A Family of Inertial Manifolds for a Class of Generalized Kirchhoff-Beam Equations

Yuhuai Liao ${ }^{1}$, Guoguang Lin ${ }^{2 *}$, Jie Liu ${ }^{2}$
${ }^{1}$ Wenshan University, Wenshan, China
${ }^{2}$ School of Mathematics and Statistics, Yunnan University, Kunming, China
Email: *gglin@ynu.edu.cn

How to cite this paper: Liao, Y.H., Lin, G.G. and Liu, J. (2022) A Family of Inertial Manifolds for a Class of Generalized Kir-chhoff-Beam Equations. Journal of Applied Mathematics and Physics, 10, 2153-2163. https://doi.org/10.4236/jamp.2022.107147

Received: June 5, 2022
Accepted: July 17, 2022
Published: July 20, 2022

Copyright © 2022 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we deal with a class of generalized Kirchhoff-Beam equations. At first, we take advantage of Hadamard's graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. We gain main result is that the family of inertial manifolds are established under the proper assumptions of nonlinear terms $M(s)$ and $N(s)$.

Keywords

Kirchhoff-Beam Equations, Inertial Manifold, Hadamard's Graph, Spectral Gap Condition

1. Introduction

This paper mainly deals with existence of a family of inertial manifolds for a class generalized Kirchhoff-Beam equations.

$$
\begin{gather*}
u_{t t}+\beta(-\Delta)^{2 m} u_{t}+M\left(\left\|D^{m} u\right\|_{p}^{p}\right) u_{t}+\alpha \Delta^{2 m} u+N\left(\left\|D^{m} u\right\|_{p}^{p}\right)(-\Delta)^{m} u=f(x), \tag{1}\\
u(x, t)=0, \frac{\partial^{i} u}{\partial v^{i}}=0, i=1,2, \cdots, m-1, x \in \partial \Omega, t>0 \tag{2}\\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \subset R^{n} . \tag{3}
\end{gather*}
$$

where $m>1$ is a positive integer, Ω is the bounded region in R^{n} with smooth boundary $\partial \Omega . f(x)$ is the external force term. $\beta(-\Delta)^{2 m} u_{t}$ is the strongly damped term, α, β are positive constants, $\alpha \geq \frac{3}{2}, M\left(\left\|D^{m} u\right\|_{p}^{p}\right), N\left(\left\|D^{m} u\right\|_{p}^{p}\right)$ are the general non-negative real-valued functions, $\left\|D^{m} u\right\|_{p}^{p}=\int_{\Omega}\left|D^{m} u\right|^{p} \mathrm{~d} x$, and the
relevant assumptions will be given later.
Yuhuan Liao, Guoguang Lin, Jie Liu [1] has studied the existence and uniqueness of global solutions and the existence for of a family global attractors and estimate its Hausdorff dimension and Fractal dimension for the problems (1)(3).

As well as we known, it is significant to establish inertial manifolds for the study of the long-time behavior of infinite dimensional dynamical systems. Because it is an important bridge between infinite-dimensional dynamic system and finite-dimensional dynamical system. In this article, we first take advantage of Hadamard's graph to transform problem (1)-(3) into an equivalent one-order system of form. Then, we proved the family of inertial manifolds by using spectral gap condition.

To better carry out our work, let's recall some results regarding wave equations.

Jingzhu Wu and Guoguang Lin [2] studied the following two-dimensional strong damping Boussinesq equation while $\alpha>2$:

$$
\begin{gathered}
u_{t t}-\alpha \Delta u_{t}-\Delta u+u^{2 k+1}=f(x, y),(x, y) \in \Omega \\
u(x, y, 0)=u_{0}(x, y),(x, y) \in \Omega \\
u(x, y, t)=u(x+\pi, y, t)=u(x, y+\pi, t)=0,(x, y) \in \Omega
\end{gathered}
$$

where $\Omega=(0, \pi) \times(0, \pi) \subset R \times R, t>0$. They obtained result that is existence of inertial manifolds.

Guigui Xu, Libo Wang and Guoguang Lin [3] investigated the strongly damped wave equation:

$$
\begin{gathered}
u_{t t}-\alpha \Delta u+\beta \Delta^{2} u-\gamma \Delta u_{t}+g(u)=f(x, t),(x, t) \in \Omega \times R^{+} \\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \\
\left.u\right|_{\partial \Omega}=0,\left.\Delta u\right|_{\partial \Omega}=0,(x, t) \in \partial \Omega \times R^{+}
\end{gathered}
$$

They gave some assumptions for the nonlinearity term $g(u)$ to satisfy the following inequalities:
(A1) $\lim _{|s| \rightarrow \infty} \inf \frac{G(s)}{s^{2}} \geq 0, \quad s \in R, G(s)=\int_{0}^{s} g(r) \mathrm{d} r$.
(A2) There is positive constant C_{1} such that $\lim _{|s| \rightarrow \infty} \inf \frac{s g(s)-C_{1} G(s)}{s^{2}} \geq 0$, $s \in R$.

