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Abstract 
Default Probabilities quantitatively measures the credit risk that a borrower 
will be unable or unwilling to repay its debt. An accurate model to estimate, 
as a function of time, these default probabilities is of crucial importance in 
the credit derivatives market. In this work, we adapt Merton’s [1] original 
works on credit risk, consumption and portfolio rules to model an individual 
wealth scenario, and apply it to compute this individual default probabilities. 
Using our model, we also compute the time depending individual default in-
tensities, recovery rates, hazard rate and risk premiums. Hence, as a straight- 
forward application, our model can be used as novel way to measure the cre-
dit risk of individuals. 
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1. Introduction 

In the last 40 years, mathematics has become an integral part of the finance in-
dustry. Futures and options are traded actively on the many exchanges throughout 
the world. Recently, derivatives are added to bonds issues, used in executive 
compensation plans, embedded in capital investment opportunities, and so on. 
We have now reached a stage where anyone who works in finance needs to un-
derstand how financial mathematics works. In the last decade, there has also 
been a spot light on financial mathematics due to the 2007 economic meltdown, 
which has resulted in more stringent regulatory requirements. Since the global 
financial crisis regulators began to demand more transparency. Poor portfolio 
risk management, or a lack of attention to changes in economic or other cir-
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cumstances that can lead to a deterioration in the credit standing of a bank’s 
counterparties. This also presents an opportunity to greatly improve overall per-
formance and secure a competitive advantage in credit risk management. 

In this paper, we will estimate a probability of default. Probability of default is 
the risk that the borrower will be unable or unwilling to repay its debt in full or 
on time. When an individual goes bankrupt, those that are owed by such indi-
vidual file claims against the assets of such individual. There are times when 
there is a reorganization in which creditors agree to a partial payment of their 
claims. We will start by using the formulas originally published by Merton [1] in 
his original work on credit risk for companies and the original Black and Scholes 
[2] model for calculating an individual wealth scenario using the idea of compa-
nies equity prices to estimate default probability. In order to do this, we must 
consider the nature of an individual’s wealth and its distribution among risk free 
assets, risky assets, wages, and consumption subject to drift. Our discussion will 
also look at the default probabilities implied from bond prices and historical data 
that is, risk-neutral default probability and real world probability of default. This 
is paramount because it becomes legitimate to ask a natural question like in what 
scenarios do we use the risk neutral probability or real world default probability. 

In Section 2, we did a literature review of scholarly sources most relevant to 
our model, followed by Section 3, where we looked at the GMB structure of in-
dividual wealth factoring in consumption and utility from the deterministic and 
stochastic approach. Also, in the concluding part of Section 3, we will compute 
individual default intensity, recovery rate and risk premium. The risk premium 
model is applied to the simplest form of corporate debt. The discounted bond 
where no coupons are made and a formula for putting the risk structure of in-
terest rate is presented and in the later part of the paper, an individual formula 
for risk premium is also proposed. 

Finally, in Section 4, we suggested further research in relation to this research. 

2. Literature Review 

This paper looks at “Valuation of a CDO and an n-th to Default CDS Without 
Monte Carlo Simulation” by John Hull and Alan White [3]. In this paper the 
authors develop two fast procedures for valuing tranches of collateralized debt 
obligations and n-th to default swaps. The procedures are used were based on a 
factor copula model of times to default and are alternatives to using fast Fourier 
transforms. One involves calculating the probability distribution of the number 
of defaults by a certain time using a recurrence relationship; the other involves 
using a “probability bucketing” numerical procedure to build up the loss distri-
bution. We show how many different copula models can be generated by using 
different distributional assumptions within the factor model. We examine the 
impact on valuations of default probabilities, default correlations, the copula 
model chosen, and a correlation of recovery rates with default probabilities. Fi-
nally the paper looked at the market pricing of index tranches and conclude that 
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a “double distribution” copula fits the prices reasonably well. 
The paper “Option pricing when underlying stock returns are discontinuous” 

by Robert C. Merton [4]. This study analyzes the validity of the classic Black- 
Scholes [2] option pricing formula depends on the capability of investors to fol-
low a dynamic portfolio strategy in the stock that replicates the payoff structure 
to the option. The critical assumption required for such a strategy to be feasible, 
is that the underlying stock return dynamics can be described by a stochastic 
process with a continuous sample path. In this paper, an option pricing formula 
is derived for the more-general case when the underlying stock returns are gen-
erated by a mixture of both continuous and jump processes. The derived formu-
la has most of the attractive features of the original Black-Scholes [2] formula in 
that it does not depend on investor preferences or knowledge of the expected 
return on the underlying stock. Moreover, the same analysis applied to the op-
tions can be extended to the pricing of corporate liabilities. 

In the paper “Optimum Consumption and Portfolio Rules in a continuous- 
Time Model,” by R. C. Merton [5] (J. Econ. Theory 3 (1971), 373-413). This is a 
good source for general information on solutions obtained in cases when mar-
ginal utility at zero consumption is finite are not feasible. While they do satisfy 
the Hamilton-Jacobi Bellman equations, they do not represent appropriate value 
functions because the boundary behavior near zero wealth is not satisfactorily 
dealt with. In this ,they specify the boundary behavior and characterize optimal 
solutions. 

According to Merton, R.C. [1] On the Pricing of Corporate Debt: The Risk 
Structure Interest Rate. Journal of Finance, 449-470, the paper developed a me-
thod for pricing corporate liabilities which is grounded in solid economic analy-
sis, requires inputs which are on the whole observable; can be used to price al-
most any type of financial instrument. The method was applied to risky discount 
bonds to deduce a risk structure of interest rates. The Modigliani-Miller theorem 
was shown to obtain in the presence of bankruptcy provided that there are no 
differential tax benefits to corporations or transactions costs. The analysis was 
extended to include callable, coupon bonds. 

Black, F. and Scholes, M. [2], “The Pricing of options and Corporate Liabili-
ties,” Journal of Political Economy (May-June 1973). Using the principle from 
this paper, a theoretical valuation formula for options is derived knowing that if 
options are correctly priced in the market, it should not be possible to make sure 
profits by creating portfolios of long and short positions in options and their 
underlying stocks. Since almost all corporate liabilities can be viewed as combi-
nations of options, the formula and the analysis that led to it are also applicable 
to corporate liabilities such as common stock, corporate bonds, and warrants. In 
particular, the formula can be used to derive the discount that should be applied 
to a corporate bond because of the possibility of default. 

As explained by Hull, J.C., and White, A. [6], in their paper “The Risk of 
Tranches Created from Mortgages,” Rotman School of Management, University 
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of Toronto, 2010. Using the criteria of the rating agencies, the authors tested 
how wide the AAA tranches created from residential mortgages can be. They 
found that the AAA ratings assigned to ABSs were not totally unreasonable but 
that the AAA ratings assigned to tranches of Mezz ABS CDOs cannot be justi-
fied. 

At a glance of Li, David X. [7], paper “On Default Correlation: A Copula Ap-
proach,” Journal of Fixed Income (2000). The paper studies the problem of de-
fault correlation. It introduces a random variable called “time-until-default” to 
denote the survival time of each defaultable entity or financial instrument, and 
define the default correlation between two credit risks as the correlation coeffi-
cient between their survival times. Then an arguement was made on why a co-
pula function approach should be used to specify the joint distribution of sur-
vival times after marginal distributions of survival times are derived from mar-
ket information, such as risky bond prices or asset swap spreads. The definition 
and some basic properties of copula functions are given. The paper went on to 
show that the current CreditMetrics approach to default correlation through as-
set correlation is equivalent to using a normal copula function. Finally, the au-
thor gives some numerical examples to illustrate the use of copula functions in 
the valuation of some credit derivatives, such as credit default swaps and first-to- 
default contracts. 

