
Journal of Applied Mathematics and Physics, 2022, 10, 2131-2140 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2022.107145  Jul. 12, 2022 2131 Journal of Applied Mathematics and Physics 
 

 
 
 

Computing Transfer Amplitude between 
BCS-Pair Condensates 

Z. Y. Xia 

Department of Physics, University of Shanghai for Science and Technology, Shanghai, China 

           
 
 

Abstract 
I propose a new algorithm that uses recursive relations to compute spectros-
copic factor, pair transfer amplitude and cluster transfer amplitude. I demon-
strate the algorithm that it can be calculated very quickly and stored within 
small computer memory consumption. In BCS case, the particle number is 
always conserved and the time-consuming projection is avoided. I drive ana-
lytical expressions for the pair transfer amplitude and the cluster transfer am-
plitude expressed by asymmetry many-pair density matrix. This algorithm 
practically could be used in all of the nuclear double beta decay fields, the 
heavy cluster emission fields and the single-nucleon transfer of the odd-mass 
isotopes. 
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1. Introduction 

The Bardeen-Cooper-Schrieffer (BCS) theory was first proposed as a supercon-
ducting microscopic theory [1] [2]. Later, it was used to treat pairing correla-
tions in nuclear physics [3] [4]. It is still one of the “standard” treatments after 
fifty years [5], owing to its simplicity and the ease with which higher-order cor-
relations could be added [for example, via quasiparticle random-phase approxi-
mation (QRPA)]. However, as compared to macroscopic quantum systems, the 
theory applied to finite nuclei has two major drawbacks. First, it breaks par-
ticle-number conservation by introducing quasiparticles. Second, the BCS theory 
needs a minimum pairing strength for nuclear systems with finite level spacing. 
It only yields trivial (vanishing) solutions below that strength, whereas pairing 
always has an impact in reality.  
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The “pair condensate” [Equation (3), with determinate particle number] is a 
frequent improvement over the BCS “quasiparticle vacuum” as the variational 
ground state [6]. A method was recently proposed under the pair condensate to 
calculate pair-hopping amplitudes by computing the many-pair density matrices 
[7]. In the example of the spherical nuclear shell model, it is demonstrated that 
the many-pair density matrices can be calculated fast using recursive relations 
and stored easily in computer memory. The method is demonstrated in semi- 
magic nuclei 46,48,50Ca, 116Sn, and 182Pb.  

However, this method can only compute the pair-hopping amplitude of one 
same nucleus with fixed particle number. Nuclear reactions such as the nuclear 
double beta decay, single-nucleon transfer and cluster decay of which the am-
plitudes are of two different nuclei play a crucial role in nuclear physics and par-
ticle physics.  

One of the pair transfer nuclear reactions is the nuclear double beta decay. 
Mayer was the first to explore the nuclear double beta decay mode with obvious 
lepton number conservation in 1935 [8]. On the particle physics side, the inverse 
half-life of double beta decay is expressed as a product of a phase-space factor 
and the relevant double beta decay nuclear matrix element, which is free of un-
known parameters. Thus, the value of the double beta decay nuclear matrix ele-
ments is directly determined by the measured experimental half lives of double 
beta decays. As a result, double beta decay provides a rigorous test of nuclear 
structure calculations. The double beta decay is already well established experi-
mentally for a couple of isotopes. Because of the enormous energy release, the 
transition from the ground state 0+ of the initial to the ground state 0+ of the fi-
nal nuclei is the most favored for experimental study of this unusual phenome-
non. Transitions to the 2+ and 0+ excited states of the final nucleus have lately 
received more study [9]-[20]. 

Because many observable quantities are acquired from one-body operators, 
coefficients of fractional parentage (CFP) are quite useful. In addition, there is a 
resurgence of interest in experiments involving single nucleon transfer studies in 
the 1p shell region [21]. As an example, the odd-mass isotopes 5,7He are particle- 
unbound [22]. In the framework of an R-matrix analysis, the data provide the 
neutron spectroscopic factor, which describes to what extent the total angular 
momentum quantum number 3 2J π −=  ground state of 7He can be regarded 
as a 6

3 2He 1p⊗  configuration, where the symbol ⊗  means tensor product of 
the single-particle Hilbert space. The spectral factor is a fundamental quantity 
that characterizes the single-particle nature of nuclear excitation and is hence 
consequently an important test of wave functions derived using newly estab-
lished methods [23].  