According to the above assumptions, they proved the inertial manifolds by using the Hadamard's graph transformation method.

Ruijin Lou, Penhui Lv, Guoguang Lin [4] considered a class of generalized nonlinear Kirchhoff-Sine-Gordon equation:

$$
\begin{gathered}
u_{t t}-\beta \Delta u_{t}+\alpha u_{t}-\phi\left(\|\nabla u\|^{2}\right) \Delta u+g(\sin u)=f(x) \\
u(x, t)=0, x \in \Omega, t \geq 0
\end{gathered}
$$

$$
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega
$$

Under some reasonable assumptions, they obtained some results that are squeezing property of the nonlinear semigroup associated with this equation and the existence of exponential attractors and inertial manifolds.

Lin Chen, Wei Wang and Guoguang Lin [5] studied higher-order Kirchhofftype equation with nonlinear strong dissipation in n dimensional space:

$$
\begin{gathered}
u_{t t}+(-\Delta)^{m} u_{t}+\phi\left(\|\nabla u\|^{2}\right)(-\Delta)^{m} u+g(u)=f(x), x \in \Omega, t>0, m>1 \\
u(x, t)=0, \frac{\partial^{i} u}{\partial v^{i}}=0, i=1,2, \cdots, m-1, x \in \partial \Omega, t>0 \\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x)
\end{gathered}
$$

For the above equation, they made some suitable assumptions about $\phi(s)$ and $g(u)$ to get existence of exponential attractors and inertial manifolds. More information on inertial manifolds can be found in the literature [6] [7] [8] [9].

2. Preliminaries

The following symbols and assumptions are introduced for the convenience of statement:

$$
\begin{aligned}
& V_{0}=L^{2}(\Omega), V_{2 m}=H^{2 m}(\Omega) \cap H_{0}^{1}(\Omega), V_{2 m+k}=H^{2 m+k}(\Omega) \cap H_{0}^{1}(\Omega) \\
& E_{0}=V_{2 m} \times V_{0}, E_{k}=V_{2 m+k} \times V_{k},(k=0,1,2, \cdots, 2 m)
\end{aligned}
$$

The inner product of the $L^{2}(\Omega)$ space is $(u, v)=\int_{\Omega} u(x) v(x) \mathrm{d} x$ and the norm is $\|u\|=\|u\|_{L^{2}}=\left(\int_{\Omega}|u(x)|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}$. The norm of $L^{p}(\Omega)$ space is called $\|u\|_{p}=\|u\|_{L^{p}(\Omega)}$.

Definition 1 [10] Assuming $S=(S(t))_{t \geq 0}$ is a solution semigroup on Ba nach space $E_{k}=V_{2 m+k} \times V_{k}$, subset $\mu_{k} \subset E_{k}$ is said to be a family of inertial manifolds, if they satisfy the following three properties:

1) w_{k} are a finite-dimensional Lipschitz manifold;
2) w_{k} is positively invariant, i.e., $S(t) w_{k} \subseteq w_{k}, t \geq 0, k=1,2 \cdots, 2 m$;
3) w_{k} attracts exponentially all orbits of solution, that is, for any $x \in E_{k}$, there are constants $\eta>0, C>0$ such that

$$
\operatorname{dist}\left(S(t) x, w_{k}\right) \leq C \mathrm{e}^{-\eta t}, t \geq 0
$$

Definition 1 [7] Let $A: X \rightarrow X$ be an operator and assume that $F \in C_{b}(X, X)$
satisfies the Lipschitz condition:

$$
\|F(U)-F(V)\|_{X} \leq l_{F}\|U-V\|_{X}, U, V \in X
$$

where $X=H_{0}^{m}(\Omega) \times H_{0}^{m}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Omega)$. The operator A is said to satisfy the spectral gap condition relative to F, if the point spectrum of the operator A can be divided into two parts σ_{1} and σ_{2}, of which σ_{1} is finite, and such that, if

$$
\Lambda_{1}=\sup \left\{\operatorname{Re} \lambda \mid \lambda \in \sigma_{1}\right\}, \Lambda_{2}=\sup \left\{\operatorname{Re} \lambda \mid \lambda \in \sigma_{2}\right\}
$$

and

$$
X_{i}=\operatorname{span}\left\{\omega_{j} \mid j \in \sigma_{i}\right\}, i=1,2
$$

Then

$$
\Lambda_{2}-\Lambda_{1}>4 l_{F}
$$

And the orthogonal decomposition

$$
X=X_{1} \oplus X_{2}
$$

holds with continuous orthogonal projections $P_{1}: X \rightarrow X_{1}$ and $P_{1}: X \rightarrow X_{2}$.
Lemma 2 [7] Let the eigenvalues $\lambda_{j}^{ \pm}, j \geq 1$ be arranged in nondecreasing order, for all $m \in N$, there is $N \geq m$ such that λ_{N}^{-}and λ_{N+1}^{-}are consecutive.