Das, Sanjiv R., Laurence Freed, Gary Geng and Nikunj Kapadia [8], “Corre-
lated DefaultRisk” Journal of Fixed Income (2006), 16, 2, 7-30. The authors 
looked at Moodys Corporate default and recovery rates and provide a compre-
hensive empirical investigation of how default probabilities covary using a data-
base of issuer-level default probabilities for the period 1987-2000. This database 
provides a unique opportunity to understand how default risk behaves both in 
the cross-section of firms and in the time-series for almost all US public non- 
financial firms. More importantly from the standpoint of using the results, the 
data set lends quantitative expression to this behavior. For instance, the authors’ 
analysis allows for the understanding of the extent to which the record defaults 
of 2001. This paper also looked relating the co-variation in default probabilities 
to variation in debt, volatility, and their correlations, it also provide an economic 
understanding of why the economy-wide default rate varies over time. In short, 
they also examine the contribution of the correlation between default probabil-
ities, i.e., the first part of the standard reduced-form structure of doubly stochas-
tic processes, to joint default risk. 

The presentation, Hong Chen Ting [9], (November, 2009). Credit Risk. Re-
trieved from http://slideplayer.com/slide/3396349/ did a detail analysis of Credit 
risk presenting the original results using excel solver. 

G. M. Gupton, C. C. Finger, M. Bhatia [10], Risk Metric Group Inc. “Credit 
Grades Technical Document,” May, 2002. The authors acknowledges that most 
prior work has been on the estimation of the relative likelihoods of default for 
individual firms; Moody’s and S&P have long done this and many others have 
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started to do so. They designed CreditMetrics to accept as an input any assess-
ment of default probability which results in firms being classified into discrete 
groups (such as rating categories), each with a defined default probability. It is 
important to realize, however, that these assessments are only inputs to Credit-
Metrics, and not the final output. They also estimated the volatility of value due 
to changes in credit quality, not just the expected loss. In their own view, as im-
portant as default likelihood estimation is, it is only one link in the long chain of 
modeling and estimation that is necessary to fully assess credit risk (volatility) 
within a portfolio. Just as a chain is only as strong as its weakest link, it is also 
important to diligently address: 1) uncertainty of exposure such as is found in 
swaps and forwards, 2) residual value estimates and their uncertainties, and 3) 
credit quality correlations across the portfolio. 

In the paper by Magill M.J., and Constantinides G.M. [11], “Portfolio selec-
tion with transaction cost”: Journal of Economics Theory (October 1976). One 
result in this paper is that it shows the direction trading costs can be shown to be 
an important factor explaining the existence of financial intermediaries such as 
mutual funds. The paper may also prove useful in determining the impact of 
trading costs on capital market equilibrium. Furthermore, the paper shows fun-
damental qualitative changes that arise in the portfolio behavior of an investor 
when trading opportunities on the capital market are no longer available cost-
less. The most basic change is that the investor substantially modifies his concept 
of an optimal portfolio which now consists of a whole region in the portfolio 
space. A direct consequence of this is that the investor only seeks to make use of 
trading opportunities at randomly spaced instants of time. Both of these proper-
ties are likely to hold more generally for the class of concave utility and transac-
tion cost functions. The wider economic significance of trading costs must now 
be sought in their impact on the capital market as a whole. 

Davis and Norman [12] “Portfolio selection with transaction cost”: Mathe-
matics of Operations research (Vol. 15, No. 4, November 1990) obtained closed- 
form solutions for a problem that maximizes the cumulative utility of consump-
tion on an infinite horizon under proportional transaction costs. 

Shreve, S.E. and Soner, H. M. [13], “Optimal Investment and Consumption 
with Transac-tion Costs” the authors provided a complete solution is provided 
to the infinite-horizon, discounted problem of optimal consumption and in-
vestment in a market with one stock, one money market (sometimes called a 
“bond”) and proportional transaction costs. The authors looked at the utility 
function, assumed that the interest rate for the money market is positive, the 
mean rate of return for the stock is larger than this interest rate, the stock vola-
tility is positive and all these parameters are constant. The only other assump-
tion is that the value function is finite. They implied that the liquidity premium 
associated with small transaction costs is also of the order of the transaction cost 
to the 2/3 power. The analysis of the paper and its Appendix relied on the con-
cept of viscosity solutions to Hamilton-Jacobi-Bellman equations. 
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In the paper “Bond Prices, Default Probabilities and Risk Premium”: Journal 
of Credit Risk; (Issue: Vol. 1, No. 2; 2005), the authors Hull, J.C. and Mirela, P. 
and White, A. [14], looked at the difference between probabilities of default cal-
culated from historical data and probabilities of default implied from bond pric-
es (or from credit default swaps). The authors showed that the average probabil-
ity of default backed out from the bond’s price is almost ten times as great as 
that calculated from historical data. 

Moody’s Investors Services [15], “Corporate Default and Recovery Rates, 1920- 
2007”. Moody’s credit ratings have contributed to the efficient functioning of 
capital markets by providing independent opinions on the creditworthiness of 
many types of debt obligations and issuers. One primary purposes of Moody’s 
default study is to serve as a report on the historical performance of Moody’s 
ratings as predictors of default and loss severity. To providing useful data for in-
vestors and regulators, Moody’s default studies contribute to the transparency of 
the rating process and more importantly, directly address the meaning of Moo-
dy’s longterm debt ratings scale. The authors briefly summarize corporate de-
fault activity in 2006 and discuss Moody’s forecast for speculative-grade corpo-
rate defaults in 2007. The majority of the report is comprised of historical statis-
tics on corporate defaults, ratings transitions, ratings performance metrics, and 
recovery rates. The study contains a number of revisions to the historical data 
relative to previous year’s reports, which are described in detail in a separate sec-
tion at the end of the study. Most of the data revisions arise due to the inclusion 
of the year’s Moody’s rated corporate loan issuers to the universe of study, which 
previously consisted only of corporate bond issuers. Finally, the report includes 
several detailed methodologies used to generate the statistics as well as a guide to 
their reading and interpretation. Finger C.C., [16] “A Comparison of Stochastic 
Default Rate Models”, RiskMetric group, August, 2000, looked at the methodol-
ogies used by RiskMetric in market risk management applications using as-
sumptions of the multivariate normal model and the empirical model for the 
distribution of risk factor returns. The author also looked at different pricing 
approaches on a wide set of asset types and finally created effective risk reports 
based on risk statistics. 

3. Estimating Individual Default Probability 

We start in this section by trying to look at Merton’s [5] showing that the op-
timal strategy for investment is to keep a constant fraction of total wealth in 
each asset and to consume at a rate proportional to wealth. Such a strategy 
leads to incessant trading, which is impracticable in a real market with trans-
action costs. There has been more work done on the transaction cost side, Ma-
gill and Constantinides [11] introduced proportional transaction costs to Mer-
ton’s model. They provided a fundamental insight that there exists a no-trading 
region and that trading only takes place along the boundary of the no-trading 
region. 
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Davis and Norman [12] first formulated the problem as a free boundary prob-
lem, where the boundary of the no-trading region is the socalled free boundary. 
They then studied the properties of the free boundary that reflect the optimal 
strategy. In terms of a viscosity solution approach, Shreve and Soner [13] entire-
ly characterized the behaviors of the free boundary. But in this paper, our focus 
will be to do a more rigorous computation to Merton’s [1] work and try to show 
both the deterministic and stochastic case. 

