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Abstract 
In this paper, by virtue of separation theorems of convex sets and scalariza-
tion functions, some minimax inequalities are first considered. As applica-
tions, some existence theorems of vector equilibrium problems with different 
order structures were also obtained. 
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1. Introduction 

It is known to all that the Ky Fan minimax theorem acts a significant role in 
many fields ([1]). There are massive articles to study Ky Fan minimax inequa-
lity problems for vector-valued mappings and set-valued mappings. Chen [2] 
proved some Ky Fan minimax inequalities under some different assumptions. 
Zhang and Li [3] obtained two types of vector set-valued various minimax 
theorems by applying a fixed point theorem. Zhang and Li [4] investigated 
three types of Ky Fan minimax inequalities by using Ky Fan section theorem 
and KFG fixed point theorem. However, the domain assumptions of objection 
function of these results obtained were convex. Gao [5] investigated some 
matrix inequalities for the Fan product and the Hadamard Product of Ma-
trices. 

The number of papers about Ky Fan minimax inequalities for vector (set)- 
valued mappings with nonconvex domain assumption is very small. Motivated 
by these works, we establish some new vector various Ky Fan minimax inequali-
ties with nonconvex domain structure. At the same time, we obtain some exis-
tence results. 
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2. Preliminaries 

Let V be a topological sapces with Hausdorff structure, and P be a cone with 
pointed closed convex structure. We give the signs: 

1) if b∈Λ , intb b P′∉ − , b′∀ ∈∆ , then b is weakly minimal element in Λ; 
2) if b∈Λ , intb b P′∉ + , b′∀ ∈∆ , then b is weakly maximal element in Λ. 

The marginal set-valued functions ( )0 ,wMin K X y  and ( )0,wMax K x X  are 
u.s.c. and closed-valued in the setting of continuity of K and compactness of 

0X .  
Definition 2.1 Ref. [6] Let :K X V→ . 
K is said to P-u.s.c. if v X∀ ∈ , intp P∈ , vU∃  of v s.t. 

( ) ( ) int , .vK d K x p P d U∈ + − ∀ ∈  

K is P-l.s.c. if −K is P-u.s.c. 
Clearly, if K is P-u.s.c., then *p K  is u.s.c., { }* *p P θ∈ . 
Lemma 2.1 Let 0X  be compact and 0:K X V→ , { }* *p P θ∈ . 
(i) If K is P-l.s.c., then the weakly minimal element of ( )0K X  is nonempty. 
(ii) If K is P-u.s.c., then the weakly maximal element of ( )0K X  is nonempty. 
Proof. (i) Let { } { }{ }* * * * *: ( ) 0,p P p V p p p Pθ θ∈ = ∈ ≥ ∀ ∈ . 
There exists 0v X∈  such that 

( )( ) ( )( )0

* *min .b Xp K v p K b∈= ∪  

Thus, by the assumption of *p , we have 

( ) ( )
0

.w b XK v Min K b∈∈ ∪  

(ii) Similar way of (i). 

3. Vector Various Ky Fan Minimax Inequalities 

Theorem 3.1 Let 0X  be compact. 
(i) If t∀ , ( ),K t⋅  is P-l.s.c.; s∀ , ( ),K s s  is P-l.s.c.; K is P-convexlike in f.v. 

and K is P-concavelike in its s.v., then 0 0t X∃ ∈  s.t. 

( ) ( )( )00 0, , .w w s XMin K X t co Min K s s P∈⊆ ∪ +  

(ii) If s∀ , ( ),K s ⋅  is P-u.s.c.; s∀ , ( ),K s s  is P-u.s.c.; K is P-concavelike 
in f.v. and K is P-convexlike in s.v., then 0 0s X∃ ∈  s.t. 