Theorem 1 [8] Supose dense positive definite operators A generates C^{0}-semigroup $S(t)$ in detachabie Hilbert space $X, F \in C_{b}(X, X)$ meets Lipschitz condition, A satifies the spectral condition, then the probrem $U_{t}+A U=F(U), U \in X \quad$ has an inertial manifold $w \subset X$, $w=\operatorname{graph}(\phi)=\left\{\xi+\phi(\xi) \mid \xi \in X_{1}\right\}$, where $\phi: X_{1} \rightarrow X_{1}$ Lipschitz continuous function.

3. Inertial Manifold

In this section, we use the Hadamard's graph transformation method to prove the existence of inertial manifolds of problem (1)-(3) when N is sufficiently large.

Equation (1) is equivalent to the following one order evolution equation:

$$
\begin{equation*}
U_{t}+\Lambda U=F(U) \tag{4}
\end{equation*}
$$

where

$$
\begin{gather*}
U=(u, v), v=u_{t}, \Lambda=\left(\begin{array}{cc}
0 & -I \\
\alpha \Delta^{2 m} & \beta(-\Delta)^{2 m}
\end{array}\right), \tag{5}\\
F(U)=\binom{0}{f(x)-M\left(\left\|D^{m} u\right\|_{p}^{p}\right) u_{t}-N\left(\left\|D^{m} u\right\|_{p}^{p}\right)(-\Delta)^{m} u}, \tag{6}\\
D(\Lambda)=\left\{u \in H^{2 m+k} \mid u \in L^{2},(-\Delta)^{2 m} u \in H^{2 m+k}\right\} \times H^{k} . \tag{7}
\end{gather*}
$$

In E_{k}, we denote the usual graph norm, which is introduced by the scalar product, we have

$$
\begin{equation*}
(U, V)_{E_{k}}=\left(\alpha(-\Delta)^{m+k} u,(-\Delta)^{m+k} \bar{y}\right)+\left(D^{k} v, D^{k} \bar{z}\right) \tag{8}
\end{equation*}
$$

$U=(u, v), V=(y, z) \in E_{k}, \bar{y}, \bar{z}$ respectively express conjugate of y, z and $u, y, v, z \in H^{2 m+k}(\Omega)$.

For $U \in D(\Lambda)$, we have

$$
\begin{align*}
(\Lambda U, U)_{E_{k}} & =-\left(\alpha(-\Delta)^{m+k} v,(-\Delta)^{m+k} \bar{u}\right)+\left(\alpha(-\Delta)^{2 m+2 k} u+\beta(-\Delta)^{m+k} v, \bar{v}\right) \tag{9}\\
& =\beta\left\|D^{m+k} v\right\|^{2} \geq 0
\end{align*}
$$

Therefore, the operator Λ in (5) is monotone, and $(H U, U)_{E}$ is a nonnegative and real number.

To obtain the eigenvalues of Λ, we consider the following eigenvalue equation:

$$
\begin{equation*}
\Lambda U=\lambda U, U=(u, v) \in E_{k}, \tag{10}
\end{equation*}
$$

That is

$$
\left\{\begin{array}{l}
-v=\lambda u \tag{11}\\
\alpha \Delta^{2 m} u+\beta(-\Delta)^{2 m} v=\lambda v
\end{array}\right.
$$

The first equation in (11) is brought into the second equation in (11), we get

$$
\left\{\begin{array}{l}
\lambda^{2} u+\alpha \Delta^{2 m} u-\beta \lambda(-\Delta)^{2 m} u=0 \tag{12}\\
\left.u\right|_{\partial \Omega}=\left.(-\Delta)^{m} u\right|_{\partial \Omega}=0
\end{array}\right.
$$

Let u_{j} replace u in (12). And then taking $(-\Delta)^{k} u_{j}$ inner product, we obtain

$$
\begin{equation*}
\lambda^{2}\left\|D^{k} u\right\|^{2}+\alpha\left\|D^{2 m+k} u\right\|^{2}-\beta \lambda\left\|D^{2 m+k} u\right\|^{2}=0 \tag{13}
\end{equation*}
$$

When (13) is considered a yuan quadratic equation on λ, we can get

$$
\begin{equation*}
\lambda_{j}^{ \pm}=\frac{\beta \bar{\mu}_{j}^{2} \pm \sqrt{\beta^{2} \bar{\mu}_{j}^{4}-4 \alpha \bar{\mu}_{j}^{2}}}{2} \tag{14}
\end{equation*}
$$

where μ_{j} is the eigenvalue of $(-\Delta)^{m}$ in $H_{0}^{2 m}$, then $\mu_{j}=c_{0} j^{\frac{m}{n}}$. If $\bar{\mu}_{j} \geq \frac{2 \sqrt{\alpha}}{\beta}$, the eigenvalues of Λ are all positive and real numbers, the corresponding eigenfunction have the form $U_{j}^{ \pm}=\left(u_{j},-\lambda_{j}^{ \pm} u_{j}\right)$. For (14) and future reference, we observe that for all

$$
\begin{gather*}
j \geq 1,\left\|D^{2 m+k} u_{j}\right\|=\sqrt{\bar{\mu}_{j}},\left\|D^{k} u_{j}\right\|=1 \\
\left\|D^{-2 m-k} u_{j}\right\|=\frac{1}{\sqrt{\mu_{j}}}=\bar{\mu}_{j}, k=1,2, \cdots, 2 m \tag{15}
\end{gather*}
$$