We start with the asset equation as seen in the case of a company, where the 
asset now represents the individuals wealth in this case from our derivation on 
the Geometric Brownian motion. 

Consumption is the sole end and purpose of all production. As individual in-
vest and save a constant fraction of their income, people also consume a con-
stant fraction of potential output. Every individual choose consumption at each 
point in time to maximize a lifetime utility function that depends on current and 
future consumption. Individuals recognize that income in the future may differ 
from income today, and such differences influence consumption today. 

We will start with the GMB derivation 

( )21
2e

Y Y T tr T t W

T tY Y
σ σ −

 − − + 
 =                      (1) 

using variation of parameters, where TY  = Individuals wealth at time T, tY  = 
Individuals wealth at time 0 t T≤ ≤ , and α  = consumption. 

We take the derivative of TY , we have  

( ) ( )
[ ]

2 21 1
2 2d e d e d d

Y Y T t Y Y T tr T t W r T t W

t t t tY Y t Y r t W
σ σ σ σ

σ
− −

   − − + − − +   
   ′= + +  

we apply Ito’s formula on the exponent to show the derivative of the exponent:  
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2 2
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From Equation (1) above, we substitute for TY  into our equation we have 
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Let 
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substituting now tY  into Equation (1) we have  

( )
( )2 21 1

2 2
00

e d e .
Y Y s Y Y T tr s W r T t Wt

TY s s Y
σ σ σ σ

α
−

   − − + − − +   
   

 
= − + 
  
∫           (2) 

Substitute tY ′  in d TY , then we have  

[ ]
2 21 1

2 2d e e d d d
V V t V V tr t W r t W

t t tY t Y r t W
σ σ σ σ

α σ
   − − + − +   
   = − + +   

[ ]d d d dt t tY t Y r t Wα σ= − + +   

d d d dt t t tY Y r t Y W tσ α= + −    

where tY  in Equation (2) above is the solution of d tY , similar to the formula in 
Oksendal [17]. 

The real world is made up of minute random events yet a majority of real 
world systems are explained using deterministic models. Some such models in-
clude various population models and the modeling of action potentials in nerves. 
In mathematics, deterministic models are explained as a set of states which are 
predetermined depending on the initial conditions. Thus, as long as the initial 
conditions never change, the outcome will always be the same. In other words, 
deterministic models introduce no randomness into the system. A deterministic 
model assumes certainty in all aspects. Examples of deterministic models are 
timetables, pricing structures, a linear programming model, the economic order 
quantity model, maps, accounting. 

Even though these models give seemingly correct outcomes, they go against 
the nature of real world systems. This is because the majority of real world sys-
tems are only affected by randomness in amounts small enough to not notice. 
This of course depending on the initial conditions. 

In order to get an accurate portrayal of a system, the whole system must be 
modeled accurately, not just certain cases. This is where stochastic models come 
in. Stochastic models depend on some predetermined and random variables to 
transition from one state to another. With those random variables comes a way 
to represent the randomness involved in real world. Most models really should 
be stochastic or probabilistic rather than deterministic, but this is often too 
complicated to implement. Representing uncertainty is fraught. Some more 
common stochastic models are queueing models, markov chains, and most si-
mulations. 

In the deterministic case we don’t have d tW  which is an stochastic white 
noise term. We will leave out d tW  because it represents stochastic part of the 
equation and replace tY  with ( )Y t   

( )d
d
Y rY t
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( ) ( )
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
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For debt to be repaid ( )0 0y′ > , because y is an increasing function. The 
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above equation is a solvable deterministic case O.D.E. 
To show non stochastic case (i.e. deterministic case) we have a first order 

O.D.E.  

( ) ( ) 0y t ry t α′ = − >  

( ) ( )y t ry t α′ − = −  

Let ( )p x r= −  and ( )Q x α= − . 
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This is the solution of the deterministic case, considering the initial condition 
for no default for  
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3.1. Optimal Portfolio Selection and Consumption 

Let us now consider a more general case of the individual wealth model. Robert 
Kohn [18] in his notes followed Robert Merton [5] by presenting the math in 
Merton’s [5] paper in an interesting finance scenario. 

We consider a world with one risky asset and one risk-free asset. The risky 
asset grows at a constant rate r, that is its price per share satisfies 1 1d dp t p r= . 
The risky asset executes a geometric Brownian motion with constant drift rµ >  
and volatility σ , i.e. its price per share solves the stochastic differential equa-
tion 2 2 2d d dp p t p Wµ σ= + . 

The control problem is this: an investor starts with initial wealth x at time t. 
His control variables are  

( )sη  = fraction of total wealth invested in risky asset at time s 
( )sα  = rate of consumption at time s 
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It is natural to restrict these controls by ( )0 1sη≤ ≤  and ( ) 0sα ≥ . We ig-
nore transaction cost. The state is the investor’s total wealth tY  as a function of 
time; it solves  

( ) ( ) ( )d 1 d d d dt t t tYY Y r t Y t W t tη η µ σ α= − + + −


               (3) 

so long as ( ) 0Y s > . We denote by τ  the first time ( ) 0Y s =  if this occurs 
before time T, or Tτ =  (a fixed horizon time) otherwise. The investor seeks to 
maximize the discounted total utility of his consumption. We therefore consider 
the value function 

From Robert Kohn’s work Equation (3), we see that the real world S.D.E is 
given by  

( ) ( ) ( )d 1 d d d d .t t t tYY Y r t Y t W t tη η µ σ α= − + + −


    

In the risk neutral world, we assume wealth is only subject to risk free rate i.e. 
we assume rµ = , in this case we will follow the Hamilton-Jacobi-Bellman (HJB) 
partial differential equation, we will apply this result of this PDE later in this sec-
tion, now we have  

( )d d d dt t t tYY Y r t Y W t tη σ α= + −


                     (4) 

now the new volatility is Y Yη σ
 

 instead of Yσ 

. 
For us to have the probability of default for an individual, this condition has 

to be satisfied:  

[ ]TY D<


  

like the case of a company’s probability of default, individual probability of de-
fault follows the same model  

( )2 .TY D N d < = − 

  

The new TY  is now (because our new volatility is Y Yη σ
 

 instead of Yσ 

)  

( ) ( )
( )2 2 2 21 1

2 2
0

e d 0 e
S T tY Y Y YY Y Y Y

r s W r T t Wt
TY s s Y

σ η σ η σ η σ η
α

−
   − − + − − +   
   

 
= − + 
  
∫

   

   

   

where equity T TE Y D= −  and ( )0 e rT
TE Y D−

+
 = − 

  we also have that  

( )2 2
2 2

1 1
2 2

0 0
e d e

SY Y YWY Y T tY Y
r s W r T tt

Y s D
σ η σ η σ η σ

α −
   − − + − − +   
   

  
  − <
    

∫
  

 

 



  

then we can find an approximate solution of tY , which we will call tY  for  
t T=  as  

( )
( )2 21

2
0 e ,

T tY YY Y
r T t W

TY Y C t
σ η σ η −

 − − + 
  = − 

 

 

  

by letting  

( ) ( )
2 21

2
0

e d ,
SY YY Y

r s Wt
C t s s

σ η σ η
α

 − − + 
 

 
=  

  
∫

 

 



  
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with this process we can approximate tY  and we can find the individual equity 
using Black-Scholes [2] and we estimate debt tD  since t t t t tD Y E Y E= − ≈ − , 
we will do that in the later part of this paper. 

