (29) 

 

 

1-e is a positive quantity. 
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5. Evaluation of the Probability of Ejection of an Electron  

The probability to evaluate is: ( )
2 2T

02
0

e , , e
2

iKr i t
i

eProb K r t
Vc

ωω σ ω ω= ⋅ Ψ










.  

The oscillating factor ei tω  disappears because of the squared modulus. The 
evaluation of the probability already has given theoretical work [1]. For small 
K , thus an electron near the threshold: ( )02 eK m h Uν= −  , a frequency  

0U
h

ν ≈ , then it is easy to write [2]:  

( ) ( )( )
2

3e 1
2

iKr Kr
iKr O Kr≈ + − +





                (30) 

( ) ( )
222

T
02

0

1 , ,
22 i

KreProb K r iKr t
Vc
ω σ ω ω

 
 = ⋅ + − Ψ
 
 

 

  


     (31) 

Making the assumption that the polarization vector can be written as: 

1 0 11, 1 1,0 1,1a a a−= − + +                  (32) 

The probability is at the order ( )( )2O K r⋅ : (that means 1Kr <  ) 
Impulse K and ejection distance of the electron r both small.  

( ) ( )
222

T
02

0

1 1 , ,
22 i

KreProb K r iKr t
Vc
ω σ ω ω

 
 = ⋅ + − Ψ
 
 

 

  


     (33) 

( )

( ) ( ) ( )( )

22

2
0

2
1 1 1

1 1 0 0 1 1

1 e 1 ,
22

, , , e

iiK r

i t

KreProb r iK r
Vc

a Y a Y a Y r ω

ω σ

θ φ θ φ θ φ− −

 
 = + ⋅ −
 
 

+ +



 

  




       (34) 

These can be calculated. 

6. Development of Calculation of the Probabilities  

Then 1Prob  simplifies setting: [ ]( )
12 = 222

0 02
02 s

s

m
efac a UnitStep

Vc
ω χ ω ω
ε

= −
 .  

( )cosr r θ=                           (35) 

( ) ( )1
0cos 2 ,

3
Yθ θ φπ

=                       (36) 

The spherical harmonics are orthonormal functions, obeying to  
( ) ( ) , ,, , dl l

m m l l m mY Yθ φ θ φ δ δ′
′ ′ ′Ω =∫  

It follows that for the development of 1Prob  integrals like: 
( ) ( )1 1

1 0, , d 0mY Yθ φ θ φ=± Ω =∫ , thus stays in the evaluation the quantity: 

( ) ( )( ) 2
cos( )2 1 ) 1* 3

0 0 0
41 , , e , e d
3

iiK r iKr i tProb fac a e Y Y rθ ωσ θ φ θ φπ
= ∫





    (37) 

Using the relation: ( ) ( ) ( ) ( )cos
0e 2 1 cosiiK r l

l l ii l P j K rθ θ∞= +∑  and  
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( ) ( )3 2 2d sin d d d sin d dr r r r rθ θ φ θ= = Ω
 . with ( ) ( )1

0
4cos ,

2 1lP Y
l

θ θ φπ
+

. 

These equations prove that 1Prob  connects only the photon wavefunction  

1, 0JJ M= =  with 2
0

1
3

a = , this probability is evaluated with Mathematica 

restricting the sum:  
( ) ( ) ( ) ( )2cos

0e 2 1 cosi liK r l
l l il i l P j K rθ θ=

=
= +∑ , 

taking into account 3 partial waves 

0,1,2l = . 

An alternative way to calculate 1Prob  is to introduce the development in se-
ries of the bra  

e ,iK r σ⋅  . Equation (15) 

recalling:  

( )
2 2 3

e 1
2

iiK r i
i i

K r
iK r O K r⋅ = + ⋅ − +





 

                (38) 

The squared scalar product 1Prob  serves to estimate the transition probabil-
ity given by the Fermi golden rule. 

