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Abstract 
In this paper, we investigate the dynamic properties of an SIR epidemic mod-
el with saturated growth rate. Under the conditions of an arbitrary initial value, 
we prove that the system exists unique positive solution, and give the sufficient 
conditions caused by random environmental factors leading to the extinction 
of infectious diseases. Moreover, we verify the conditions for the persistence 
of infectious diseases in the mean sense. Finally, we provide the biology in-
terpretation and some strategies to control the infectious diseases. 
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1. Introduction 

Since Kennack and McKendrick proposed the SIR model in 1927 (see [1]), the 
epidemic model has been well developed. SIR epidemic models play an impor-
tant role in revealing the laws of infectious disease spread and providing a theo-
retical basis for prevention and control of the diseases [1] [2] [3] [4]. 

In 2013, Gong and Yang studied the following SIR epidemic model with satu-
rated growth rate in [5], 
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where ( ) ( ) ( ), ,S t I t R t  represent the numbers of susceptible, infected and re-
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covered individuals at time t respectively. r is the intrinsic natural growth rate, K 
is the environmental carrying capacity, β  is the infection rate of the infectious 
disease, c is the recovery rate, d is the natural mortality rate, µ  is the removal 
rate, α  is the psychological effect coefficient, that is, when the susceptible people 
know that the infected person is infected, he will take corresponding measures to 
affect the incidence. All parameters in the system are positive. 

Since the first two equations of System (1) are independent of the third equa-
tion, it is sufficient to consider the first two equations of (1). So, we study the 
following simplified model 
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In System (2), the basic reproductive number 
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When 0 1R < , the disease-free equilibrium is asymptotically stable, which 
means that the epidemic will disappear; when 0 1R > , the disease-free equili-
brium is unstable, and there is an endemic equilibrium that is globally asymp-
totically stable, which means that the epidemic will prevail and persist in the 
population. 

In real life, environmental noise is ubiquitous. It is very important to study the 
impact of environmental noise on the spread of infectious diseases in the pre-
vention and control of infectious diseases. In [6], Wang pointed out that every 
parameter in the epidemic model may be randomly perturbed by the environ-
ment, which behaves as a random fluctuation. For example, the contact rate and 
the disease mortality rate in the epidemic model are randomly disturbed by ex-
ternal factors such as age, gender, constitution, mood, climate and season of the 
individual. Compared with the deterministic model, that with environmental noise 
can provide additional realism because deterministic model does not take into 
account these random factors and can only roughly reflect the real situation of 
infectious diseases to some extent. The research on random model can also be 
referred to the article [7]-[13]. 

Inspired by the ideas in the work of [5] [8] [9] [10], we consider the System 
(2) with a random interference in this paper. We assume that the parameter β  
is affected by white noise, so, the random driving force of Brownian motion is 
introduced into the System (2) as a random factor, that is, β  is replaced with 

( )B tβ σ+  where ( )B t  represents Brownian motion and 2σ  represents the 
intensity of Brownian motion. After added a random term, the system (2) is de-
scribed by 

https://doi.org/10.4236/jamp.2022.107148


Y. T. Lu et al. 
 

 

DOI: 10.4236/jamp.2022.107148 2166 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

d 1 d d ,
1 1

d d d .
1 1

S t S t I t S t I t
S t rS t cI t dS t t B t

K S t S t

S t I t S t I t
I t d c I t t B t

S t S t

β σ
α α

β σ
µ

α α

   
= − − + − −   

+ +    


  = − + + +  + +  

 (3) 

The arrangement of this paper is as follows. In Section 2, we study the exis-
tence of a unique positive solution of System (3) for any positive initial value and 
then prove that the positive solution stays in 2R+  with probability 1. In Section 
3, we establish the sufficient conditions for the extinction of the infectious dis-
eases. In Section 4, we give the conditions for the persistence of the infectious 
diseases in the mean value. Finally, we give some biological explanations and pre-
vention and control measures for the epidemic. 

2. The Existence and Uniqueness of Positive Solution of  
System 

We first give the following notations and definitions. ( ), ,F PΩ  is a complete 
probability space, { }:tF t R+∈  is a σ  algebraic current on ( ), ,F PΩ  satisfy-
ing the usual conditions.  