Back to approximating ( )C t , ( )~ 0,sW N s  is a normal distribution with mean 
0 and standard deviation s and  

2

21( ) = ( )
2

x

f s f x e dx
π

−∞

−∞∫  

where sW s=  and x is a standard normal ( )0,1N . Thus  

( ) ( )
22 21

2 2
0

1 e e d d ,
2

Y YY Y
xr s S xt

C t s x s
σ η σ η

α
  − − +  − ∞   

−∞

 
 =
  π∫ ∫

 

 

next  

( ) ( )

2 22

2 2

0

1 e d d ,
2

Y Y
Y Y

x sx r s
t

C t s x s

σ η
σ η

α

 
 − − − −  ∞  

−∞

 
 

=  
 


π


∫ ∫
 

 

then  

( ) ( )

2 2
2

2 22
2

0

1 e e d d .
2

Y Y

Y Y

r s x sxt
C t s x s

σ η

σ η
α

 
 − −  − −  ∞ 

−∞

 
 =
 
 π∫ ∫

 

   

Now completing the square on the second exponent we have  

( )
( )

( )

2
2

2 2 2

2

1 2
2 2

1
2
1 .
2 2

Y Y Y Y Y Y Y Y

Y Y Y Y

Y Y
Y Y

x sx x sx s s

x s s

s
x s

σ η σ η σ η σ η

σ η σ η

σ η
σ η

 − − = − + + − 

 = − + −  

= − + +

       

   

 

 

 

Imputing the computed exponent back into the equation we have  

( ) ( )
( )

2 2 2 2 2
2

2 2
0

1 e e e d ,
2

Y Y
Y Y Y Y

x s sr s
t

C t s s

σ η
σ η σ η

α

 
  +− −   ∞ 

−∞

 
 =   
 

π∫ ∫
 

 

 

 

then combine exponents  

( ) ( ) ( ) ( )22 2
2

0

1e e d d .
2

Y Y
Y Y

x s
t r s

C t s x s
σ η

σ η
α

+
−∞− −

−∞

 
 =   


π


∫ ∫
 

   

We see that the equation in the bracket is the standard normal of mean 0 and 
standard deviation 1  

( )2
21 e d 1.

2

Y Yx s

x
σ η+

−∞

−∞

 
  =  
 

π ∫
 
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Next we integrate with respect to ds  

( ) ( ) ( )2 2

0
e d .Y Y

t r s
C t s s

σ η
α

− −
= ∫    

Using conclusions from Kohn’s [18] work, he used the choice that gave an 
autonomous Hamilton-Jacobi-Bellman (HJB) equation, in which time does not 
appear explicitly in the equation. He found the HJB equation by essentially ap-
plying the principle of dynamic programming on short intervals. Kohn’s [18] 
work also reflects the concavity of the utility function, this is not so obvious but 
it is easy to check in the explicit solution. 

For the ease of understanding following Nagle, Saff, Snider [19], we will try to 
explain the utility function and risk appetite with an example. Would you rather 
have $500 with certainity or gamble involving 50% chance of receiving $100 and 
a 50% chance of recieving $1100? The gambler has a higher expected value of 
($500); however, it also has a greater level of risk. Consumers behavior are mod-
elled by economists facing risky decisions with the help of a (von Neumann- 
Morgenstern) utility function u and the criterion of expected utility. Rather than 
using expected values of the dollar payoffs, the payoffs are first transformed into 
utility levels and then weighted by probabilities to obtain expected utility. By 
Bernoulli, we can set ( ) ( )lnu x x= , we see that  

( ) ( ) ( )ln 500 0.5ln 100 0.5ln 1100> +  

which would result in sure thing being chosen in this case rather than the gam-
ble. This utility function is strictly concave, which corresponds to being risk 
averse, or wanting to avoid gambles (unless of course the extra risk is sufficiently 
compensated by a high enough increase in the mean or expected payoff). 

Alternatively, the utility function might be ( ) 2u x x= , which is strictly convex 
and corresponds to the agent being risk loving. This agent would surely select 
the above gamble. The case of ( )u x x= , occurs when the agent is risk neutral 
and would select according to the expected value of the payoff. It is normally as-
sumed that ( ) 0u x >  at all payoff levels, x; in other words higher payoffs are 
desirable. 

In addition to knowing if an agent is risk averse or risk loving, economics are 
often interested in knowing how risk averse (or risk loving) an agent is. Clearly 
this has something to do with the second derivative of the utility function. The 
measure of risk aversion of an agent with utility function ( )u x  and payoff x is 
defined as ( ) ( ) ( )r x u x u x′′ ′= − . Normally, ( )r x  is a function of the payoff 
level. In our case, we will adopt a risk neutral stance in our utility function. 

Back to Kohn’s [18] work on the reflection of concavity of the utility function.  

We then see that the optimal ( ) ( )
1

1e tt g t xρ γα − =    where  

( ) ; 0 1h γα α γ= < <  is the chosen utility function and, where rρ = , while  

t tx Y Y= =  We also have that  

( )
( )( ) ( )

( )

1
2

1
2

1e 1 e and ,
2 1

T t
t r

g t r

γ
ρ υγ

ρ γ µγ υ
ρ υγ σ γ

−
− −

−
− −

   −−  = − = +
 − −   
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with the optimal 
( )2 1

rµη
σ γ

−
=

−
, here ( )sα  is consumption. Also notice that 

the η  is embedded in the optimal ( ) ( )
1

1e t
ts g t Yρ γα − =   . Because of this,  

( )sα  is not a constant and thus ( )C t  cannot be evaluated easily. 
Thus, we will leave the value of ( )C t  as  

( ) ( ) ( )2 2

0
e d .Y Y

t r s
C t s s

σ η
α

− −
= ∫    

So, TY  can now be approximated as  

( )
( )2 21

2
0 e .

T tY YY Y
r T t W

TY Y C t
σ η σ η −

 − − + 
  ≈ − 

 

 

  

To find the individuals probability of default, the following condition has to 
be satisfied  

.T TY Y D≈ <  

Meaning that wealth has to be less that the debt for default to occur and then, 
the risk neutral probability of default is given by TY D < 

 . This condition 
must be satisfied for any default. 

Then,  

( )
( )2 21

2
0 e

T tY YY Y
r T t W

TY Y C t D
σ η σ η −

 − − + 
 = − <  

 

 

 

whenever,  

( ) ( )
2 2 2 2

0

1 ln .
2 T tY Y Y Y

Dr T t W
Y C t

σ η σ η −

  − − + <     −   
   

 

Recall now that, tW x t=  and ( )~ 0,1x N , Then,  

( ) ( )
2 2

0

1 ln .
2 Y Y Y Y

Dr T t x T t
Y C t

σ η σ η
  − − + − <     −   

   

 

In general we see that,  

( ) ( )2 2

0
2

1ln
2

, for any 0 .
Y Y

Y Y

D r T t
Y C t

x d t T
T t

σ η

σ η

   − − −    −   < = ≤ ≤
−

 

 

 

Finally, it should be that  

( ) ( )
( )

2 2

0
2

1ln
2 Y Y

Y Y

D r T t
Y C t

x N d
T t

σ η

σ η

    − − −     −    < = − 
  

 



 

  

where finally ( )2N d  is the probability that there will be a default at any time 
0 t T≤ ≤ . We just proved the following theorem: 

Theorem 1: The individual risk neutral probability of default at any time 
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0 t T≤ ≤  with volatility Y Yσ η
 

, restricted controls ( ) ( )0 1, 0s sη α≤ ≤ ≥  is given 
by  

( )
( ) ( )2 2

0
2

1ln
2 Y Y

Y Y

D r T t
Y C t

N d x
T t

σ η

σ η

    − − −     −    = < − 
  

 



 

  

where ( ) ( ) ( )2 2

0
e dY Y

t r s
C t s s

σ η
α

− −
= ∫   . 