For 1Prob   
( )cose ,iiKi θ σ⋅=                     (39) 

( ) ( )1 1*
0 0, ,j Y Yθ φ θ φ= ×                 (40) 

( ) ( )
2

cos2 e , eiiK r iK r
ij i jjP er j E Eθ σ ρ⋅π
= −∑









        (41) 

( ) ( )
22 2

cos2 e , 1 d
2

iiK r
ij

K rP er iK r j E Eθ σ ρ
 π

= × + ⋅ − 
 

∫


 



    (42) 

7. Results Obtained with Mathematica  

The full expression eiK r⋅  , with the trigonometric functions is: 

( ) ( ) ( ) ( ) ( )( )cos sin sin sin cos
3e e

K ri
iK r

θ θ φ θ φ⋅
+ +

⋅ =

              (43) 

integrating 
22 2

1
2

K ri er iKr j
 
+ − 

 


   on angles gives a good approximation of 

the dipole operator ijP , with the condition ( 1Kr ≤


 ). 

A consequence is that development of 
( ) ( ) ( ) ( ) ( )( )cos sin sin sin cos

3e
K ri θ θ φ θ φ⋅

+ +
, connects 

all the polarization states of the photon. 
Mathematica can be used and give results for these integrals.  
To evaluate the probabilities ijP , it is necessary to define the density of states: 
( )i jE Eρ −  or its continuous value ( )dE Eρ  [3]. 

Using the relation = P K  with ( )
( ) ( )3 3

d dd d
2 2

E Eρ Ω = =
π π

K P  and 
2

2 e

pE
m

= , 
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it comes: 
2d d dp p p= Ω                          (44) 

dd
e

p pE
m

=                           (45) 

d
d

emp
E p
=                           (46) 

( )
( ) ( )

2
3 3

d
2 2

empE p pρ = × = ×
π π 

                (47) 

( )
( )32 2

em K
Kρ =

π

                       (48) 

( )
2 2

02 e

KE
m

ω ω= − −


                      (49) 

with 0 0Uω =  and setting: ( )0ω ω ω∆ = −  . 
Applying the Fermi golden rule gives for the ejection probability:  

( ) ( )
2 22

cos1
0

2 e ,
2

iiK r
ij

e

KP D E j
m

θ σ δ ω ω⋅  π
= ⋅ − − 

 

 







       (50) 

( ) ( ) ( )
2 22

cos1
0

2 e , d
2

iiK r
ij K

e

KP D E j K
m

θ σ ρ δ ω ω⋅  π
= ⋅ − − Ω 

 
∫

 







   (51) 

( )
2 22

2
0

2 e ,
2

iiK r
ij

e

KP D E j
m

σ δ ω ω⋅  π
= ⋅ − − 

 



  







        (52) 

( ) ( )
2 22

2
0

2 e ,
2

iiK r
ij

e

KP D E j K
m

σ ρ δ ω ω⋅  π
= ⋅ − − 

 
∫



  







     (53) 

It appears that 1
ijP  only connects the ket ( )1

0 ,j Y θ φ∝  linked to only one 

polarization state 0
1
3

a = . 

If no preferred direction are inserted in the interaction electron photon inte-
raction: 

( )
2 2T

0
0

e , , e
2

iKr i t
i

eProb K r t
V

ωω σ ω ω= Ψ





 


 then eiK r⋅   is written with the 

help of: 

x y zKr K x K y K z= + +

  

Considering isotropic polarization states:  

2 2 2 2 2 2 2,
3x y z x y z

KK K K K K K K= + + = = = . 