Lemma $3 \underset{\sim}{g}=M\left(\left\|D^{m} u\right\|_{p}^{p}\right) u_{t}, h=N\left(\left\|D^{m} u\right\|_{p}^{p}\right)(-\Delta)^{m} u$, then $g, h: H_{0}^{2 m+k}(\Omega) \rightarrow H(\Omega)$ is uniformly bounded and globally Lipschitz continuous.

Proof. $\forall u_{1}, u_{2} \in H_{0}^{2 m+k}(\Omega)$,

$$
\begin{aligned}
& \left\|M\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right) u_{1 t}-M\left(\left\|D^{m} u_{2}\right\|_{p}^{p}\right) u_{2 t}\right\| \\
& \leq\left\|M\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)\right\|_{\infty}\left\|u_{1 t}-u_{2 t}\right\|+M^{\prime}\left(\left\|D^{m} \zeta\right\|_{p}^{p}\right) D^{m}\left(u_{1}-u_{2}\right)\left\|u_{2 t}\right\| \\
& \leq\left\|M\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)\right\|_{\infty}\left\|u_{1 t}-u_{2 t}\right\|+\left\|M^{\prime}\left(\left\|D^{m} \zeta\right\|_{p}^{p}\right)\right\|_{\infty}\left\|u_{2 t}\right\| D^{m}\left(u_{1}-u_{2}\right) \\
& \leq C_{1 k}\left(\left\|u_{1 t}-u_{2 t}\right\|_{H^{k}}+\left\|u_{1}-u_{2}\right\|_{H^{2 m+k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\|N\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)(-\Delta)^{m} u_{1}-N\left(\left\|D^{m} u_{2}\right\|_{p}^{p}\right)(-\Delta)^{m} u_{2}\right\| \\
& =N\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)(-\Delta)^{m}\left(u_{1}-u_{2}\right)+\left(N\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)-N\left(\left\|D^{m} u_{2}\right\|_{p}^{p}\right)\right)(-\Delta)^{m} u_{2} \\
& \leq N\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)(-\Delta)^{m}\left(u_{1}-u_{2}\right)+N^{\prime}\left(\left\|D^{m} \zeta\right\|_{p}^{p}\right) D^{m}\left(u_{1}-u_{2}\right)\left\|(-\Delta)^{m} u_{2}\right\| \\
& \leq\left\|N\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)\right\|_{\infty}\left\|u_{1}-u_{2}\right\|_{H^{2 m}}+N^{\prime}\left(\left\|D^{m} \zeta\right\|_{p}^{p}\right)\left\|(-\Delta)^{m} u_{2}\right\|\left\|D^{m}\left(u_{1}-u_{2}\right)\right\|_{H^{m}} \\
& \leq C_{2 k}\left\|u_{1}-u_{2}\right\|_{H^{2 m+k}},
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{1 k}=\max \left\{\left\|M\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)\right\|_{\infty}, \lambda_{1}^{-\frac{m}{2}}\left\|M^{\prime}\left(\left\|D^{m} \zeta\right\|_{p}^{p}\right)\right\|_{\infty}\left\|u_{2 t}\right\|\right\}, \\
& C_{2 k}=\max \left\{\left\|N\left(\left\|D^{m} u_{1}\right\|_{p}^{p}\right)\right\|_{\infty}, \lambda_{1}^{-\frac{m}{2}} N^{\prime}\left(\left\|D^{m} \zeta\right\|_{p}^{p}\right)\left\|(-\Delta)^{m} u_{2}\right\|\right\} .
\end{aligned}
$$

Lemma 3 is proved.
Theorem 2 If $\bar{\mu}_{j} \leq \frac{2 \sqrt{\alpha}}{\beta}$ holds, $l_{k}=\max \left\{C_{1 k}, C_{2 k}\right\}$ is maximum Lipschitz constant of g, h, and if $N_{1} \in N^{+}$is sufficiently large such that when $N \geq N_{1}$, the following inequality holds:

$$
\begin{equation*}
\beta\left(\bar{\mu}_{N+1}-\bar{\mu}_{N}\right)\left(\bar{\mu}_{N+1}+\bar{\mu}_{N}\right) \geq 8 l_{k} \tag{16}
\end{equation*}
$$

Then the operator Λ satisfies the spectral gap condition.

Proof.

