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Abstract 
In this paper, we deal with a class of generalized Kirchhoff-Beam equations. 
At first, we take advantage of Hadamard’s graph to get the equivalent form of 
the original equations. Then, the inertial manifolds are proved by using spec-
tral gap condition. We gain main result is that the family of inertial manifolds 
are established under the proper assumptions of nonlinear terms ( )M s  and 

( )N s . 
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1. Introduction 

This paper mainly deals with existence of a family of inertial manifolds for a 
class generalized Kirchhoff-Beam equations. 
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p pm mm m m

tt t tp p
u u M D u u u N D u u f xβ α+ −∆ + + ∆ + −∆ =    (1) 
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where 1m >  is a positive integer, Ω  is the bounded region in nR  with smooth 
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relevant assumptions will be given later.  
Yuhuan Liao, Guoguang Lin, Jie Liu [1] has studied the existence and uni-

queness of global solutions and the existence for of a family global attractors and 
estimate its Hausdorff dimension and Fractal dimension for the problems (1)- 
(3). 

As well as we known, it is significant to establish inertial manifolds for the 
study of the long-time behavior of infinite dimensional dynamical systems. Be-
cause it is an important bridge between infinite-dimensional dynamic system 
and finite-dimensional dynamical system. In this article, we first take advantage 
of Hadamard’s graph to transform problem (1)-(3) into an equivalent one-order 
system of form. Then, we proved the family of inertial manifolds by using spec-
tral gap condition. 

To better carry out our work, let’s recall some results regarding wave equa-
tions. 

Jingzhu Wu and Guoguang Lin [2] studied the following two-dimensional 
strong damping Boussinesq equation while 2α > : 

( ) ( )2 1 , , , ,k
tt tu u u u f x y x yα +− ∆ − ∆ + = ∈Ω  

( ) ( ) ( )0, ,0 , , , ,u x y u x y x y= ∈Ω  

( ) ( ) ( ) ( ), , , , , , 0, , ,u x y t u x y t u x y t x yπ = =π= + + ∈Ω  

where ( ) ( )0, 0, R Rπ πΩ = × ⊂ × , 0t > . They obtained result that is existence 
of inertial manifolds. 

Guigui Xu, Libo Wang and Guoguang Lin [3] investigated the strongly damped 
wave equation: 

( ) ( ) ( )2 , , , ,tt tu u u u g u f x t x t Rα β γ +− ∆ + ∆ − ∆ + = ∈Ω×  

( ) ( ) ( ) ( )0 1,0 , ,0 , ,tu x u x u x u x x= = ∈Ω  

( )0, 0, , .u u x t R+
∂Ω ∂Ω

= ∆ = ∈∂Ω×  

They gave some assumptions for the nonlinearity term ( )g u  to satisfy the 
following inequalities: 

(A1) 
( )
2lim inf 0

s

G s
s→∞

≥ , s R∈ , ( ) ( )
0

d
s

G s g r r= ∫ . 

(A2) There is positive constant 1C  such that 
( ) ( )1

2lim inf 0
s

sg s C G s
s→∞

−
≥ ,  

s R∈ . 
According to the above assumptions, they proved the inertial manifolds by 

using the Hadamard’s graph transformation method. 
Ruijin Lou, Penhui Lv, Guoguang Lin [4] considered a class of generalized 

nonlinear Kirchhoff-Sine-Gordon equation: 

( ) ( ) ( )2 sin ,tt t tu u u u u g u f xβ α φ− ∆ + − ∇ ∆ + =  

( ), 0, , 0,u x t x t= ∈Ω ≥  
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( ) ( ) ( ) ( )0 1,0 , ,0 , .tu x u x u x u x x= = ∈Ω  

Under some reasonable assumptions, they obtained some results that are squee- 
zing property of the nonlinear semigroup associated with this equation and the 
existence of exponential attractors and inertial manifolds. 