Changing into spherical coordinates gives: 

( ) ( ) ( ) ( ) ( )( )cos sin sin sin cos
3

K rKr θ θ φ θ φ⋅
= + +

          (54) 

( ) ( ) ( ) ( ) ( )( )cos sin sin sin cos
3e e

K ri
iK r

θ θ φ θ φ⋅
+ +

⋅ =

                 (55) 
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It follows that using this development, the scalar product is written:  

( ) ( ) ( )( ) ( )
21 1 1

1 1 0 0 1 1e , , , cos eiKr i t
iK r a Y a Y a Y iKr ωσ θ φ θ φ θ φ θ− − + +




 

   then eiK r⋅   

is written: ( )e 1iK r iK r⋅ ∝ + ⋅





  

( ) ( ) ( )( )
2

1 1 1
1 1 0 0 1 1e , , ,iKr

iProb K r a Y a Y a Yσ θ φ θ φ θ φ− −= + +







      (56) 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2
cos sin sin sin cos

1 1 13
1 1 0 0 1 1e , , ,

K ri

iProb K r a Y a Y a Y
θ θ φ θ φ

σ θ φ θ φ θ φ
⋅

+ +

− −= + +


 (57) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
2

1 1 1
1 1 0 0 1 1

.1 cos sin sin sin cos , , ,
3i

K rProb K r i a Y a Y a Yσ θ θ φ θ φ θ φ θ φ θ φ− −
 

= + + + + + 
 



 (58) 

It is possible with this development to connect different polarization states. 

1 1,1a  and 1 1, 1a− −  because ( ) 1
1sin Yθ ±∝   

Integrating on the radial variable means: 3d dr V r r=∫ ∫ . One deals with an 
integral that does not converge, when the range is fixed to 0r =  to the upper 
limit to maxr , the integral becomes a function of this quantity, the value for V 
appears in the definition of the electromagnetic field:  

( ) ( ), †

0

, e e
2

K iK r iK r
K K

k k

A r t a a
V

α
α αω ω

⋅ ⋅= +∑


 

 

 












            (59) 

The quantity Prob  is integrated with Mathematica using the development 

( )
2 2

3 3e 1
2

iK r K riKr O K r⋅ = + − +





 . 

7.1. Calculations of Integrals Required When Applying the Fermi  
Golden Rule  

Integrating on the radial variable means: 3d dr V r r=∫ ∫ . One deals with an integral 
that does not converge, when the range is fixed to 0r =  to r →∞  [3]. 

To avoid this divergence, all calculations are done fixing the upper limit to 

maxr , the integral becomes a function of this quantity, the value for V, included 

in fac = is defined as 3
max

4
3

V rπ
=  and 30.5

2
α =

π
  

eiKz  is developed the maximum number of waves is fixed to lmax = 3 the 
summed waves function are defined: 

( ) ( ) ( )
3

0

0

4e 2 1 ,
2 1

iiK r l
l i l

l
i l j K r Y

l
θ φ⋅

=

π
∝ +

+∑

              (60) 

An alternative way to have results for the integrals is to make a Taylor serie: 
( ) ( ) ( ) ( ) ( )( )1 1 0

1 1 1e sin , e cos , ,

3e e

i i
i

i

iK r Y Y Y

iK r

φ φφ θ φ φ θ φ θ φ

α

− −− +
−

⋅ =


              (61) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 0
1 1 1exp sin , exp cos , ,

e 1
3

i
iiK r

iK r i Y i Y Yφ φ θ φ φ φ θ φ θ φ

α

−
⋅

− − + +
∝ +



 (62) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 21 1 0
1 1 1exp sin , exp cos , ,

0.5
3i

r i Y i Y Y
K

φ φ θ φ φ φ θ φ θ φ

α

− − − + +
 +
 
 

(63) 
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Changing the spherical harmonics ( )1 ,mY θ φ  into their trigonometric values: 

( ) ( ) ( ) ( ) ( )1 3 1 3 1 31.671 sin sin sin cos cos
2 2 2 2 2e e

i
i

i K r
iK r

θ φ θ φ θ
 

× − −  π π π⋅  =


            (64) 

( )
( ) ( ) ( ) ( ) ( )( )

( )
.

cos sin sin sin cos23 3
10 0 0

d d d sin e ,
iK r

i
m

ijR e r r Y
θ θ φ θ φ

θ φ θ θ φ
+ +∞ π π

= ∫ ∫ ∫    (65) 

This complete integral diverges when r →∞ , but still possible to obtain a fi-

nite value using an upper limit maxr  and modifying the upper integral to 
0

∞

∫  with 

this upper limit and dividing it with: 
3

max4
3
rπ

. 