From (8), $U=(u, \bar{u}), V=(v, \bar{v}) \in E_{k}$, then

$$
\begin{aligned}
\|F(U)-F(V)\|= & \| M\left(\left\|D^{m} u\right\|_{p}^{p}\right) u_{t}+N\left(\left\|D^{m} u\right\|_{p}^{p}\right)(-\Delta)^{m} u \\
& -M\left(\left\|D^{m} v\right\|_{p}^{p}\right) v_{t}-N\left(\left\|D^{m} v\right\|_{p}^{p}\right)(-\Delta)^{m} v \| \\
\leq & l_{k}\|U-V\|_{E_{k}}
\end{aligned}
$$

We have $l_{F} \leq l_{k}$, and take a real component $\operatorname{Re} \lambda_{j}^{ \pm}=\frac{\beta \bar{\mu}_{j}^{2}}{2}$,
There is N_{1}, such that $N \geq N_{1}$, (16) holds. Spectra decomposition of Λ :

$$
\sigma_{1}=\left\{\lambda_{j}^{ \pm} \mid j \leq N\right\}, \sigma_{2}=\left\{\lambda_{j}^{ \pm} \mid j \geq N+1\right\} .
$$

Corresponding space

$$
E_{k 1}=\operatorname{span}\left\{U_{j}^{ \pm} \mid j \leq N\right\}, E_{k 2}=\operatorname{span}\left\{U_{j}^{ \pm} \mid j \geq N+1\right\} .
$$

Then

$$
\begin{aligned}
\Lambda_{2}-\Lambda_{1} & =\operatorname{Re}\left(\lambda_{N+1}^{-}-\lambda_{N}^{+}\right) \\
& =\frac{\beta \bar{\mu}_{N+1}^{2}-\beta \bar{\mu}_{N}^{2}}{2}=\frac{\beta\left(\bar{\mu}_{N+1}-\bar{\mu}_{N}\right)\left(\bar{\mu}_{N+1}+\bar{\mu}_{N}\right)}{2} \\
& >4 l_{F}
\end{aligned}
$$

Then the operator Λ satisfies the spectral gap condition. Theorem 2 is proved.

Theorem 3 If $\bar{\mu}_{j}>\frac{2 \sqrt{\alpha}}{\beta}$ holds, $l_{k}=\max \left\{C_{1}, C_{2}\right\}$ is the Lipschtiz constant of g, h.

Let $N_{1} \in N^{+}$big enough, $N \geq N_{1}$, the following inequality holds:

$$
\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right) \cdot \frac{2 \alpha}{\beta(\sqrt{J(N+1)}+\sqrt{J(N)})} \geq \frac{4 l}{\sqrt{\alpha+\beta-2}}
$$

where $J(N)=\bar{\mu}_{N}^{4}-\frac{4 \alpha \bar{\mu}_{N}^{2}}{\beta^{2}}$.

$$
\begin{gathered}
\text { Let } \begin{array}{c}
\frac{2 \sqrt{\alpha}}{\beta}<\bar{\mu}_{j}<2 \sqrt{\frac{\alpha}{\beta}} \text {, for } \bar{\mu}_{q} \in\left\{\bar{\mu}_{k}\right\}, \text { such that } 2 \frac{\sqrt{\alpha}}{\beta}<\bar{\mu}_{q}<2 \sqrt{\frac{\alpha}{\beta}}, \\
\left(\bar{\mu}_{q+1}^{2}-\bar{\mu}_{q}^{2}\right) \cdot \frac{2 \alpha}{\beta(\sqrt{J(q+1)}+\sqrt{J(q)})} \geq 4 l .
\end{array} .
\end{gathered}
$$

Then for any one case (1) and (2), the operator Λ satisfies the spectral gap condition.

Proof.

When $\bar{\mu}_{j}>\frac{2 \sqrt{\alpha}}{\beta}$, all the eigenvalues of Λ are real and positive, and we can easily know that both sequences $\left\{\lambda_{j}^{-}\right\}_{j \geq 1}$ and $\left\{\lambda_{j}^{+}\right\}_{j \geq 1}$ are increasing.

The whole process of proof is divided into four steps.
Step 1. Since $\lambda_{j}^{ \pm}$is arranged in nondecreasing order. According to Lemma 2, given N such that λ_{N}^{-}and λ_{N+1}^{-}are consecutive, we separate the eigenvalue of Λ as

$$
\begin{gathered}
\sigma_{1}=\left\{\lambda_{j}^{-}, \lambda_{k}^{+} \mid \max \left\{\lambda_{j}^{-}, \lambda_{k}^{+}\right\} \leq \lambda_{N}^{-}\right\}, \\
\sigma_{2}=\left\{\lambda_{j}^{-}, \lambda_{k}^{+} \mid \lambda_{j}^{-} \leq \lambda_{N}^{-} \leq \min \left\{\lambda_{j}^{-}, \lambda_{k}^{ \pm}\right\}\right\} .
\end{gathered}
$$