The individual risk neutral probability above will play an important role in 
determining the lending credit rate of an individual. We will discuss more on the 
new rate i.e. risk premium for individuals, recovery rate at default and default 
intensities for individuals in the later part of this section. 

Before then, we refer back to Equation (3) (The state of investor’s total wealth 
equation) to look at the real (actual) world S.D.E and compare the result to the 
risk neutral world where we assume that rµ = . 

This time we will leave the S.D.E as  

( ) ( ) ( )d 1 d d d d .t t t tYY Y r t Y t W t tη η µ σ α= − + + −


  

              (5) 

For sake of notation 
we will denote wealth t tY Y=   , the volatility remains Y Yη σ

 

 and we see by com-
putation that we can replace r with ( )r rη µ+ −  

Similar to Equation (4), from Equation (5) above we now have  

( ) ( )d d d dt t t tYY r r Y t Y W t tη µ ησ α= + − + −   

  

              (6) 

To start this, we will incorporate the Expected default frequency (EDF) from 
KMV model (https://www.math.hkust.edu.hk) [20]. We will modify the EDF to 
suit individual case by changing asset (V) to wealth (Y). Expected default fre-
quency (EDF) is a forward-looking measure of actual probability of default. 
Three steps to derive the actual probabilities of default: 

1) Estimation of the wealth and volatility of the individual’s wealth (This is al-
ready included in the initial computation by Black-Scholes [2]). 

2) Calculation of the distance to default, an index measure of default risk. 
3) Scaling of the distance to default to actual probabilities of default using a 

default database. 
Our focus is on the distance of default. 
Distance to default 

Default point, * short-term debt long-term b1
2

de td = +  

Recall, equity T TE Y D= −  and ( )0 e rT
TE Y D−

+
 = − 

  

distance to default, 

( ) *

.T T
f

Y Y

E Y d
d

η σ

−
=

 


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Now apply EDF to Equation (5) and replicating the process for the risk neu-
tral process in the real world we have:  

( ) ( ) ( )
( )

2 2

0
2

1ln
2 Y Y

Y Y

D r r T t
Y C t

x N d
T t

η µ σ η

σ η

    − + − − −       −    < = − 
  

 



 

    (7) 

where  

( ) ( ) ( )2 2

0
2

1ln
2

, for any 0 .
Y Y

Y Y

D r r T t
Y C t

x d t T
T t

η µ σ η

σ η

   − + − − −      −   < = ≤ ≤
−

 

 

 

where ( )2N d  is the probability that there will be a default applying EDF using 
“distance to default” at any time 0 t T≤ ≤ . 

There is a formula that shows the relationship between the risk neutral and 
real world, this formula can switch between risk neutral and real world as shown 
below: From Equation (7) above we know  

( )2T tEDF N d− =  

The risk neutral EDF is  

( ) ( )1
T t

Y Y

r r r
Q N N EDF T t

η µ
η σ

−
−

 + − −
= + − 

   

 

Finally  

( ) ( )1
T t

Y Y

r
Q N N EDF T t

η µ
η σ

−
−

 −
= + − 

   

               (8) 

We will stick with risk neutral (RN) world to complete the rest of the paper 
since we now know how to switch between risk neutral and real world using 
EDF Equation (8) above. 

3.2. Individual Equations 

We will follow the case of a company and try to see that there is also a call option 
on the value of the wealth with a strike price equal to the repayment of the debt. 
We will discount the wealth equation and try to do an estimation using the Black- 
Scholes [2] formula 

We start the derivation with equity equation:  
( ) ( )e r T t

t TE Y D− −

+
 = −   

from the previous sub-section we know  

( ) ( )
( )2 21

2
0e e

T tY YY Y
r T t Wr T t

tE Y C t D
σ η σ η −

 − − + − −  

+

  
   = − −     

 

 



  

for any 0 t T≤ ≤ . 
Recall  
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( ) ( ) ( )2 2

0
e d .Y Y

t r s
C t s s

σ η
α

− −
= ∫    

For an individual to pay his debt, this condition has to be satisfied TY D>   

( )( ) ( )2 21
2

0 e .Y YY Y
r T t T t x

Y C t D
σ η σ η − − + − 

 − >
 

 

  

Next  

( )

( )

2 21
2

0

e .Y YY Y
r T t T t x D

Y C t

σ η σ η − − + − 
  >

−

 

 



 

Then  

( )
( )

2 2

0

1 ln .
2 Y Y Y Y

Dr T t T t x
Y C t

σ η σ η
  − − + − >    −    

   



 

It is easy to see that  

( ) ( )2 2

0
2

1ln
2

.
Y Y

Y Y

D r T t
Y C t

x d
T t

σ η

σ η

   − − −   −   > = −
−

 

 

 

Note that:  

( )e d .
T

rT
t TY D

E Y D x−

>
= −∫  

Then we have  

( ) ( )( ) ( )
22 2

2

1
2 2

0
1e e e d .
2

Y YY Y
xr T t T t xr T t

t d
E Y C t D x

σ η σ η  −− − + − ∞− −  
 

= − − 
π 

∫
 

 

  

Like the case of a company in Hull [21] we will find that  

( ) ( )

( ) ( )( )
( )

( )

22 2

2

22 2

2

2

2

1
2 2

0

1
2 2

2

1e e e d
2

1e e e d
2

1e e d .
2

Y YY Y

Y YY Y

xr T t T t xr T t
t d

xr T t T t xr T t

d

x
r T t

d

E Y x

C t x

D x

σ η σ η

σ η σ η

  −− − + − ∞− −  

  −− − + − ∞− −  

−
∞− −

=

+ −

−

π

π

π

∫

∫

∫

 

 

 

 



 

Following the case of the company we have that the first time above is equal to  

( )

( )( ) ( )
( )

( )

0 2 2
22 2

1ln
2 1

2 2
0

0 1

1e e e d
2

,

Y Y
Y YY Y

Y Y

Y C T
r T t

D xr T t T t xr T t T t Y x

Y N d

α
σ η

σ η σ η
σ η

 −  + + −        −  − − + − − −  −
−∞π

=

∫
 

 

 

 

  

where 

( ) ( )0 2 2

1

1ln
2 Y Y

Y Y

Y C t
r T t

D
d

T t

α
σ η

σ η

−   + + −   
  =

−

 

 

 and 2 1 Y Yd d T tσ η= − −
 

. 