Definition 1 (Locally Lipschitz condition).Function : nf R R→  is said to be 
locally Lipschitz continuous if there is positive constants L and r such that for 

( ), ,x x O rξ′′ ′∀ ∈ , there is ( )f x x L x x′′ ′ ′′ ′− ≤ − , where nRξ ∉ . 
Definition 2 (Blow-up time). If the solution of the equation exists in region 

( )00, tΩ× , but does not exist in region ( )00, t εΩ× +  for an arbitrarily small 
constant 0ε > , then 0t  is called the blow-up time of the solution of the equa-
tion. 

Definition 3 (Stopping time). If a function { }: Tτ Ω → ∞∪  satisfies condi-
tion { } tt Fτ ≤ ∈ , t T∀ ∈ , then τ  is called a stopping time. 

Remark 1. It is necessary to allow τ  to get ∞ . For example, If  
{ }inf : tt T X Bτ = ∈ ∈ , where B is any given Borel set, and τ  can be regarded 

as the first arrival time of tX  into B or the first exit time of CB , then  
,tX B t Tτ = ∞ ⇔ ∉ ∀ ∈ .  

Remark 2 Obviously, tτ ≡  (constant time) is a stopping time, which is a 
generalization of time. 

Definition 4 (Ito Formula). Let ( ) ( )1,2, dV t x C R R+∈ × ,  

( ) ( ) ( ) ( ) ( )0 0
d d

t t

o
x t x t f s s g s w s= + +∫ ∫ , t J R+∈ ⊂  

where ( )1 , df L J R∈ , ( )2 , d mg L J R ×∈ , then ( )( ),V t x t  is a Ito-process, and  
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+

 

Since ( )S t  and ( )I t  in System (3) represent the size of the susceptible and 
infected populations at time t respectively, they must be nonnegative. We first 
give the result for System (3) having a global positive solution. 

https://doi.org/10.4236/jamp.2022.107148


Y. T. Lu et al. 
 

 

DOI: 10.4236/jamp.2022.107148 2167 Journal of Applied Mathematics and Physics 
 

Theorem 1 For any initial value ( ) ( )( ) 20 , 0 RS I +∈ , System (3) has a unique 
positive solution for ( )0,t ∈ +∞  and the solution stays in 2R+  with probability 
1, i.e., ( ) ( )( ) 2, RS t I t +∈  is almost sure for ( )0,t ∈ +∞ . 

Proof Since the coefficients of System (3) are locally Lipschitz continuous, for 
any initial value ( ) ( )( ) 20 , 0 RS I +∈ , System (3) has a unique local solution  

( ) ( )( ) 2, RS t I t +∈ , ( )0, at τ∈ , where aτ  is the blow-up time (see [10]). In or-
der to prove that the above local solution is global, it is only necessary to prove 

aτ = ∞  a.s. Therefore, the stopping time τ ∗  is defined as  
( ) ( ) ( ){ }inf 0, : 0, 0at S t I tτ τ∗ = ∈ ≤ ≤ . From the definition of stopping time, we 

can see that, if τ ∗ = ∞  a.s. can be proved, then when 0t > , aτ = ∞  a.s. and  
( ) ( )( ) 2, RS t I t +∈  a.s. Assume τ ∗ < ∞ , then there exists a constant 0T >  such 

that { } 0P Tτ ∗ < > . 
Defining the C2 function 2: RV R+ →  satisfying ( ) ( )( ) ( ) ( ), lnV S t I t S t I t=  

and using the Ito formula (see [10]), for { }Tβ τ ∗∈ <  and ( )0,t τ ∗∈ , we have: 
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Here 1 1Sα+ ≥ , therefore, we obtain 
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Let ( ) ( ) 2 2 2 21 1, 2
2 2

F S I I d c I Sβ µ σ σ= − − + + − − , then we can get 
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1 1

I t S t
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Integrating both sides of inequality (4) from 0 to t, we have 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( )

0 0
, 0 , 0 , d d .
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t t S u I u
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+∫ ∫  (5) 
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Assume that ( ) ( )( ) ( ), 0,0S Iτ τ∗ ∗ = , because ( ) ( )( ) ( ) ( ), lnV S t I t S t I t= , and 
from the definition of the stopping time, we know that ( ) ( )( )lim ,

t
V S t I t

τ ∗→
= ∞ .  