Step 2. We make decomposition of E_{k}

$$
\begin{aligned}
& E_{k 1}=\operatorname{span}\left\{U_{j}^{-}, U_{k}^{+} \mid \lambda_{j}^{-}, \lambda_{k}^{+} \in \sigma_{1}\right\}, \\
& E_{k 2}=\operatorname{span}\left\{U_{j}^{+}, U_{k}^{ \pm} \mid \lambda_{j}^{-}, \lambda_{k}^{ \pm} \in \sigma_{2}\right\} .
\end{aligned}
$$

In order to make these two subspaces orthogonal and satisfy spectral inequality
$\Lambda_{1}=\lambda_{N}^{-}, \quad \Lambda_{2}=\lambda_{N+1}^{-}$, we further decompose
$E_{k 2}=E_{c} \oplus E_{R}$, with

$$
\begin{gathered}
E_{c}=\operatorname{span}\left\{U_{j}^{+} \mid \lambda_{j}^{-} \leq \lambda_{N}^{-}<\lambda_{j}^{+}\right\}, \\
E_{R}=\operatorname{span}\left\{U_{R}^{ \pm} \mid \lambda_{N}^{-}<\lambda_{R}^{ \pm}\right\}, \\
E_{N}=E_{c} \oplus E_{k 1} .
\end{gathered}
$$

Next, we stipulate an eigenvalue scale product of E_{k} such that $E_{k 1}$ and $E_{k 2}$ are orthogonal, therefore we need to introduce two functions:
Let $\Phi: E_{N} \rightarrow R, \Psi: E_{R} \rightarrow R$.

$$
\begin{align*}
\Phi(U, V)= & (\beta-\alpha)\left(D^{2 m+k} u, D^{2 m+k} \bar{y}\right)+\left(\overline{D^{k} z}, D^{k} u\right) \tag{17}\\
& +\left(\overline{D^{k} v}, D^{k} y\right)+\left(\overline{D^{k} z}, D^{k} v\right), \\
\Psi(U, V)= & \beta\left(D^{2 m+K} u, D^{2 m+k} \bar{y}\right)+\left(D^{k} \bar{z}, D^{2 m+k} u\right) \\
& +\left(\overline{D^{k} v}, D^{2 m+k} y\right)+\left(\overline{D^{k} z}, D^{k} v\right), \tag{18}
\end{align*}
$$

where $U=(u, v), V=(y, z), \bar{y}, \bar{z}$ respectively are the conjugation of y, z.
Let $U=(u, v) \in E_{N}$, then

$$
\begin{aligned}
\Phi(U, U) & \geq(\beta-\alpha)\left\|D^{2 m+k} u\right\|^{2}-\left\|D^{k} v\right\|^{2}-\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2} \\
& \geq\left[(\beta-\alpha) \mu_{1}^{2}-1\right]\left\|D^{k} u\right\|^{2}
\end{aligned}
$$

Since $\bar{\mu}_{1}>2 \sqrt{\frac{\alpha}{\beta}}, \beta \geq \frac{4 \alpha}{3}$ holds, we can know $\Phi(U, U) \geq 0$. Therefore, for all $U \in E_{N}$, analogously, for all $U \in E_{R}$, we can get

$$
\Psi(U, U) \geq \beta\left\|D^{2 m+k} u\right\|^{2}-\left\|D^{k} v\right\|^{2}-\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{k} v\right\|^{2} \geq(\beta-1)\left\|D^{2 m+k} u\right\|^{2}
$$

That is $U=(u, v) \in E_{R}, \quad \Psi(U, U) \geq 0$.
From above, we know that for all $U \in E_{R}$, then $\psi(U, U) \geq 0$ holds. So, we define a scale product with Φ and ψ in E_{k}.

$$
\begin{equation*}
\langle\langle U, V\rangle\rangle_{E_{k}}=\Phi\left(P_{N} U, P_{N} V\right)+\psi\left(P_{R} U, P_{R} V\right), \tag{19}
\end{equation*}
$$

where P_{N}, P_{R} are respectively the projection: $E_{k} \rightarrow E_{N}, E_{k} \rightarrow E_{R}$.
In the inner product of E_{k} in (19), $E_{k 1}$ and $E_{k 2}$ are orthogonal. In fact, we need prove that $E_{k 1}$ and E_{c} are orthogonal.

For $U_{j}^{+} \in E_{C}, U_{j}^{-} \in E_{N}$,

$$
\begin{aligned}
\left\langle\left\langle U_{j}^{+}, U_{j}^{-}\right\rangle\right\rangle_{E} & =\Phi\left(U_{j}^{+}, U_{j}^{-}\right) \\
& =(\beta-\alpha)\left\|(-\Delta)^{m} u_{j}\right\|^{2}-\left(\lambda_{j}^{-}+\lambda_{j}^{+}\right)\left\|u_{j}\right\|^{2}+\lambda_{j}^{-} \lambda_{j}^{+}\left\|u_{j}\right\|^{2} .
\end{aligned}
$$