By following the same process as the company case and completing the square 
on the exponent and doing the necessary cancelations we have that the second 
term above is equal to  
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( )

( )( ) ( )

( )( )
( )

( )( ) ( )

0 2 2
22 2

1ln
2 1

2 2

1

1e e e d
2

Y Y
Y YY Y

Y Y

Y C t
r T t

D xr T t T t xr T t T C t x

C t N d

α
σ η

σ η σ η
σ η

 −  + + −        −  − − + − − −  
−∞

−
π

= −

∫
 

 

 

   

and the final term of that equation is equal to:  

( ) ( ) ( )( ) ( ) ( )
2

2

2
2 2

1e e d e 1 e
2

x
r T t r T t r T t

d
D x D N d D N d

−
∞− − − − − −− = − − − = −

π ∫
 

so finally we have this equation for individual equity:  

( )( ) ( ) ( ) ( )0 1 2e .r T t
tE Y C t N d D N d− −= − −                (9) 

We just proved the following theorem: 
Theorem 2: Under these conditions with ( ) ( )1 2 1 2, , ,d d N d N d  and D above. 

The equity at time t is given by the following formula: 

( )( ) ( ) ( ) ( )0 1 2e .r T t
tE Y C t N d D N d− −= − −  

The second equation for individual scenario is practically like the first in the 
case of company:  

( )max ,0T TE Y D= −  

We can thus regard tE  as a function of tY . Since tY  is a GMB so is tE , 
thus we have  

( )
2

2
2

1d d d d
2

t
t t t

t t

E E EE Y t W
Y t Y

δ δ δ
δ δ δ

= + + +  

Using Ito’s formula  

d d t
t

EE Y
Y

δ
δ

= +  

(where   is other higher terms which we can ignore from Ito’s formula). We 
then replace d tE , d tY  in the above  

( )1d d d dt
t t E t t t tY

t

E
E t E W Y r t Y W

Y
δ

µ σ σ
δ

+ = + +


  

1d d d dt t
t t E t t t tY

t t

E E
E t E W Y r t Y W

Y Y
δ δ

µ σ σ
δ δ

+ = + +


  

We then compare the left and right side of the equations we have  

d dt
t E t t tY

t

E
E W Y W

Y
δ

σ σ
δ

=


 

t
t E t Y

t

E
E Y

Y
δ

σ σ
δ

=


 

We already showed that  

( )1
t

t

E
N d

Y
δ
δ

=  

in the case of the company, replicating the same process we will find out the 
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same equation is true as derived earlier that:  

( )1t E t YE N d Yσ σ=


                      (10) 

3.3. Incorporating Wages into the Wealth Equation 

The last two sections have been mainly focusing on the individual and company 
wealth and equity derivations. In this section we will look at incorporating wage 
into the individual equation as wage is an integral part of an individuals wealth. 

Now we will consider a new factor in the wealth equation  

( )d d d dt t t tY YY rY t Y W t tη σ α= + −
 

    

where tY  = wealth, r = risk neutral rate, Y Yη σ
 

 = volatility, and α  = con-
sumption. 

We will now incorporate wage/salary ( β ) into the wealth equation, as wage is 
part of every individuals source of wealth. Then we have:  

( )d d d d dt t t tY YY rY t Y W t t tη σ β α= + + −
 

    

our new equation is now  

( )( )d d d d .t t t tY YY rY t Y W t tη σ β α= + + −
 

    

Replicating the whole process of the individual probability of default we will 
replace α−  by ( )β α− , we will have the new probability of default approx-
imated by:  

( )( ) ( )
( )

2 2

0
2

1ln
2

.
Y Y

Y Y

D r T t
Y C t

x N d
T t

σ η
β

σ η

    − − −     + −    < = 
− 

 
 

 



 

  

This represents the individual risk neutral probability of default factoring in 
the wage into this equation where  

( )( ) ( )2 2

0
2

1ln
2

.
Y Y

Y Y

D r T t
Y C t

x d
T t

σ η
β

σ η

   − − −    + −   < =
−

 

 

 

3.4. Default Probability at Any Time t 

To estimate the probability of default within the life of a debt (D), 0 t T≤ ≤ , the 
default probability at any time t is given by the formula  

( )
( )( ) ( )2 2

0

1ln
2

.
Y Y

Y Y

D r T t
Y C t

Q t x
T t

σ η
β

σ η

    − − −     + −    = < 
− 

 
 

 



 

  

We have been considering the risk neutral probability of default by assuming that 
r µ=  (drift), but the if we consider the risky or real world probability of default by 
subjecting all rates to the drift μ = drift(returns on investment) we will have  
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( )
( )( ) ( )2 2

0

1ln
2

.
Y Y

Y Y

D T t
Y C t

Q t x
T t

µ σ η
β

σ η

    − − −     + −    = < 
− 

 
 

 



 

  

This is the real world probability of default. 

3.5. Individual Default Intensity 

Recall that the equation of the default intensity of a company was computed as  

( ) ( )0 d1 e
t s sQ t λ−∫= −  

and  

( )
( )( ) ( )2 2

0

1ln
2

.
Y Y

Y Y

D r T t
Y C t

Q t x
T t

σ η
β

σ η

    − − −     + −    = < 
− 

 
 

 



 

  

Now we have  

( ) ( )( ) ( )
0

2 2

0d

1ln
2

1 e .
t

Y Y
s s

Y Y

D r T t
Y C t

x
T t

λ

σ η
β

σ η
−∫

    − − −     + −    − = < 
− 

 
 

 



 

  

Next we have  

( ) ( )( ) ( )
0

2 2

0d

1ln
2

e 1 .
t

Y Y
s s

Y Y

D r T t
Y C t

x
T t

λ

σ η
β

σ η
−∫

    − − −     + −    = − < 
− 

 
 

 



 

  

Taking the log of both sides of the above equation  

( )
( )( ) ( )2 2

0

0

1ln
2

d ln 1 .
Y Y

t

Y Y

D r T t
Y C t

s s x
T t

σ η
β

λ
σ η

      − − −     + −    − = − <  
−  

     

∫
 

 

  

Taking now the derivative of both sides of the above equation we have  

( )
( )( ) ( )2 2

0

1ln
2d ln 1 .

d

Y Y

Y Y

D r T t
Y C t

t x
t T t

σ η
β

λ
σ η

        − − −      + −     = − − <   
−   

        

 



 

  
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The derivative is  

( ) ( )

( )( )
( )

( )

2

2

2

2

2

2

1 e
d 1 2ln 1 e d
d 2 11 e d

2

g t

x
g t

x
g t

g t
t x

t
x

λ

−

−

−∞
−

−∞

 
 ′− ⋅      = − − = −         − 
 

π
π

π

∫
∫

 

where  

( )
( )( ) ( )2 2

0

1ln
2 Y Y

Y Y

D r T t
Y C t

g t
T t

σ η
β

σ η

   − − −    + −   =
−

 

 

 

and  

( )

( )( )
( )

( )( ) ( )

( )

2 2

0

2 2

0

3
2

1
2

1ln
2

.
2

Y Y

Y Y

Y Y

Y Y

C t
r

Y C t
g t

T t

D r T t
Y C t

T t

σ η

σ η

σ η
β

σ η

′
 + − +  ′ = −

−

   + − −    + −   +
−

 

 

 

 



 

We just proved the following theorem for harzard rate ( )tλ : 
Theorem 3: The harzard rate of individual ( )tλ  with ( )g t  and ( )g t′  de-

fined above under our model, is given by the following formula:  

( )

( )( )
( )

( )

2

2

2

2

1 e
2 .