( ) ( )( )00 0, , .w w s XMax K s X co Max K s s P∈⊆ ∪ −  

Proof. (i) Let ( )( )0

*min ,s X p K s sα ∈< ∪ . Define the multifunction G by the 
formula 

( ) ( )( ){ }*
0 0: : , , .G y s X p K s t y Xα= ∈ ≤ ∈  

Since ( ),K t⋅  is P-l.s.c. and Lemma 2.1, G is closed-valued, for each 0s X∈ . 
We claim that 

( )
0

.
t X

G t
∈
∩ = ∅                           (1) 
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Indeed, if not, then there exists 0 0s X∈  such that ( )
0

0 t X
s G t

∈
∈ ∩ . Namely,  

( )0s G t∈ , 0t X∀ ∈ . Particularly, taking 0t s= , we have that 

( )( ) ( )( )0

* *
0 0, min , .s Xp K s s p K s sα ∈≤ < ∪  

Hence (1) holds. Thus, s∀ , 

( ) ( )( )0
0

0 0 .t Xt X
s X G t X G t∈∈
∈ ∩ = ∪  

Namely, ( )( )00 0t XX X G t∈= ∪ . Since X0 is compact and G is closed-valued, 
there is a finite subset { }1 2 0, , , nt t t X⊆�  such that 

( )( )0 1 0 .i n iX X G t≤ ≤= ∪  

By virtue of G, 0s X∀ ∈ , { }1,2, ,i n∃ ∈ �  s.t. 

( )( )* , .ip K s t α>  

Then, we let 

( ) ( )( ){ }1 *
1 2 0, , , , : , , , 1, 2, , .n

n i iM u u u r R s X p K s t r u i n+= ∈ ∃ ∈ ≤ + =� �  

Clearly, M is a convex set in 1nR + . In fact, let 

( ) ( )1 2 1 2, , , , , , , , ,n nu u u r u u u r M′ ′ ′ ′ ′′ ′′ ′′ ′′ ∈� �  

and [ ]0,1l∈ . Thus, 0,s s X′ ′′∃ ∈  s.t. 

( )( ) ( )( )* *, , , , 1, 2, , .i i i ip K s t r u p K s t r u i n′ ′ ′ ′′ ′′ ′′≤ + ≤ + ∀ = �  

By assumptions, 0 0s X∃ ∈  s.t. 

( )( ) ( )( ) ( ) ( )( )
( ) ( )

* * *
0 , , 1 ,

1 1 , 1,2, , .
i i i

i i

p K s t lp K s t l p K s t

lr l r lu l u i n

′ ′′≤ + −

′ ′′ ′ ′′≤ + − + + − = �
 

Namely, 

( ) ( )( )1 2 1 2, , , , 1 , , , , .n nl u u u r l u u u r M′ ′ ′ ′ ′′ ′′ ′′ ′′+ − ∈� �  

By the assumption of α, we have ( ), Mθ α ∉ . Next, by using separation theo-
rem of convex sets, there exists ( ) { }1

1 2, , , , n
ne e e q R θ+∈�  such that 

( )1 2
1

, , , , , .
n

i i n
i

e z qr qa z z z r M
=

+ ≥ ∀ ∈∑ �                (2) 

Letting iz →∞  and r →∞ , by (2), we have 0ie ≥  and 
0q ≥ , 1,2, ,i n∀ = � . By the assumption of α and the definition of M, 

( )( )*
01

max , ,ii n
p K s t s Xα

≤ ≤
< ∀ ∈  

and 

( )( )( )*

1
,1 max , int .ii n

p K s t Mθ
≤ ≤

+ ∈  

Thus, 0q ≥ . Since 

( )( ) ( )( ) ( )( )( )* * *
1 2, , , , , , , , ,np K s t t p K s t t p K s t t t M t R− − − ∈ ∀ ∈�  

by (2), 
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( )*

1 1
,

n n

i i i
i i

e p K s t q e t qα
= =

 + − ≥ 
 

∑ ∑  

Namely, 

( )( )*

1 1
, 1 .

n n
i i

i
i i

e e
p K s t t

q q
α

= =

 
+ − ≥ 

 
∑ ∑  

By the arbitrariness of t, we have that 
1

1
n

i

i

e
q=

=∑ . Because K is P-concave like  

in its second variable, 0 0s X∃ ∈  s.t. 

( )( ) ( )( )* *
0 0

1
, , , .

n
i

i
i

e
p K s t p K s t s X

q
α

=

≥ ≥ ∀ ∈∑  

Then, we have that 0 0s X∃ ∈  such that 

( )( ) ( )( )0

* *
0min , min , .s Xp K X t p K s s∈≥ ∪              (3) 

Since ( ),K s s  is P-l.s.c., the weakly minimal element of ( )
0

,s X K s s∈∪  is non- 
empty. 