Letting t τ ∗→  in inequality (5), we get: 

( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( )

0 0
0 , 0 , d d

1
S u I u

V S I F S u I u u B u
S u

τ τ
σ

α

∗ ∗ −
∞ ≥ + + > ∞

+∫ ∫  

This is a contradiction with the assumption τ ∗ < ∞ . Therefore, τ ∗ → +∞ , 
which also proves that ( )S t  and ( )I t  will not blow up in finite time and with 
probability 1. We obtain the forward invariant set of System (3) 

( ), : 0, 0, 1 .dS I S I S I K
r

  Ψ = > > + ≤ −  
  

 

In the following, it is enough to consider the solution of System (3) in Ψ . 

3. Sufficient Conditions for Extinction of Infectious Diseases 

Before giving the extinction theorem, we give a lemma which can be found in 
[10]. 

Lemma 1 Let ( )M t  ( 0t ≥ ) be a locally continuous martingale with initial 
value ( )0 0M =  and ( )M t  be a quadratic variation of ( )M t . Let 1δ >  and 

,n nν τ  be two sequences of positive terms. Then, for almost all w∈ Ω , there ex-
ists a positive integer ( )0 0n n w=  such that for any 0n n≥ , we have 

( ) ( ) ( )1 ln, ,0 .
2 n n

n

nM t M t M t tδν τ
ν

≤ + ≤ ≤             (6) 

Theorem 2 Let ( ) ( )( ),S t I t  be a solution of System (3) with initial value  
( ) ( )( )0 , 0S I ∈ Ψ , we have 
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Proof Applying I to formula to the System (3), we have 
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Integrating both sides of (8) from 0 to t 
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where ( ) ( )
( ) ( )
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+∫  is a locally continuous martingale with qua-

dratic variation: 
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Taking 2δ = , 0nν ν= >  and n nτ =  in Lemma 1, for almost all w∈ Ω , 
there exists a positive integer ( )0 0n n w=  such that for any 0n n≥ , we have 
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        (13) 

From (12) and (13), we get 
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nI t I d c tβ µ
νσ ν

 
< + − + + +  − 

        (14) 

Therefore, for 1n t n− ≤ ≤ , by dividing t on both sides of inequality (14), we 
obtain 
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Let n → +∞ , thus t → +∞ , we have 
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( )

( )
2

2

ln
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2 1t

I t
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σ ν→+∞
< − + +

−
            (16) 

Let 0ν → , then we have 
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( ) ( )
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2t

I t
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β µ
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< − + +                  (17) 

If ( )
2

22
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< + +  holds, we get ( )lim 0
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→+∞
=  a.s. From system (3), 
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    + = + − −   

     
∫       (19) 

where C is any arbitrary constant. By (19) there is 
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0

lim lim e 1 e d .
tdt dt
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S u
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    + = + − −   
     

∫  

Applying L’Hopital’s rule and ( )lim 0
t

I t
→+∞

= , we have ( )lim 1
t

dS t K
r→+∞

 = − 
 

  

almost everywhere. 

4. Persistence of Infectious Diseases in the Meansense 

Definition 5. If ( )
0

1lim inf d 0
t

t
I u u

t→+∞
>  ∫  a.s., then System (3) is persistent in the  

mean sense (see [8]). 
Theorem 3. If 

2

0 0

1
1 1,
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dK
rR R
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  −    = − >
 
 
 

                     (20) 

then for any initial value ( ) ( )( )0 , 0S I ∈ Ψ  the solution of System (3) has the 
following properties 

( )
( )( ) ( )

( )

0

0

1 1 1
1lim inf d

t

t

dd r d c K R
r

I u u
t d

µ α

β µ→+∞

  − + + + − −    >
+∫  a.s.  (21) 

Proof By using the Newton-Leibniz formula, from the System (3) we obtain 

( ) ( ) ( ) ( )
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2
0 0 0

0 0

0 0

d d d

d d .

t t t
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S t S I t I
rr S u u S u u c I u u
K

d S u u d c I u uµ

− + −
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− − + +

∫ ∫ ∫

∫ ∫

                (22) 

Dividing both sides of inequality (22) by t, we get 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2
0 0 0

0 0

2
0 0

0 0

d d d

d d

d d d .

t t t

t t

t t t

o

S t S I t I
t t

r r cS u u S u u I u u
t tK t

d d cS u u I u u
t t

r d r dS u u S u u I u u
t tK t

µ

µ

− −
+

= − +

+ +
− −

− +
= − −

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

         (23) 

So, we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
0 0 0

0

1 d d d

11 d

t t t

t

r dS u u t S u u I u u
t tK r d t r d

d dK I u u t
r r d t

µφ

µ φ

+
= + +

− −

+ ≤ − + +  − 

∫ ∫ ∫

∫
    (24) 

where ( ) ( ) ( ) ( ) ( )0 01 S t S I t I
t

r d t t
φ

− − 
= + 

−  
. 