Heavy cluster emission and super-asymmetric fission have been studied theo-
retically since the late 1970s [24]. Cluster radioactivity is the phenomena of ra-
dioactive nuclei emitting particles heavier than the alpha particle spontaneously 
[25]. This process can be thought of as a case of strong asymmetric fission [26] 
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or as a decay process involving cluster formation and tunneling through the bar-
rier, analogous to alpha decay [27]. The penetrability of the pre-scission com-
ponent of the barrier was proven to be similar to the super asymmetric fission 
model by interpreting the cluster preformation probability within a super asym-
metric fission model as the penetrability of the pre-scission part of the barrier 
[28] [29] [30] [31]. Rose and Jones [32] validated this occurrence in the radioac-
tive decay of 14C from 223Ra in 1984, and Alexandrov et al. [33] confirmed it a 
few months later. Since then, the 14C decay of many isotopes of Ra nuclei and 
many other heavy cluster decays have been observed [34].  

With the advent of heavy ion beams for inducing multi-particle transfer reac-
tions, a wealth of data from nuclei with a large variety of nucleon numbers has 
become available. The no-recoil, zero-range distorted wave Born approximation 
(DWBA) algorithms that are typically used to analyze light ion single-particle 
transfer data have been demonstrated to be insufficient in assessing the new stu-
dies. There have been some questions about how to properly extract structure 
information from less restrictive exact finite range DWBA computations [35]. 
Studying transfer amplitude between BCS-pair condensates and a proper tech-
nique for computing it is needed.  

In this work, I define the asymmetry many-pair density matrix and drive the 
recursive relations of the asymmetry many-pair density matrix. I demonstrate 
that it can be calculated very quickly and stored within small computer memory 
consumption. I also drive the pair transfer amplitude for double beta decay and 
the cluster transfer amplitude for cluster decay expressed by asymmetry many- 
pair density matrix. The manuscript is organized as following. In Section 2, I 
briefly introduce the pair condensate with zero generalized seniority of the 2N- 
particle system and the many-pair density matrix. Then in Section 3, I drive the 
relation between the cluster transfer amplitude and the asymmetry many-pair 
density matrix. Finally, Section 4 summarizes the work.  

2. Basic Expressions 

In this section I briefly review the many-pair density matrix and the simple rela-
tion between the Pauli-blocked normalizations and many-pair density matrix. 
The pair-creation operator  

† † † †P a a Pα α α α= =� �                             (1) 

creates a pair of particles on the single-particle level α  and its time-reversed 
partner α�  ( α α= −�� ). The coherent pair-creation operator  

† † † †1
2

P v a a v Pα α α α α
α α

= =∑ ∑�                       (2) 

creates a pair of particles with the real structure coefficients vα  that are distri-
buted coherently over the whole single-particle space. The summation index in 
Equation (2) is a pair index that only accounts for half of the single-particle 
space (for instance, only account for those single-particle levels with a positive 
magnetic quantum number m). The state with zero generalized seniority of the 
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2N-particle system in the presence of pairing correlations is  

( )†1 0 ,
N

N
N

Pφ
χ

=                         (3) 

where  

( )†0 0
NN

N P Pχ =                         (4) 

is the normalization factor. The pair creation and annihilation operators, †Pα ,  

and Pα  along with ( )† †1ˆ
2

N a a a aα α α α α= + � �  are the generators of a quasi-spin  

( )2su  algebra,  

( )† ˆ, 1 2 ,P P Nα β αβ αδ  = −                        (5) 

† †ˆ , .N P Pα β αβ αδ  =                          (6) 

The many-pair density matrix is introduced as  

( )1 2 1 2 1 2 1 2

† † † †
; 0 0 ,

p q p q

N qN N pt P P P P P P P Pα α α β β β α α α β β β

−−≡ ×� � � �        (7) 

where all the indices 1 2 pα α α� , 1 2 qβ β β�  are distinct, owing to the Pauli 
principle. Note that the 

1 2 1 2;p q

Ntα α α β β β� �  is real because of the real vα , so  

1 2 1 2 1 2 1 2; ;p q q p

N Nt tα α α β β β β β β α α α=� � � � . The normalization Nχ  defined in Equation (4) 
is the special case of Equation (7) when there is no α  and β  index,  