Suppose that v V∈  and ( )( )0
,w s Xv co Max K s s P∈∉ ∪ + . Namely, 

( ) ( )( )0
, .w s Xv P co Min K s s∈− ∩ ∪ = ∅  

Then, by the strong separation theorem of convex sets, there exists a linear-
continuous function *p θ≠  such that 

( ) ( ) ( )( )0

* * , , , .w s Xp v p p c c co Min K s s p P∈− < ∀ ∈ ∪ ∈         (4) 

By (4), letting p θ= , 

{ }* *p P θ∈  

and 

( ) ( ) ( )( )0

* * , , .w s Xp v p c c co Min K s s∈< ∈ ∪  

By assumptions, there is 1 0s X∈  s.t. 

( )( ) ( )( )0

* *
1 1min , , .s X p K s s p K s s∈∪ =  

Then, 

( ) ( ) ( )( )0 01 1, , , .w s X w s XK s s Min K s s co Min K s s∈ ∈∈ ∪ ⊆ ∪  

By (3), 0 0s X∃ ∈  such that 

( ) ( )( ) ( )( )0

* * *
0 0min , min , .s Xp v p K s s p K X s∈< ∪ ≤  

Thus, 

( )0 0, .v K X t P∉ +  

Then, 

( )0 0, .wv Min K X s∉  

By the assumption of v, we have that 
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( ) ( )( )00 0, , .w w s XMin K X t co Min K s s P∈⊆ ∪ +  

Remark 3.2 In Theorm 3.1, 0X  can be nonconvex set. Hence, the result is 
differents from ones in [2] [3] [4]. 

4. Applications 

In the following, the vector equilibrium problem and lexicographic vector equi-
librium problem are considered: Let 0 0:K X X V× → . 

(VEP) find 0t X∈  such that 

( ) { } 0, , .K s t P s Xθ∉− ∀ ∈  

Let V be ( )2nR n ≥ ; { }1,2, ,I n= � . The lexicographic cone of Rn is defined: 

{ } { }: s.t. 0; no s.t. 0 .n
lex n i n jP p R i I p j I pθ= ∪ ∈ ∃ ∈ > ∃ ∈ ≠  

(LVEP) find 0t X∈  such that 

( ) 0, , .lexK s t P s X∈ ∀ ∈  

Theorem 4.1 Assume that 0X  is compact and: 
(i) t∀ , ( ),K t⋅  is P-l.s.c.; 
(ii) K is P-convexlike in f.v. and K is P-concavelike in s.v.; 
(iii) ( )( ) { }{ }0

,s Xco K s s V P θ∈∪ ⊆ − . 

Then, 0t X∃ ∈  which is a solution of VEP. 
Proof. By applying vector various minimax inequality, 0t X∃ ∈  s.t. 

( ) ( )( )00 0, , .w w s XMin K X t co Min K s s P∈⊆ ∪ +  

Then, 

( ) ( ) { }0 0 0, , int .wK X t Min K X t P θ⊆ + ∪  

Thus, 

( ) ( )( )0 0, , , .s XK s t co K s s P s X∈∈ ∪ + ∀ ∈  

By assumption (iii) and { } { }P V P V Pθ θ+ − = − , 

( ) { } 0, , .K s t P s Xθ∉− ∀ ∈  

By virtue of the above vector various Ky Fan minimax theorem, we can obtain 
the existence result in the general conditions, which is to verify easily than ones 
in the literatures. 

Theorem 4.2 Assume that X0 is compact and: 
(i) t∀ , ( ),K t⋅  is P-l.s.c.; 
(ii) K is P-convexlike in f.v. and K is P-concavelike in s.v.; 
(iii) ( )( )0

,s X lexco K s s P∈∪ ⊆ . 

Then, there is 0t X∈  which is a solution of LVEP. 
Proof. Similar to the proof of Theorem 4.1 and n

lex lexP R P++ = , one can show 
that the result holds as well. 
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5. Concluding Remark 

We obtain some new vector various Ky Fan minimax inequalities in the setting 
of nonconvex domain. As applications, we obtained some existence results for 
VEP and LVEP with nonconvex domain assumptions, respectively. These results 
improve and generalize the relevant ones in the papers. 
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