The dipole element i er j  is integrated easily with Mathematica, then 
squared to obtain the probability ijP  although the radial variable on its r →∞  
domain does not converge, the author uses the a limit maxr r= . 

It is correct to use Taylor series for e iiK r⋅  , this gives at the fourth order devel-
opment of this quantity ( iz K r= 

 ): 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )(
( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )

22

33

44 5

e sin sin 1.63299 cos sin 1.1547 cos

1 sin 1.63299 cos sin 1.1547 cos
2
1 sin 1.63299 cos sin 1.1547 cos
6
1 sin 1.63299 cos sin 1.1547 cos
24

iz z i i

z i i

z i i

z i i O z

θ θ θ θ φ

θ θ θ φ

θ θ θ φ

θ θ θ φ

= + − −

+ − − +

+ − − +

+ − − +

(66) 

It follows: 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

max2 3
0 0 0

2 2

2

1 3d d d sin cos
2

1 3 1 31.671 sin sin sin cos
2 2 2 2

1 3 1 3cos 1.396 sin sin
2 2 2

1 3 1 3sin cos cos
2 2 2

ij

r r

i

i

R i er j

e r r

i K r

K r

θ φ θ θ

θ φ θ φ

θ θ φ

θ φ θ

π π =

=

=
π

 
× +  π π

 
+ +  π π 

 + +  π π  

∫ ∫ ∫



     (67) 

( )
( ) ( ) ( ) ( ) ( )( )

( )max
cos sin sin sin cos23 3

10, 1 0 0 0
d d d sin e ,

iK r
ir m

ij mR e r r Y
θ θ φ θ φ

θ φ θ θ φ
⋅

+ +π π

= ±
= ∑ ∫ ∫ ∫ (68) 

( )5 8 3 6 4
max max max0.20944 1.39626 3.14159ij i i iR e K r K r K r= × − +         (69) 

The complete integral is obtained performing the integration over ,r θ  and 
φ  is obtained: 

( )5 8 3 6 4
max max max0.20944 1.39626 3.14159i i ii er j e K r K r K r= × − +



     (70) 

(These quantities are obtained with Mathematica) 
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7.2. Mathematical Treatment of the Interaction  

It shows that exists a coupling with the 1, 0, 1J M= = ± , that is with all com-
ponents of the polarized photons. and thus obtains for 22

ijR i er j=   the for-
mula: 

( )2 2 10 16 8 14 6 12
max max max0.0438649 0.584865 3.2655ij i i iR e K r K r K r= × − +      (71) 

To obtain the probability ijP  of the electron being released from the metal, 

that is using the Fermi golden rule: and defining ( )0ω ω ω∆ = −   with the re-

lation 0 0Iω = , the density of free states ( )
( )32

em K
Kρ =

π





 enables to justify the 

following integrals. 
It is necessary to compute:  

2
1 2

02
2ij ij

e

PP R I
m

δ ω−  
= π × × + − 

 
                 (72) 

( )
2

1 2
02

2ij ij
e

PP R
m

δ ω ω−  
= π × − − 

 
                 (73) 

( )
2 2

1 22 2 d
2ij ij K

e

KP R K
m

ρ δ ω−  
= π × − ∆ Ω 

 
∫



              (74) 

Using the well known δ  function properties (see Apendix):  

( ) ( ) ( )2 2 1
2

x b x b x b
b

δ δ δ− = + + −                 (75) 

with 
2

2

2 e

a
m

=
  thus 

2 em
b

a
ωω ∆∆

= =


 with 1b L−∝  homogeneous to the 

wave vector K. This gives: see Appendix  

2 2

3

2 2
2

e ei e
i i

e

m mK m
K K

m
ω ω

δ ω δ δ
ω

    ∆ ∆ 
 − ∆ = × + + −         ∆      

 