Lin Chen, Wei Wang and Guoguang Lin [5] studied higher-order Kirchhoff- 
type equation with nonlinear strong dissipation in n dimensional space: 

( ) ( )( ) ( ) ( )2 , , 0, 1,m m
tt tu u u u g u f x x t mφ+ −∆ + ∇ −∆ + = ∈Ω > >  

( ), 0, 0, 1, 2, , 1, , 0,
i

i

uu x t i m x t
v
∂

= = = − ∈∂Ω >
∂

�  

( ) ( ) ( ) ( )0 1,0 , ,0 .tu x u x u x u x= =  

For the above equation, they made some suitable assumptions about ( )sφ  
and ( )g u  to get existence of exponential attractors and inertial manifolds. More 
information on inertial manifolds can be found in the literature [6] [7] [8] [9]. 

2. Preliminaries 

The following symbols and assumptions are introduced for the convenience of 
statement: 

( ) ( ) ( ) ( ) ( )
( )

2 2 1 2 1
0 2 0 2 0

0 2 0 2

, , ,

, , 0,1, 2, , 2

m m k
m m k

m k m k k

V L V H H V H H

E V V E V V k m

+
+

+

= Ω = Ω ∩ Ω = Ω ∩ Ω

= × = × = �
 

The inner product of the ( )2L Ω  space is ( ) ( ) ( ), du v u x v x x
Ω

= ∫  and the  

norm is ( )( )2

1
2 2dLu u u x x

Ω
= = ∫ . The norm of ( )pL Ω  space is called  

( )pp Lu u
Ω

= . 
Definition 1 [10] Assuming ( )( ) 0t

S S t
≥

=  is a solution semigroup on Ba-
nach space 2k m k kE V V+= × , subset k kEµ ⊂  is said to be a family of inertial 
manifolds, if they satisfy the following three properties: 

1) kw  are a finite-dimensional Lipschitz manifold; 
2) kw  is positively invariant, i.e., ( ) , 0, 1, 2 ., 2k kS t w w t k m⊆ ≥ = � ;  
3) kw  attracts exponentially all orbits of solution, that is, for any kx E∈ , 

there are constants 0, 0Cη > >  such that 

( )( ), e , 0.t
kdist S t x w C tη−≤ ≥  

Definition 1 [7] Let :A X X→  be an operator and assume that  
( ),bF C X X∈  

satisfies the Lipschitz condition: 

( ) ( ) , , ,F XX
F U F V l U V U V X− ≤ − ∈  

where ( ) ( ) ( ) ( )2 2
0 0
m mX H H L L= Ω × Ω × Ω × Ω . The operator A is said to satisfy 

the spectral gap condition relative to F, if the point spectrum of the operator A 
can be divided into two parts 1σ  and 2σ , of which 1σ  is finite, and such that, if  

{ } { }1 1 2 2sup Re , sup Re ,λ λ σ λ λ σΛ = ∈ Λ = ∈  
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and 

{ }, 1, 2.i j iX span j iω σ= ∈ =  

Then 

2 1 4 .FlΛ −Λ >  

And the orthogonal decomposition  

1 2 ,X X X= ⊕  

holds with continuous orthogonal projections 1 1:P X X→  and 1 2:P X X→ . 
Lemma 2 [7] Let the eigenvalues , 1j jλ± ≥  be arranged in nondecreasing or-

der, for all m N∈ , there is N m≥  such that Nλ
−  and 1Nλ

−
+  are consecutive. 

Theorem 1 [8] Supose dense positive definite operators A generates 0C -se- 
migroup ( )S t  in detachabie Hilbert space X, ( ),bF C X X∈  meets Lipschitz 
condition, A satifies the spectral condition, then the probrem  

( ) ,tU AU F U U X+ = ∈  has an inertial manifold w X⊂ ,  
( ) ( ){ }1graphw Xφ ξ φ ξ ξ= = + ∈ , where 1 1: X Xφ →  Lipschitz continuous 

function. 