According to $\left\|D^{k} u_{j}\right\|^{2}=1,\left\|D^{2 m+k} u_{j}\right\|^{2}=\mu_{j},\left\|D^{-2 m-k} u_{j}\right\|^{2}=\frac{1}{\mu_{j}}$ and $\lambda_{j}^{-}+\lambda_{j}^{+}=\beta \bar{\mu}_{j}^{2}, \quad \lambda_{j}^{-} \lambda_{j}^{+}=\alpha \bar{\mu}_{j}^{2}$, then

$$
\left\langle\left\langle U_{j}^{+}, U_{j}^{-}\right\rangle\right\rangle_{E}=\Phi\left(U_{j}^{+}, U_{j}^{-}\right)=0 .
$$

Step 3. Next, we estimate the Lipschitz constant l_{F} of F,

$$
F(U)=\left(0, h(x)-M\left(\left\|D^{m} u\right\|_{p}^{p}\right) u_{t}-N\left(\left\|D^{m} u\right\|_{p}^{p}\right)(-\Delta)^{m} u\right)^{\mathrm{T}}
$$

$g, h: H^{2 m+k} \rightarrow H$ are globally Lipschitz continuous with maximum.

Lipschitz constant l for arbitrarily $U=(u, v) \in E_{k}$, we have
Let $P_{1}: E_{k} \rightarrow E_{k 1}, P_{2}: E_{k} \rightarrow E_{k 2}$ are the orthogonal projection.

$$
\begin{gathered}
U=(u, v) \in E_{k}, U_{1}=\left(u_{1}, v_{1}\right)=P_{1} U, U_{2}=\left(u_{2}, v_{2}\right)=P_{2} U . \\
P_{1} u=u_{1}, P_{1} v=v_{1}, P_{2} u=u_{2}, P_{2} v=v_{2} . \\
\|U\|_{E_{k}}^{2}=\tilde{\Phi}\left(P_{1} U, P_{1} U\right)+\tilde{\Psi}\left(P_{2} U, P_{2} U\right)=\left((\beta-\alpha) u_{1}^{2}-1+\beta-1\right)\|D u\|^{2} \\
\geq\left(4 \alpha+\beta-2-\frac{4 \alpha}{\beta^{2}}\right)\left\|D^{k} u\right\|^{2} \geq(\alpha+\beta-2)\left\|D^{k} u\right\|^{2} \geq 0 .
\end{gathered}
$$

Set $U=(u, v), V=(\hat{u}, \hat{v}) \in E_{k}$,

$$
\begin{aligned}
\|F(U)-F(V)\| & \leq \| M\left(\left\|D^{m} u\right\|_{p}^{p}\right) u_{t}-M\left(\left\|D^{m} \hat{u}\right\|_{p}^{p}\right) \hat{u}_{t} \\
& +N\left(\left\|D^{m} u\right\|_{p}^{p}\right)(-\Delta)^{m} u-N\left(\left\|D^{m} \hat{u}\right\|_{p}^{p}\right)(-\Delta)^{m} \hat{u} \| \\
& \leq \frac{l_{k}}{\sqrt{\alpha+\beta-2}}\|U-V\|_{E_{k}}
\end{aligned}
$$

Therefore

$$
l_{F} \leq \frac{l_{k}}{\sqrt{\alpha+\beta-2}}
$$

Step 4. Now, we need prove the spectral gap condition holds.
From the above mentioned $\Lambda_{1}=\lambda_{N}^{-}$and $\Lambda_{2}=\lambda_{N+1}^{-}$, we can get

$$
\begin{aligned}
& \Lambda_{2}-\Lambda_{1}=\lambda_{N+1}^{-}-\lambda_{N}^{-} \\
& =\frac{\beta}{2}\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right)+\frac{1}{2}\left(\sqrt{\beta^{2} \bar{\mu}_{N}^{4}-4 \alpha \bar{\mu}_{N}^{2}}-\sqrt{\beta^{2} \bar{\mu}_{N+1}^{4}-4 \alpha \bar{\mu}_{N+1}^{2}}\right) \\
& =\frac{\beta}{2}\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right)-\frac{\beta}{2} \cdot \frac{\left(\bar{\mu}_{N+1}^{4}-\bar{\mu}_{N}^{4}\right)-\frac{4 \alpha}{\beta^{2}}\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right)}{\sqrt{\bar{\mu}_{N+1}^{4}-\frac{4 \alpha \bar{\mu}_{N+1}^{2}}{\beta^{2}}}+\sqrt{\bar{\mu}_{N}^{4}-\frac{4 \alpha \bar{\mu}_{N}^{2}}{\beta^{2}}}} \\
& =\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right)\left(\frac{\beta}{2}-\frac{\beta}{2} \cdot \frac{\bar{\mu}_{N+1}^{2}+\bar{\mu}_{N}^{2}}{\sqrt{J(N+1)}+\sqrt{J(N)}}+\frac{2 \alpha}{\beta} \cdot \frac{1}{\sqrt{J(N+1)}+\sqrt{J(N)}}\right) \\
& >\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right)\left(\frac{\beta}{2}-\frac{\beta}{2} \cdot \frac{\bar{\mu}_{N+1}^{2}+\bar{\mu}_{N}^{2}}{\sqrt{\bar{\mu}_{N+1}^{4}}+\sqrt{\bar{\mu}_{N}^{4}}}+\frac{2 \alpha}{\beta} \cdot \frac{1}{\sqrt{J(N+1)}+\sqrt{J(N)}}\right) \\
& =\frac{2 \alpha\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right)}{\beta(\sqrt{J(N+1)}+\sqrt{J(N)})}
\end{aligned}
$$