 

(76) 

(
)

2 2 10 16 8 14 6 12

4 10 2 8

0.0438649 0.584865 3.2655

8.77298 9.8696

ij i i i

i i

R e K r K r K r

K r K r

= × − +

− +
      (77) 

It follows the complete formula for the probability of escape of the electron:  

( )
1 2

3 32

2
2

2

2
d

i

ee i e
ij ij i

e
i K

mm K m
P R K

m
K

ω
δ

ω

ω
δ

−
  ∆
= π +  ∆π  

 ∆
+ − Ω   

∫












         (78) 

It is reasonable to reject the factor 
2 e

i

m
K

ω
δ
 ∆

+  
 





, because the wave vec-

tor cannot be negative. 

Defining the factor: 
12

22
012

0 22 s

s

m

efac a
Vc
ω χ

=

=±

 
=   

 
∑


 where the volume V comes 
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from the electromagnetic ( ),A r t

  is 
3

max4
3
r

V
π

= .  

Adding the electron spin contribution given by
 

1 2
2

1
2

2
4s

s

m
χ

=

=±
=∑ 

. Finally 
 

3 2
2

02
04

efac a
Vc
ω

=



 This leads to the escape probability of electrons in a metal, 

with a photon flux 
0

1Nω =  at the threshold 0U  of a peculiar metal is:  

( )

0

1
122 2 2

12
10
2

2

0 1 0

10 e 1, 1
23

1,0 1,1 e

s

i
s

s

m
siK r
m

m

i t

N
Prob e r a

Volc

a a UnitStep

ω

ω

ω χ

ω ω

=
=−

−

=−

= −

 + + − 

∑



 



        (79) 

The electron spin wave function for the two states is:  
1
2

2s

s

sm mχ
=

= = ±


 , because of the squared modulus, the spin function gives for 

1
2sm = ± , that is the final quantity: 

2

1
2

10
sm

Prob
=±

 is the same, each of the two electron states gives the same 

contribution: 
2

4


. 

The full expression giving the final form of the formula is: (with 210ijP Prob= ) 

( ) (

)

2 1 10 10 8 14
max max2 3

6 6 4 4 2 2 2
max max max

3

8 0.0438649 0.584865
2

3.2655 8.77298

2

e i
ij i i

i i i

ee
i

m K
P fac K r K r

K r K r K r

mm
K

ω
δ

ω

−= × π −
π

+ − + π

 ∆
× × −  ∆  









    (80) 

Applying the δ  function to the formula Equation (81) gives: and replacing 

iK  with 
2 e

i

m
K

ω∆
=





, it simplifies, dividing by the volume V that gives:  

5 2 7 13

2 7
0

0.0189977 ee m r
c

ω∆
 

 

2

32 2
0

3
8 2

e e
ij e

e m m
P m

c
ω

ω
= ∆

∆π





               (81) 

5 5 13 4 4 11 3 3 9
max max max

5 4 3

1.40368 9.35785 26.124e e em r m r m rω ω ω ∆ ∆ ∆
− +

   

    (82) 

2 2 7 5
max max

2

35.0919 19.7392e em r m rω ω ∆ ∆
− + 



            (83) 
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5 7 13 4 6 11 3 5 9 2 4 7 3 5
2 max max max max max

7 6 5 4 2

2 2
0

1.40368 9.35784 26.123 35.0919 19.7392

8 2

e e e e e

ij

m r m r m r m r m re
P

c

ω ω ω ω ω ∆ ∆ ∆ ∆ ∆
− + − + 

 =
π

    


(84) 

7.3. Final Formula  

Considering the small value of 341.05457 10 J s
2
h −= = × ⋅
π

 , the greatest term in 

Equation (81) is 7

1


 it is correct to keep for ijP . 