; .N
N tχ ≡                             (8) 

For convenience, I introduce [ ]1 2 rγ γ γ�  to represent a subspace of the origi-
nal single-particle space, by removing Kramers pairs 1 2 rγ γ γ�  of single-par- 
ticle levels from the latter. The Pauli-blocked many-pair density matrix is de-
fined as  

[ ]

( )

1 2
1 2 1 2 1 21 2 1 2

1 2

, † † †
;

† † † †

0

0 ,

r
r p qp q

r

N N p

N q

t P P P P P P P P P P

P P P P

γ γ γ
γ γ γ α α α β β βα α α β β β

γ γ γ

−

−

≡ ×

×

�
� � � � �

�
       (9) 

and Pauli-blocked normalization  

[ ] [ ] ( )1 2 1 2
1 2 1 2

, † † † †
; 0 0r r

r r

NN N
N t P P P P P P P Pγ γ γ γ γ γ

γ γ γ γ γ γχ ≡ =� � � �       (10) 

could be easily derived. Also, there is no duplicated P operator, and duplicated 
†P  operator in Equations (9) and (10), owing to the Pauli principle. The many- 

pair density matrix (7) and the Pauli-blocked many-pair density matrix (9) could 
be expressed by normalizations, and normalizations could be computed by re-
cursive relations [36], which means for a certain nucleus, if we know all vα  (or 

†ˆN N N Nn n a aα α α αφ φ φ φ= = ) of single-particle orbit, we could rapidly and 
accurately compute many-pair density matrix and normalizations [37]. 

3. Transfer Amplitude 

In the Section 2, I introduce the many-pair density matrix, of which the bra and 
the ket are of a same nucleus ( vα  is the same). In this section I drive the cluster 
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transfer amplitude to solve the issue with the inner product between two differ-
ent nuclei. Defining  

( )†1 0 ,
N

N
N

Pφ
χ

′ ′=
′

                       (11) 

where  

( ) ( )†0 0 ,
NN

N P Pχ′ ′ ′=                       (12) 

the inner product between Nφ  and Nφ′  is  

( ) ( )

( ) ( )

†

†

1 0 0

1 0 0

,

N N N N

NN

N N

NN

N N

N

N N

P P

P P

φ φ φ φ

χ χ

χ χ

χ χ

′ ′=

′=
′

′=
′

ϒ
=

′

                (13) 

where  

,P v Pα α
α

′ ′= ∑                           (14) 

and  

( ) ( ) ( ) ( )† †0 0 0 0 .
N NN N

N P P P P′ ′ϒ = =             (15) 

The asymmetry many-pair density matrix is defined as  

( ) ( )1 2 1 2 1 2 1 2

† † † †
; 0 0 .

p q p q

N qN pNu P P P P P P P Pα α α β β β α α α β β β

−−′≡ ×� � � �     (16) 

Now I drive the relation between 
1 2 1 2;p q

Nuα α α β β β� �  and Nϒ . By substituting 
Equation (14) into ( )N pP −′  and polynomially expanding, terms with 

1 2
, ,P Pα α �  

or 
p

Pα  vanish due to the Pauli principle, which is equivalent to Pauli block the 

1 2 pα α α�  indices from ( )N pP −′ . Thus, ( )N pP −′  could be replaced by  

( )1 2 p

N p

P
α α α

−

  
′

�
, where  

1 1 2 21 2
.

p pp
P P v P v P v Pα α α α α αα α α  
′ ′ ′ ′ ′≡ − − − −

�
�              (17) 

Next, use  

( ) ( )
( )

1 1 2 21 2 1 2 1 2

1 1 1
Others,

q qp p q

q q q

N p N p

N p q
q

N p

P P v P v P v P

P v P v P P

β β β β β βα α α α α α β β β

β β β β α β

− −

      

− −

−   

′ ′ ′ ′ ′= − − − −

′ ′ ′= +

� � �

�

�

�
    (18) 

where “Others” do not contribute and each contributing term must have the 
factor 

1 2 q
P P Pβ β β�  to annihilate 

1 2

† † †
q

P P Pβ β β�  resulting in the permutations  
q

N pP −  in the last step.  
Treating ( )† N q

P
−

 similarly, Equation (16) becomes  
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( )
( )

( ) ( )
( )

1 2 1 2 1 2 1 2

1 11

1 1 1

1 2 1 2

1 2 1 2

;

† † † † †

2

0

0

! !