11 e d
2

g t

x
g t

g t
t

x

λ

−

−

−∞

 
 ′− ⋅
 

= −  
 − 


π

π∫
 

3.6. Risk Premium on Corporate Debt and on an Individual  
t tY Y≈  

For an individual, a risk premium is the minimum amount of money by which 
the expected return on a risky asset must exceed the known return on a risk-free 
asset in order to induce an individual to hold the risky asset rather than the 
risk-free asset. It is positive if the person is risk averse. Thus it is the minimum 
willingness to accept compensation for the risk. 

Value of asset at time T is given by  

( )
2

2e .
T tr T t W

T tV V
σ σ −

 
 − − + 
 =  

Equity at any time t is given by the formula  
( ) ( )e .r T t

t TE V D− −
+

 = −   

Recall that t t tE V D= −  and t t tD V E= − , where ( )e tR T t D− −  is the discounted 
debt at any time t in the risk neutral world   so  
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( )e .tR T t
t t tD V E D− −= − =  

Recall,  

( ) ( ) ( )1 2e r T t
t tE V N d D N d− −= −  

where 
( )2

1

1ln
2

t
V

V r T t
Dd

T t

σ

σ

   + + −     =
−

 and 2 1d d T tσ= − − . 

We have that  

( ) ( ) ( ) ( )
1 2e e .tr T t R T t

t t tD V V N d D N d D− − − − = − − =   

Then we have  

( ) ( ) ( ) ( )
1 2e e .tr T t R T t

t tV V N d D N d D− − − −− + =  

Next we factor out tV   

( ) ( ) ( ) ( )
1 21 e e .tr T t R T t

tV N d D N d D− − − −− + =    

Then  

( ) ( ) ( ) ( )1 2e e .tR T t r T t
tV N d D D N d− − − −− = −  

Next,  

( ) ( ) ( )( ) ( )1 2e e .tR r T tr T t
tV N d D N d− − −− −  − = − −   

It follows that  

( )
( ) ( ) ( )( )1

2 e .
e

tR r T tt
r T t

V N d
N d

D
− − −

− −

−
+ =  

We take ln of both sides to take care of the exponent  

( )( ) ( )
( ) ( )1

2ln .
e

t
t r T t

V N d
R r T t N d

D − −

− 
− − − = + 

 
 

Hence we have that,  

( )
( ) ( )1

2
1 ln

e
t

t r T t

V N d
R r N d

T t D − −

− 
− = − + −  

 

which is the corporate risk premium as required. 
For the individual risk premium by following the same steps as above we have  

( )( )
( )

( ) ( ) ( )

2 2

2

0
1 2

e1 ln
e

Y Y
T tY Yr T t W

t r T t

Y C t
R r N d N d

T t D

σ η
σ η

β
−

 
 − − +  
 

− −

 
 

+ − 
− = − − + −  

 
 

 

 



 

That is  

( ) ( ) ( )1 2
1 ln

e
t

t r T t

Y
R r N d N d

T t D − −

 
− = − − + −  

 

with  
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( )( ) ( )0 2 2

1 2 1

1ln
2

and .
Y Y

Y Y
Y Y

Y C t
r T t

D
d d d T t

T t

β
σ η

σ η
σ η

 + −  + + −       = = − −
−

 

 

 

 

We just proved the following theorem: 
Theorem 4: The individual risk premium is given by: 

( ) ( ) ( )1 2
1 ln .

e
t

t r T t

Y
R r N d N d

T t D − −

 
− = − − + −  

 

where tR  is the expected return on risky asset and r is the risk-free asset.  

3.7. Recovery Rate at Default 

The recovery rate if there is a default is the expected value of the asset given that 
the value of asset is less than the debt. From Hull [21] we see the definition of 
the recovery rate, we can compute the recovery rate at default of individuals in 
our case. 

Recovery rate at default is the expected value of asset given that the asset is 
less than the debt (when value of asset is less than debt, this is the condition for 
default i.e. TV D< )  

( ) [ ]
[ ]

T T
T T

T

V V D
V V D

V D
∩ <

< =
<





 

where 

2

2
00 e

V
V Tr T W

TV V D
σ

σ
 
 − +
 
 < = <  is the condition to find the risk neutral  

( ) recovery rate, hence we have  

( )
20 2

2

20
2

1ln
2

2 2
0

1ln
2

2

risk neutral Recover yrate

d e e d
.

d
e d

V V
V

V

V

V

V
rT T

xr T T xDD
T

T T

D V
rT T

xDT
T

V V V x

V
x

σ σ
σ

σ

σ

σ

     + +     − +   − 
 

−∞ −∞
   + −   

  −∞ −

−∞

= =∫ ∫
∫

∫



 

Recovery rate of   (risk neutral) is:  

( )
( )

0 1

2

erTV N d
R

N d
=  

where 

20

1

1ln
2 V

V rT T
Dd

T

σ

σ

   + +     =  and 

20

2

1ln
2 V

V rT T
Dd

T

σ

σ

   + −     = , we have  

shown the computations of ( )1N d  and ( )2N d  earlier. 
In the case of an individual with consumption and wages we have  

( ) T T
T T

T

Y Y D
Y Y D

Y D

 ∩ < < =
 < 





 

where ( )( ) ( )2 21 )
2

00 ( e Y YY Y
r T t T t x

Y Y C t D
σ η σ η

β
 − − + − 
 < = + − <

 

 

  is the condition for  
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risk neutral recovery rate, then we have  

( )( ) ( )

( )( )( ) ( )

( )( ) ( )

0 2 2
22 2

0 2 2

1ln
2 1

2 2
0

1ln
2

d
Recovery rate for individual

d

e e d
Y Y

Y YY Y
Y Y

Y Y

Y Y

D
T T

D
T

Y C t
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D xr T t T t x
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Y C t
r T t

D

T t
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Y

Y C t x

β
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σ η σ η
σ η

β
σ η

σ η

β

−∞

−∞

 + −  + + −         − − + − − 
 −

−∞
 + −  + − −   

   
−

−∞

=

+ −
=

∫
∫

∫

∫

 

 

 

 

 

 







2

2e d
x

x
−

 

where 

( )( ) ( )0 2 2

1

1ln
2 Y Y

Y Y

Y C t
r T t

D
d

T t

β
σ η

σ η

 + −  + + −   
   =
−

 

 

 and  

2 1 Y Yd d T tσ η= − −
 

, for every 0 t T≤ ≤ . 
The recovery rate for an individual is now  

( )( )( ) ( )
( )

0 1

2

e
.

rT Y C t N d
R

N d

β+ −
=  

The computations of ( )1N d  and ( )2N d  for individuals has been shown 
earlier in this chapter in pages 17 to 19. 

The following theorem was proven above: 
Theorem 5: The recovery rate at default under the conditions above is given 

by the formula  

( )( )( ) ( )
( )

0 1

2

e
.

rT Y C t N d
R

N d

β+ −
=  

4. Conclusions 

In this paper, we considered an extremely important tool for decision making 
within financial institutions—credit risk. Because of the risk of default on the 
part of depositors and customers, regulators have for many years required finan-
cial institutions to maintain a certain capital level to reflect the credit risk they 
bear. 

We used the work originally published by Merton [1] and Black and Scholes 
[2] model used for computing the premium of an option. In our discussion, we 
also looked at replicating an individual scenario using equity prices to estimate 
default probability. To achieve this we incorporated Kohn’s [18] work on optim-
al portfolio selection and consumption, which involves the HJB equation, utility 
function. In order to do this, we considered the nature of an individual’s wealth 
and its distribution among risk free assets, risky assets, wages and consumptions. 