Inserting the values of the constants gives: 

5 2 6 13
max 3

2 6
0

0.0377124 e
e e

ij

me m r m
P

c

ω∆
=





 
              (85) 

The prevailing term is therefore:  

( )
5 2 7 13

2max
02 7

0

0.0377124 ee m r
UnitStep

c
ω

ω ω
∆

 × − 
 

. 

At this stage, the formula for 210Prob  should have the dimemsion of a 

probability 1
T

, instead the upper formula has a dimension: M
T

, it appears that 

this question is exposed in [4] page 1142, formula (2.23). 
I thus use the approach of [4], and this manipulation insures that: 

2 110Prob
T

∝ , thus the final formula is now: 

( )
5 2 6 13

22 max
02 7

0

0.0189977
10 ee m r

Prob UnitStep
c

ω
ω ω

∆
 = × − 

 
      (86) 

Using MKS units for the constants involved in the formula: 

Planck constant 341.05457 10 J s
2
h −= = × ⋅
π

 , electron mass  

319.109 10 kgem −= ×  vacuum permittivity 12
0 8.8545 10 F m−= × , light veloci-

ty 82.99792 10 m sc = × , electron charge 191.6021 10 Ce −= ×  

Inserting the numerical values of the physical constants gives:  
2 12 5 13

max10 2.41471 10Prob rω= × ∆                (87) 

The idea is to define maxr  as: 

max 0.000115772i
i

e

K
r V t t K t

m
= × = × = × ×



            (88) 

Thus the formula with the time t variable and the wave vector iK  is:  

( )240 5 13 13

0

27.6810 10 i
c K t UnitStepω ω ω

λ
−  π  × ∆ ∆ + ∆    

        (89) 

An example is shown using the extraction potential of the copper element: 
giving these numbers for the extraction potential of copper 0 5.1 eVU =  with 
the corresponding wavelength: 
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72.431 10 mλ −= ×  and the so called pulsation is follows  

15 1
0

0

2 7.74607 10 scω
λ

−= π = ×  

with these data the final probality of escape of an electron is:  

( ) ( ) ( )2 240 5 13 13 1510 7.6810 10 7.74607 10iProb K t UnitStepω ω ω−  = × ∆ × ∆ + × ∆  (90) 

Figure 1 illustrates the probability ijP  of electron escape on a Cu metal sur-
face with the basic condition 1iK r⋅ ≤



 . 
The frequency range is: 0 010 100ω ω ω≥ ∆ ≤  for the blue graph, that means 

that the wavelengths 0
0

2 cλ
ω
π

=  associated with the incident photons are shorter 

than the threshold 0
0

hc
U

λ = , thus more energetic compliant with the early Eins-

tein explanation of the photoelectric effect (1905). 
 

 
Figure 1. Escape probability of an electron (with a number of photons 

0
1Nω = ), from a 

Cu surface with condition of frequecy: 15 1
0

0

2 7.74607 10 scω ω
λ

−≥ = π = × , that is:  

0 0ω ω ω∆ = − ≥ . For different frequency ranges the probability exists with the basic 

approximation 1iK r <


 , the probability is 13 13K t∝ , thus very sensible to change in time 

t (in the graph 410 st −= ), the wave vector is 10.04489em VK m−= = ×


. 
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The Mathematica function [ ]UnitStep ω∆  is equivalent to the Heaviside func-
tion, this assures the conformity of the threshold effect prohibiting wavelengths 

0λ λ> . 
Once the escape probability is defined, the electron current is proportional to 

Nω , it is possible to write the intensity with its formula: d
d d d

EI
t sω =

Ω
. We can 

infer: 2d 10
d
E N Prob
t ω ω= × . 

8. Conclusions 

This paper tackles the photoelectric effect, in a upgraded fashion, it includes the 
threshold effect that once checked can possibly produce electrons with the con-
dition 0λ λ≤  0λ  depending on the choice of the metal.  

Recent work [5], on the extraction potentials of metals or semiconductors called 
these as work function, part of it, the present paper dealing with photon electron 
interaction on metal surfaces gives a good quantum approach giving experimen-
tal results. 