3. Inertial Manifold 

In this section, we use the Hadamard’s graph transformation method to prove the 
existence of inertial manifolds of problem (1)-(3) when N is sufficiently large. 

Equation (1) is equivalent to the following one order evolution equation:  

( ) ,tU U F U+ Λ =                         (4) 

where  

( )
( )22

0
, , , ,t mm

I
U u v v u

α β

− 
= = Λ =   ∆ −∆ 

               (5) 

( ) ( ) ( ) ( )( )

0
,p p mm m

tp p

F U
f x M D u u N D u u

 
 =
 − − −∆
 

       (6) 

( ) ( ){ }22 2 2, .mm k m k kD u H u L u H H+ +Λ = ∈ ∈ −∆ ∈ ×          (7) 

In kE , we denote the usual graph norm, which is introduced by the scalar 
product, we have 

( ) ( ) ( )( ) ( ), , , ,
k

m k m k k k
EU V u y D v D zα + += −∆ −∆ +           (8) 

( ),U u v= , ( ), kV y z E= ∈ , ,y z  respectively express conjugate of ,y z  and  
( )2, , , m ku y v z H +∈ Ω .  

For ( )U D∈ Λ , we have  

( ) ( ) ( )( ) ( ) ( )( )2 2

2

, , ,

0,

k

m k m k m k m k
E

m k

U U v u u v v

D v

α α β

β

+ + + +

+

Λ = − −∆ −∆ + −∆ + −∆

= ≥
 (9) 
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Therefore, the operator Λ  in (5) is monotone, and ( ), EHU U  is a nonneg-
ative and real number. 

To obtain the eigenvalues of Λ , we consider the following eigenvalue equa-
tion: 

( ), , ,kU U U u v EλΛ = = ∈                       (10) 

That is  

( )22

,

.mm

v u

u v v

λ

α β λ

− =

∆ + −∆ =

                      (11) 

The first equation in (11) is brought into the second equation in (11), we get 

( )
( )

22 2 0,

0,

mm

m

u u u

u u

λ α βλ

∂Ω ∂Ω

 + ∆ − −∆ =


= −∆ =

                   (12) 

Let ju  replace u  in (12). And then taking ( )k
ju−∆  inner product, we 

obtain  
2 2 22 2 2 0.k m k m kD u D u D uλ α βλ+ ++ − =              (13) 

When (13) is considered a yuan quadratic equation on λ , we can get  

2 2 4 24
,

2
j j j

j

βµ β µ αµ
λ±

± −
=                    (14) 

where jµ  is the eigenvalue of ( )m−∆  in 2
0

mH , then 0

m
n

j c jµ = . If 2
j

αµ
β

≥ ,  

the eigenvalues of Λ  are all positive and real numbers, the corresponding ei-
genfunction have the form ( ),j j j jU u uλ± ±= − . For (14) and future reference, we 
observe that for all     

1j ≥ , 2m k
j jD u µ+ = , 1k

jD u = , 

2 1 , 1, 2, , 2 .m k
j j

j

D u k mµ
µ

− − = = = �               (15) 

Lemma 3 ( ) ( )( ),
p p mm m

tp p
g M D u u h N D u u= = −∆ , 

then ( ) ( )2
0, : m kg h H H+ Ω → Ω  is uniformly bounded and globally Lipschitz con- 

tinuous. 
Proof. ( )2

1 2 0, m ku u H +∀ ∈ Ω , 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )2

1 1 2 2

1 1 2 1 2 2

1 1 2 2 1 2

1 1 2 1 2 ,m kk

p pm m
t tp p

p pm m m
t t tp p

p pm m m
t t tp p

k t t HH

M D u u M D u u

M D u u u M D D u u u

M D u u u M D u D u u

C u u u u

ζ

ζ

+

∞

∞ ∞

−

′≤ − + −

′≤ − + −

≤ − + −

 

https://doi.org/10.4236/jamp.2022.107147


Y. H. Liao et al. 
 

 