Applying the Itoformula, there is 

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2

2
2 2

d ln

d d
2

1
1 d

2

d .

I t S t

S t
S t d c d c S t t S t B t

dK
d rS t d c K d c t
r

S t B t

α

σ
β µ α µ σ

σ
β µ α µ

σ

+

 
= − + + − + + − + 

  

  −      ≥ − + + − − + + −   
 
 

+

 (25) 

Integrating both sides of inequality (25) from 0 to t, we get 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

2
2 2

0

ln ln 0 0

d 1

1
d

2

t

t

I t I S t S
t t

dS u u d c K d c
t r

dK
r S u B u

t

α

β µ α µ

σ
σ

− −
+

 ≥ − + + − − + + 
 

 − 
 − +

∫

∫

         (26) 

Substituting (24) into (26) yields 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

2
2 2

0

ln ln 0 0

11 d

1
1 1 d

2

t

t

I t I S t S
t t

ddK I u u t
r d r t

dK
d rK d c S u B u
r t

α

β µ
β βφ

σ
σα µ

− −
+

+ ≥ − − +  − 

 −     − + − + + − +  
  

∫

∫
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( )

( ) ( ) ( ) ( ) ( )

2
2 2

0 0

1
1 1 1

2

1 d d .
t t

dK
d d rK K d c
r r

d
I u u t S u B u

d r t t

σ
β α µ

β µ σβφ

 −       = − − + − + + −    
    

+
− + +

− ∫ ∫

 

Therefore 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

00

1 d 1 1 1

ln ln 0 0

t d r dI u u R d u c K t
t d r

N t I t I S t S
t t t

α βφ
β µ

α

−   ≥ − + + + − +   +   
− − 

+ − − 


∫
   (27) 

where ( ) ( ) ( )
0

d
t

N t S u B uσ= ∫ , ( )N t  is locally continuous martingale with ini-
tial value ( )0 0N = , and  

( ) ( )
( ) ( )

2
2 2

0

,
lim sup 1 d

t

t

N t N t dK S u B u
t r

σ σ
→+∞

 ≤ − < +∞ = 
  ∫  a.s. From the  

law of large numbers for martingales (see [10]), we obtain 
( )

lim 0
t

N t
t→+∞

=  a.s. By 

Theorem 1, we have ( )ln ln 1 dI t K
r

 −∞ < < − 
 

 and ( )lim 0
t

tφ
→+∞

=  a.s., then  

from (27), we have 

( )
( )( ) ( )

( )

0

0

1 1 1
1lim inf d .

t

t

dd r d c K R
r

I u u
t d

µ α

β µ→+∞

  − + + + − −    ≥
+∫  

Therefore, the infectious diseases are persistent in the sense of mean value. 
Remark 1 Theorem 3 shows that under some conditions, the infected popula-

tion is persistent on average, so it can be verified that the persistence of the sus-
ceptible population is weak, in fact,  

( )
( ) ( )0

0

1 1 1
1lim sup d 1

t

t

dd c K R
rdS u u K

t r

µ α

β→+∞

  + + + − −      ≤ − − 
 ∫  a.s.  

5. Biology Interpretation and Control Measures 

From Theorem 1 and Theorem 3, we know that the System (3) is persistent only 
under the condition of the basic reproduction number 0R  being greater than 1. 
In order to control the spread of infectious diseases, we must adopt some strate-
gies to make it small enough during the spread of infectious diseases. Specific con-
trol measures are as follows. 

1) To strengthen the control of the source of infection, the relevant public health 
departments should take all measures to control the source of infection. For ex-
ample, during the outbreak of infectious diseases, designated hospitals should be 
determined for centralized treatment to strictly prevent the spread of the disease 
and reduce the infection rate, so as to achieve the purpose of controlling the spread 
of infectious diseases; 
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2) To establish a direct network reporting system for infectious diseases, timely 
detection, timely reporting, timely treatment of infectious diseases, reduce the 
impact of psychological effect coefficient α  on the control of the spread of in-
fectious diseases; 

3) To control the size of the intensity of Brownian motion 2σ  to ensure 

0 1R < . 
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