we obtain

$$
\Lambda_{2}-\Lambda_{1}>\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right) \frac{2 \alpha}{\beta(\sqrt{J(N+1)}+\sqrt{J(N)})} \geq \frac{4 l}{\sqrt{\alpha+\beta-2}} \geq 4 l_{F}
$$

When $\bar{\mu}_{j}>2 \sqrt{\frac{\alpha}{\beta}}$, the conclusion (1) is proved.
(2) $\frac{2 \sqrt{\alpha}}{\beta}<\bar{\mu}_{j}<2 \sqrt{\frac{\alpha}{\beta}}$.

$$
\begin{aligned}
\Lambda_{2}-\Lambda_{1} & =\lambda_{q+1}^{-}-\lambda_{q}^{-}=\frac{\beta}{2}\left(\bar{\mu}_{q+1}^{2}-\bar{\mu}_{q}^{2}\right)+\frac{1}{2}(\sqrt{\Gamma(q)}-\sqrt{\Gamma(q+1)}) \\
& >\frac{2 \alpha\left(\bar{\mu}_{q+1}^{2}-\bar{\mu}_{q}^{2}\right)}{\beta(\sqrt{J(q+1)}+\sqrt{J(q)})} \geq 4 l_{k} \geq 4 l_{F}
\end{aligned}
$$

Since

$$
\Lambda_{2}-\Lambda_{1}=\lambda_{N+1}^{-}-\lambda_{N}^{-}=\frac{\beta}{2}\left(\bar{\mu}_{N+1}^{2}-\bar{\mu}_{N}^{2}\right)
$$

Similarity the theorem 2, the conclusion (2) is proved. The theorem 3 is proved completely.

Theorem 4 Under the condition of theorem 2 and theorem 3, the initial boundary value problem (1)-(3) admits a family of inertial manifolds w_{k} in E_{k} of the form

$$
w_{k}=\operatorname{graph}\left(\rho_{k}\right)=\left\{\zeta+\rho_{k}(\zeta): \zeta \in E_{k 1}\right\}, k=1,2, \cdots, 2 m
$$

where $E_{k 1}, E_{k 2}$ are as in theorem 2 and $\rho_{k}: E_{k 1} \rightarrow E_{k 2}$ is a Lipschitz continuous function.

Proof. It is proved directly according to the theorem 1.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Liao, Y.H., Lin, G.G. and Liu, J. (2022) A Family of Global Attractors for a Class of Generalized Kirchhoff-Beam Equations. Journal of Applied Mathematic and Physics, 10, 930-951. https://doi.org/10.4236/jamp.2022.103064
[2] Wu, J.Z. and Lin, G.G. (2010) An Inertial Manifold of the Two-Dimensional Strongly Damped Boussinesq Equation. Journal of Yunnan University (Natural Science Edition), 32, 119-224.
[3] Xu, G.G., Wang, L.B. and Lin, G.G. (2014) Inertial Manifold for a Class of the Retarded Nonlinear Wave Equations. Mathematica Applicata, 27, 887-891.
[4] Lou, R.J., Lv, P.H. and Lin, G.G. (2016) Exponential Attractors and Inertial Manifolds for a Class of Generalized Nonlinear Kirchhoff-Sine-Gordon Equation. Journal of Advances in Mathematics, 12, 6361-6375.
[5] Chen, L., Wang, W. and Lin, G.G. (2016) Exponential Attractors and Inertial Manifolds for the Higher-Order Nonlinear Kirchhof-Type Equation. International Journal of Modern Communication Technologies \& Research, 4, 6-12. https://doi.org/10.24297/jam.v12i9.133
[6] Tmam, R. (1988) Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, New York. https://doi.org/10.1007/978-1-4684-0313-8
[7] Lin, G.G. (2011) Nonlinear Evolution Equation. Yunnan University Press, Kunming.
[8] Robinson, J.C. (2001) Infinite Dimensional Dynamical System. Cambridge University Press, London.
[9] Zheng, S.M. and Milani, A. (2004) Exponential Attractors and Inertial Manifold for Singular Perturbations of the Cahn-Hilliard Equations. Nonlinear Analysis, 57, 843-877. https://doi.org/10.1016/j.na.2004.03.023
[10] Lin, G.G. and Yang, L.J. (2021) A Family of the Exponential Attractors and the Inertial Manifolds for a Class of Generalized Kirchhoff Equations. Journal of Applied Mathematics and Physics, 9, 2399-2413. https://doi.org/10.4236/jamp.2021.910152