DOI: 10.4236/jamp.2022.107147 2158 Journal of Applied Mathematics and Physics 
 

( )( ) ( )( )

( )( ) ( ) ( ) ( )( )( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

2

1 1 2 2

1 1 2 1 2 2

1 1 2 1 2 2

1 1 2 2 1 2

2 1 2 ,

m m

m k

p pm mm m
p p

p p pm mm m m
p p p

p pm mm m m
p p

p p mm m m
Hp p H

k H

N D u u N D u u

N D u u u N D u N D u u

N D u u u N D D u u u

N D u u u N D u D u u

C u u

ζ

ζ

+

∞

−∆ − −∆

= −∆ − + − −∆

′≤ −∆ − + − −∆

′≤ − + −∆ −

≤ −

 

where 

( ) ( )2
1 1 1 2max , ,

m
p pm m

k tp p
C M D u M D uλ ζ

−

∞ ∞

  ′=  
   

( ) ( ) ( )2
2 1 1 2max , .

m
p p mm m

k p p
C N D u N D uλ ζ

−

∞

  ′= −∆ 
   

Lemma 3 is proved. 

Theorem 2 If 2
j

αµ
β

≤  holds, { }1 2max ,k k kl C C=  is maximum Lipschitz  

constant of ,g h , and if 1N N +∈  is sufficiently large such that when 1N N≥ , 
the following inequality holds: 

( )( )1 1 8 .N N N N klβ µ µ µ µ+ +− + ≥                  (16) 

Then the operator Λ  satisfies the spectral gap condition. 
Proof.  
From (8), ( ) ( ), , , kU u u V v v E= = ∈ , then 

( ) ( ) ( ) ( )( )

( ) ( )( )

.
k

p p mm m
tp p

p p mm m
tp p

k E

F U F V M D u u N D u u

M D v v N D v v

l U V

− = + −∆

− − −∆

≤ −

 

We have F kl l≤ , and take a real component 
2

Re
2

j
j

βµ
λ± = , 

There is 1N , such that 1N N≥ , (16) holds. Spectra decomposition of Λ : 

{ } { }1 2, 1 .j jj N j Nσ λ σ λ± ±= ≤ = ≥ +  

Corresponding space  

{ } { }1 2span , span 1 .k j k jE U j N E U j N± ±= ≤ = ≥ +  

Then 

( )
( )( )

2 1 1

2 2
1 11

Re

2 2
4 .

N N

N N N NN N

Fl

λ λ

β µ µ µ µβµ βµ

− +
+

+ ++

Λ −Λ = −

− +−
= =

>
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Then the operator Λ  satisfies the spectral gap condition. Theorem 2 is 
proved. 

Theorem 3 If 2
j

αµ
β

>  holds, { }1 2max ,kl C C=  is the Lipschtiz constant  

of ,g h . 
Let 1N N +∈  big enough, 1N N≥ , the following inequality holds: 

( )
( ) ( )( )

2 2
1

2 4 ,
21

N N
l

J N J N

αµ µ
α ββ

+ − ⋅ ≥
+ −+ +

 

where ( )
2

4
2

4
N

N
J N

αµ
µ

β
= − .

 

Let 2 2j
α αµ
β β

< < , for { }q kµ µ∈ , such that 2 2q
α αµ
β β

< < , 

( )
( ) ( )( )

2 2
1

2 4 .
1

q q l
J q J q

αµ µ
β

+ − ⋅ ≥
+ +

 

Then for any one case (1) and (2), the operator Λ  satisfies the spectral gap 
condition. 

Proof.  

When 2
j

αµ
β

> , all the eigenvalues of Λ  are real and positive, and we can  

easily know that both sequences { }
1j j

λ−

≥
 and { }

1j j
λ+

≥
 are increasing. 