The photon electron interaction is taken to be dipolar, and the bulk of the in-
tegration using a free electron wave function, to mix to the photon free wave, is 
performed with symbolic software Mathematica, with the condition 1iK r⋅ ≤

  
One could say that fast electrons should be near a small r , and low electrons 
could be found at a distance 1r > , provided that the condition 1iK r⋅ ≤

  is ful-
filled. It appears in the theoretical part that, all polarization states of the photon 
can furnish different integrals and it is possible to include different polarization 
states: that means that coefficients: 2

0a  and 2 2
1 1 0a a= =  describe a linear 

polarization state, although that circular polarization could be taken on: 
2

1 0a ≠  2
1 0a− ≠ . For what concerns the integral with the exponential func-

tion e iiK r⋅  , that is the electron wave function, there are two approaches: the first  

is to develop the ( ) ( )
( )( ) ( )( )

2
3cos cos

e 1 cos cos
2

i iiK r
i i

K r
iK r O iK rθ θ

θ θ= + − + ,  

Mathematica is very efficient to calculate the overlap, of the photon wave func-
tion with those of the electron. Another way for the integral leading to the proba-
bility ijP  is to perform a wavelet calculation that is evaluating ( )cose e ii iK riK r θ=





. 
Then ( ) ( ) ( ) ( )cos

0e 2 1 cosiiK r l
l l il i l P j K rθ θ∞

=
= +∑ , the sum is restricted to the 

first momenta that is 0, 1, 2l l l= = = . This integral is more difficult to perform 
than in the case of the first approach, the reader can find the integral with the 
partial waves in Appendix A1. 

Finally the aim of this paper is to evaluate the quantity: max 3
0

e e di
r iK riK rI r r⋅⋅= ∫





 , 
K  concerns the photon wavefunction, and iK  is the electron wavefunction, it 
is impossible to perform the evaluation of I, with the range 0r r= → = ∞  but 
it is possible to evaluate this quantity with the range max0r r r= → = , making  

possible to evaluate I, dividing it by: 
3

max4
3
r

Vol
π

= . 
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Table 1. Physical constants MKS. 

Constants SI 

em  9.109 × 10−31 kg 

  1.054 × 10−34 J·s 

0  8.854 × 10−12 F/m 

c 2.997 × 108 m/s 

e 1.602 × 10−19 C 

 
The author suggests that the final formulas the first, involving the frequencies 

that is ( )0ω ω ω∆ = −  

( )
5 2 6 13

22 max
02 7

0

0.0189977
10 ee m r

Prob UnitStep
c

ω
ω ω

∆
 = × − 

 
 

and the second depending on the time t:  

( )2 240 5 13 13

0

210 7.6810 10 i
cProb K t UnitStepω ω ω

λ
−  π  = × ∆ ∆ + ∆    

 can be used to 

perform experiments on different metallic surfaces. 
To illustrate these considerations, if 10.402145 miK −= , the ejection velocity 

Vtest is shown in different units of length 
10.0000465573Vtest ms−= × , 465573Vtest = × 1Ås− , 10.465573Vtest sµ −= ×   

Table 1 summarizes the physical constants used in the calculations.  
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Appendix A 
A.1. Mathematica Full Calculation of L = 0, L = 1, L = 2 Partial 
Waves 

The integral: ijR i er j=  is: 

( )
( ) ( ) ( ) ( ) ( )( )

( )
cos sin sin sin cos23 3

10 0 0
d d d sin e ,

iK r
i

m
ijR e r r Y

θ θ φ θ φ
θ φ θ θ φ

⋅
+ +∞ π π

= ∫ ∫ ∫    (91) 

( ) ( ) ( ) ( ) ( )max2 33 0
100 0 0

4d d d 2 , sin ,
2 1

r r l m
l i lli er j e r r i l j K r Y Y

l
θ φ θ φ θ θ φ

π π =

=

π
=

+∑∫ ∫ ∫ (92) 