In the concluding part of this paper, we computed individual default intensity, 
recovery rate and risk premium. The risk premium model is applied to the sim-
plest form of corporate debt. The discounted bond where no coupons are made 
and a formula for putting the risk structure of interest rate is presented and in 

https://doi.org/10.4236/jamp.2022.107158


A. K. Oluwo, E. Villamor 
 

 

DOI: 10.4236/jamp.2022.107158 2336 Journal of Applied Mathematics and Physics 
 

the later part of section four we proposed the individual formula for risk pre-
mium. 

In practice, some of our conclusions have been in use and others are still in 
the pipeline, our submission is that individual risk premium and recovery rate 
would help to model mortgages pricing for individual and will minimize expo-
sure to individual default rates. 

Further Research Suggestions 

One important idea that follows directly from this paper seems interesting for 
the future studies. We can redefine consumption and make it dynamic and de-
pendent on wealth in the equation  

d d d dt t t tY Y r t Y W tσ α= + −    

we then re-adjust the consumption part and we will have  

d d d dt t t t tY Y r t Y W Y tσ α= + −     

As such the value  

( ) ( ) ( )2 2

0
e d .Y Y

t r s
C t s s

σ η
α

− −
= ∫    

will not be constant anymore. 
So, there will be no need to approximate TY  as  

( )
( )2 21

2
0 e .

T tY YY Y
r T t W

TY Y C t
σ η σ η −

 − − + 
  ≈ − 

 

 

  

This will make our computations easier and also change the situation with the 
version with the wages by making this also dynamic and subjecting it to tY . 

Then we will have 

d d d d dt t t t t tY YY rY t Y W Y t Y tη σ β α= + + −
 

      

the new combination of equation with consumptions and wages becomes  

( )d d d d .t t t t tY YY rY t Y W Y tη σ β α= + + −
 

     

This will subsequently make the computation easier. 
Another very interesting topic to look at is the concept of default correlation. 

This topic is a critical concept in risk management for fixed income investment, 
bank management, insurance companies, working capital management and so 
on. The term default correlation is used to describe the tendency for two com-
panies to default at about the same time. There are a lot of reasons why correla-
tions exist. One good reason companies might be in the same geographical areas 
and another reason is that the companies might be in the same industry; these 
are driven by the overall economic happenings, events, policies and so on. A de-
fault by one company leads to default of another is called credit contagion. When 
there multiple risky bonds or assets in a given portfolio, a single default correla-
tion between two firms can be extended to a correlation matrix. 

Default model focuses on the event of default and we show it defined as fol-
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lows: We denote the probability of default by an indicator variable iD , which 
shows firm i defaulted as thus: 

1 if firm  defaults
0 if node fault.i

i
D 

= 


 

The variable ip  is the probability that the firm i defaults, while iD  is an in-
dicator variable, the expected default as a variance is as follows  

[ ] [ ] ( ) [ ]1 0 1 1 .i i i i iE D p p Pr D p = ⋅ + ⋅ − = = =   

( ) ( )1i i iVar D p p= −  

This is a non parametric approach. A non-parametric approach would involve 
the use of sample version of a dependence measure to calibrate the copula para-
meters. 

We can define the default correlation of firm i and j as:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,
1 1 1 1

i j i j ij i j
ij i j

i i j j i i j j

E D D E D E D p p p
P Corr D D

p p p p p p p p

− −
≡ = =

− − − −
 

A simplification of this expression is the joint default probabilities shown be-
low:  

( ) ( ) ( )( )1 1i j i j i j ij i j i jPr D D E D D p p p p p p p∩ = = + − −  

which follows the previous equation above. 
This shows that the probability of joint default is linear in the correlation of 

joint default. 
Default correlation is important in the determination of probability distribu-

tions for default losses from a portfolio of exposures to different counter parties. 
There is need for more research into Gaussian Copula which deals with individ-
ual probability functions into joint probability functions. 

Two different types of default correlation models that have been suggested by 
researchers are referred to as reduced form models and structural models. Re-
duced form models assume that the default intensities for different companies 
follow correlated stochastic process, while Structural models are based on Mer-
ton’s [1] model, or one of its extensions, where a company defaults when the 
value of its assets falls below a certain level. Default correlation is introduced in-
to a structural model by assuming that the assets of different companies follow 
correlated stochastic processes. 

Unfortunately the reduced form model and the structural model are computa-
tionally time consuming for valuing instruments. This has led market partici-
pants to model correlations using factor copula model where the joint probabili-
ty for the times of default of many companies is constructed from marginal dis-
tributions, we will not look at this in this paper. 

This could then form the basis for utilization of a standard type done by Mer-
ton [1] with a view of incorporating individual default probability and further 
work for company default probability models. 
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In Merton’s structural models, further work could be done by adding stochas-
tic volatility and/or statistical risk free rater ( tr s′ ) to the model. This model if re-
searched will allow for flexibility and accuracy to capture environments where 
the firm’s asset volatility is stochastic, asset returns can jump, and asset shocks 
are non-normal. As a result, this model will also provide estimates of daily asset 
returns and asset volatility. 

The issues of multiple defaults and default correlation are very relevant for 
risk management, financial mathematicians credit derivatives, and credit analy-
sis. There will be need in the future to extend Merton [1] framework to accom-
modate multiple defaults. The aim is to present a simpler and unified framework 
for computing single and joint default probabilities for more than two firms in 
closed form. The results are relevant for various financial and credit applica-
tions. The Bivariate Normal Probability Integral can be seen as presented by 
Smith [15] as follows 

X, Y both normal random variables with mean 0 and unit variance  

( ) ( )
2 2

2
2

2 1

2

1, , e d d
2 1

u v uv

x y
x y u v

ρ

ρ
ρ

ρ

+ −
−

−

−∞ −∞
Φ =

−π
∫ ∫  

Also  

( ) ( )
2 2

2
2

2 1

2

1, , e .
2 1

u v uv

u v

ρ

ρ
ρ

ρ

+ −
−

−
Φ =

−π
 

Some uses of this model is 
European option on an asset with a known dividend payable before expiration 

(bivariate, Roll-Geske-Whaley). Explicit formulas, such as the two quoted im-
mediately above, are useful as control variates for variance reduction in Monte 
Carlo simulations used to calculate the value of exotic options. Rainbow options 
(bivariate, trivariate, multivariate, Ouwehand-West). A rainbow option is ex-
posed to two or more sources of risk, such as natural resource deposits (price 
and quantity are random). Often these are calls or puts on the best or worst as-
sets in a portfolio of stocks and are heavily dependent on correlation. 

Another area that should be considered for further research is the change of 
hazard rates (default intensities) from risk neutral to using equity (Merton’s) [4] 
to historical and vice versa. This is worth taking a closer look at as it will ease the 
transformation of calculations done on hazard rate using risk neutral, equity 
pricing, or historical data. 

Finally, more work could be done on making debt stochastic and possibly de-
faulting before time T. Finger [16] in his paper proposed that the stochastic in-
tensity model stipulates that in a given small time interval, assets default inde-
pendently, with probability proportional to a common default intensity. In the 
next time interval, the intensity changes, and defaults are once again indepen-
dent, but with the default probability proportional to the new intensity level. The 
evolution of the intensity is described through a stochastic process. In practice, 
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since the intensity must remain positive, it is common to apply similar stochastic 
processes as are utilized in models of interest rates. This could is a very interest-
ing work and could serve as basis for more work in the future. 
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