The whole process of proof is divided into four steps. 
Step 1. Since jλ

±  is arranged in nondecreasing order. According to Lemma 
2, given N such that Nλ

−  and 1Nλ
−
+  are consecutive, we separate the eigenvalue 

of Λ  as 

{ }{ }1 , max , ,j k j k Nσ λ λ λ λ λ− + − + −= ≤  

{ }{ }2 , min , .j k j N j kσ λ λ λ λ λ λ− + − − − ±= ≤ ≤  

Step 2. We make decomposition of kE   

{ }1 1span , , ,k j k j kE U U λ λ σ− + − += ∈  

{ }2 2span , , .k j k j kE U U λ λ σ+ ± − ±= ∈  

In order to make these two subspaces orthogonal and satisfy spectral inequa-
lity 

1 Nλ
−Λ = , 2 1Nλ

−
+Λ = , we further decompose 

2k c RE E E= ⊕ , with 

{ }span ,c j j N jE U λ λ λ+ − − += ≤ <  

{ }span ,R R N RE U λ λ± − ±= <  

1.N c kE E E= ⊕  
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Next, we stipulate an eigenvalue scale product of kE  such that 1kE  and 

2kE  are orthogonal, therefore we need to introduce two functions:  
Let : NE RΦ → , : RE RΨ → . 

( ) ( )( ) ( )
( ) ( )

2 2, , ,

, , ,

m k m k k k

k k k k

U V D u D y D z D u

D v D y D z D v

β α + +Φ = − +

+ +
           (17) 

( ) ( ) ( )
( ) ( )

2 2 2

2

, , ,

, , ,

m K m k k m k

k m k k k

U V D u D y D z D u

D v D y D z D v

β + + +

+

Ψ = +

+ +
           (18) 

where ( ),U u v= , ( ),V y z= , ,y z  respectively are the conjugation of ,y z . 
Let ( ), NU u v E= ∈ , then 

( ) ( )

( )

2 2 2 22

22
1

,

1

m k k k k

k

U U D u D v D u D v

D u

β α

β α µ

+Φ ≥ − − − +

 ≥ − − 

 

Since 1
42 ,
3

α αµ β
β

> ≥  holds, we can know ( ), 0U UΦ ≥ . Therefore, for  

all NU E∈ , analogously, for all RU E∈ , we can get  

( ) ( )
2 2 2 2 22 2 2, 1 .m k k m k k m kU U D u D v D u D v D uβ β+ + +Ψ ≥ − − + ≥ −  

That is ( ), RU u v E= ∈ , ( ), 0U UΨ ≥ .  
From above, we know that for all RU E∈ , then ( ), 0U Uψ ≥  holds. So, we 

define a scale product with Φ  and ψ  in kE . 

( ) ( ), , , ,
k

N N R RE
U V P U P V P U P Vψ= Φ +              (19) 

where ,N RP P  are respectively the projection: k NE E→ , k RE E→ .  
In the inner product of kE  in (19), 1kE  and 2kE  are orthogonal. In fact, 

we need prove that 1kE  and cE  are orthogonal. 
For j CU E+ ∈ , j NU E− ∈ , 

( )
( ) ( ) ( )

2 2 2

, ,

.

j j j jE

m
j j j j j j j

U U U U

u u uβ α λ λ λ λ

+ − + −

− + − +

= Φ

= − −∆ − + +  

According to 
2

1k
jD u = , 

22m k
j jD u µ+ = , 

22 1m k
j

j

D u
µ

− − =  and  

2
j j jλ λ βµ− ++ = , 2

jj jλ λ αµ− + = ,  
then 

( ), , 0.j j j jE
U U U U+ − + −= Φ =  

Step 3. Next, we estimate the Lipschitz constant Fl  of F, 

( ) ( ) ( ) ( )( )( )0,
p p mm m

tp p
F U h x M D u u N D u u

Τ

= − − −∆  

2, : m kg h H H+ →  are globally Lipschitz continuous with maximum. 
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Lipschitz constant l  for arbitrarily ( ), kU u v E= ∈ , we have 
Let 1 1 2 2: , :k k k kP E E P E E→ →  are the orthogonal projection. 