L = 0  

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )2 2
max max max max

3.072 2
max max max max

12.27

19.2893 0.63662 0.159155 0.256 0.358 cos 1.671 0.428 sin 1.671 0.256 0.5

12.27

ma

0.256 0.358 cos 1.671 0.428 sin 1.671 0.256

e

0.256 0.358

i i i i i

i i i i

i

i K r K r K r K r K

i

r K r K r K r K

K

K

r

 + − − + − +  

− + −

−( ) ( ) ( )
3.069982 2

x max max max

4

cos 1.671 0.428 sin 1.67109 0.256i i i i

i

K r K r K r K

K

 + −
 
 
 

(93) 

L = 1  

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

3.067
15 15 2 2 15

max max max max

12.27

15
2 2 15 15

max max max max

4

4.00 1.2813 10 1.1921 10 sin 1.671 2.1412 10 cos 1.671

1.9083 10 2.050 10 sin 1.671 3.425 10 cos 1.671

i i i i

i

i i i i

i

i i r K r K i r K r K

K

r K i r K i r K r K
i

K

− − −

−
− −

× − × + − ×

   ×
+ − × + ×     

3.07


 
 
 
 
 
 

(94) 

L = 2  

( ) ( ) ( )( )2 2
max max max max

4

0.227 2.864 cos 1.671 3 sin 1.671 2.864i i i i

i

r K r K r K r K

K

− − +
(95) 

A.2. Using Dirac δ Functions 

Using the well known δ  function properties, these are useful relations:  

( ) ( )x
ax

a
δ

δ =                         (96) 

( ) ( ) ( )2 2 1
2

x b x b x b
b

δ δ δ− = + + −                  (97) 

It is necessary to apply these basic identities to our problem: first step:  

2
2 2

2

2 2

2 22

e e

e ee

m m
K

m mm
K K

ω
δ

ω ω
δ δ

∆ − 
 
    ∆ ∆
 = + + −           



 

 

 

          (98) 
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2
2 2

2

2 2

2 22
2 2

e e

e ee

e

m m
K

m mm
K K

m

ω
δ

ω ω
δ δ

ω

∆ − 
 

    ∆ ∆
 = × + + −       ∆     



 

 



 



   (99) 

2
2 2

3

2 2

2 2

e e

e ee

m m
K

m mm
K K

ω
δ

ω ω
δ δ

ω

∆ − 
 

    ∆ ∆
 = × + + −       ∆     



 

 

 

     (100) 

Using the well known δ  function properties, these are useful relations: 

One needs to solve: 
2

2

2 e

K
m

δ ω
 

− ∆ 
 



   

( ) ( )x
ax

a
δ

δ =                       (101) 

( ) ( ) ( )2 2 1
2

x b x b x b
b

δ δ δ− = + + −              (102) 

with 
2

2

2 e

a
m

=
  thus 

2 em
b

a
ωω ∆∆

= =


 with 1b L−∝  homogeneous to the 

wave vector K.  

2 2 1
2 2e

K K K
m a aa

ω ωδ ω δ δ
ω

      ∆ ∆
− ∆ = × + + −          ∆      

  





   (103) 

2 2

2

2 21
2

e

e e

K
m

m m
K K

a

δ ω

ω ω
δ δ

ω

 
− ∆ 

 
    ∆ ∆
 = × + + −       ∆     





 

 



       (104) 

2 2

2

2

2 22
2 2

e

e ee

e

K
m

m mm
K K

m

δ ω

ω ω
δ δ

ω

 
− ∆ 

 
    ∆ ∆
 = × + + −       ∆     





 



 



    (105) 

2 2 1
2 2e

K K K
m a aa

ω ωδ ω δ δ
ω

      ∆ ∆
− ∆ = × + + −          ∆      

  





   (106) 

2 2

2

2 21
2

e

e e

K
m

m m
K K

a

δ ω

ω ω
δ δ

ω

 
− ∆ 

 
    ∆ ∆
 = × + + −       ∆     





 

 



        (107) 
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