( ) ( ) ( )1 1 1 1 2 2 2 2, , , , , .kU u v E U u v PU U u v PU= ∈ = = = =   

1 1 1 1 2 2 2 2, , , .Pu u Pv v P u u P v v= = = =  

( ) ( ) ( )( )

( )

2 22
1 1 2 2 1

2 2

2

, , 1 1

44 2 2 0.

kE

k k

U PU PU PU PU u Du

D u D u

β α β

αα β α β
β

= Φ +Ψ = − − + −

 
≥ + − − ≥ + − ≥ 
 

��

 

Set ( ) ( )ˆ ˆ, , , kU u v V u v E= = ∈ , 

( ) ( ) ( ) ( )
( )( ) ( )( )

ˆ ˆ

ˆ ˆ

,
2 k

p pm m
t tp p

p pm mm m
p p

k
E

F U F V M D u u M D u u

N D u u N D u u

l
U V

α β

− ≤ −

+ −∆ − −∆

≤ −
+ −

 

Therefore 

.
2

k
F

l
l

α β
≤

+ −
 

Step 4. Now, we need prove the spectral gap condition holds.  
From the above mentioned 1 Nλ

−Λ =  and 2 1Nλ
−
+Λ = , we can get  

( ) ( )

( )
( ) ( )

( )
( ) ( ) ( ) ( )

( )

2 1 1

2 2 2 4 2 2 4 2
1 1 1

4 4 2 2
1 12

2 2
1 2 2

4 41
1 2 2

2 2
2 2 1

1

2
2 2 1

1

1 4 4
2 2

4

2 2 4 4

2 1
2 2 1 1

2 2

N N

N N N N N N

N N N N

N N

N N
N N

N N
N N

N N
N N

J N J N J N J N

λ λ

β µ µ β µ αµ β µ αµ

αµ µ µ µ
β β βµ µ

αµ αµ
µ µ

β β

µ µβ β αµ µ
β

µ µβ βµ µ

− −
+

+ + +

+ +

+

+
+

+
+

+
+

Λ −Λ = −

= − + − − −

− − −
= − − ⋅

− + −

 + = − − ⋅ + ⋅
 + + + + 

+
> − − ⋅

( ) ( )

( )
( ) ( )( )

2

4 4
1

2 2
1

2 1
1

2
.

1

N N

N N

J N J N

J N J N

α
βµ µ

α µ µ

β

+

+

 
 + ⋅
 + ++ 

−
=

+ +

 

we obtain 

( )
( ) ( )( )

2 2
2 1 1

2 4 4 ,
21

N N F
l l

J N J N

αµ µ
α ββ

+Λ −Λ > − ≥ ≥
+ −+ +

 

When 2j
αµ
β

> , the conclusion (1) is proved. 
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(2) 2 2 .j
α αµ
β β

< <  

( ) ( ) ( )( )
( )
( ) ( )( )

2 2
2 1 1 1

2 2
1

1 1 ,
2 2

2
4 4 ,

1

q q q q

q q
k F

q q

l l
J q J q

βλ λ µ µ

α µ µ

β

− −
+ +

+

Λ −Λ = − = − + Γ − Γ +

−
> ≥ ≥

+ +

 

Since 

( )2 2
2 1 1 12N N N N

βλ λ µ µ− −
+ +Λ −Λ = − = −  

Similarity the theorem 2, the conclusion (2) is proved. The theorem 3 is proved 
completely. 

Theorem 4 Under the condition of theorem 2 and theorem 3, the initial 
boundary value problem (1)-(3) admits a family of inertial manifolds kw  in kE  
of the form  

( ) ( ){ }1graph : , 1, 2, , 2k k k kw E k mρ ζ ρ ζ ζ= = + ∈ = �
 

where 1 2,k kE E  are as in theorem 2 and 1 2:k k kE Eρ →  is a Lipschitz conti-
nuous function. 

Proof. It is proved directly according to the theorem 1. 
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