!

,

p q p q

q pq

p q q

p q

p q

N q p
N p N q

N p q

N p q

N p q

u P P v v v v v v

P P P P P

P P P P P

N p N q
v v v v v v

N p q

α α α β β β α α α β β β

β β α αα β

α α β β α β

α α α β β β

α α α β β β

− −

− −

  

− −

  

  
− −

′ ′ ′=

′×

×

− −
′ ′ ′= ×

− −  

×ϒ

� �

�

�

� �

� �

� �

� �

� �

       (19) 

where  

( )
( )

( )

( )

1 2 1 2

1 11

1 1 1

1 1

1 1

† † † † †

† † † † †

0

0

0

0 .

p q

q pq

p q q

q p

p q

N p q

N p q

N p q

N p q

N p q

P P P P P

P P P P P

P P P P P

P P P P P

α α α β β β
β β α αα β

α α β β α β

β β α α

α α β β

− −  
− −   

− −

  

− −

− −

′ϒ =

×

′=

×

� �

�

�

� �

� �

� �

� �

        (20) 

From Equation (2), (5) and (6) it is easy to derive the identity  

( ) ( )( ) ( ) ( ) ( )1 12† † † †0 1 0 1 0 .
N N N

P P v N P v N N P Pα α α α

+ −
= + − +    (21) 

Now premultiplication with ( )0 NP′  gives the result  

( ) ( ) ( )21
; ;1 1 .N N

Nu v N v N N uα α α α
+ = + ϒ − +               (22) 

Based on Equations (14) and (15), Nϒ  could be expressed as  

( ) ( )1 †
;0 0 .

NN N
N v P P P v uα α α α

α α

−′ ′ ′ϒ = =∑ ∑             (23) 

Substituting ( ) [ ]1
; 1N

Nu v N α
α α
+ = + ϒ  and [ ]

; 1
N

Nu v N α
α α −′= ϒ  implied from Equa-

tion (19) into (22) and (23), I get the recursive relations  
[ ]

1,N NN v v α
α α

α
−′ϒ = ϒ∑                      (24) 

[ ] [ ]2
1,N N NN v vα α

α α −′ϒ − ϒ = ϒ                    (25) 

with initial value 0 0 0 1ϒ = =  and [ ] †
0 0 0 1P Pα

α αϒ = = . This is because by 
definition the norm of all the orthonormal basis for the Hilbert space is 1 in 
quantum mechanics, with no exceptions for vacuum. Knowing [ ]

0
αϒ , I could 

compute 1ϒ  by Equation (24), and then [ ]
1
αϒ  by Equation (25). Equations 

(24) and (25) are also valid in the blocked subspace [ ]1 2 rγ γ γ� . For example, in 
[ ]β  they read  

[ ] [ ]
1 ,N NN v vβ αβ

α α
α

−′ϒ = ϒ∑                     (26) 

[ ] [ ] [ ]2
1 ,N N NN v vβ αβ αβ

α α −′ϒ − ϒ = ϒ                   (27) 

with initial value [ ] † †
0 0 0 1P P P Pαβ

α β β αϒ = = .  
So by definition, the spectroscopic factor between an odd nucleus †

1Naα φ −′  
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and an even nucleus Nφ  is  

( ) ( )

[ ]

1 1

1

1

1

1

1 †

1

;
1

1

1

0 0

,

N N

NN

N N

N

N N

N

N N

a a

P P P

u

Nv

αα α α

αα
α

αα
α

α
α

αα

κ φ φ

δ

χ χ
δ

χ χ

δ
χ χ

−

−

−

−

−

−

′=

′=
′

=
′

ϒ
=

′

�

�

�

               (28) 

the pair transfer amplitude is  
[ ]

1
1

1

,N
N N

N N

Nv
P

α
α

αα ακ φ φ
χ χ

−
−

−

ϒ′= =
′�                  (29) 

and the cluster transfer amplitude is  

( ) ( )

( )

1 2 2 1 1 2

1
1

1
1 2

1 2

1 2

1

1

†

;

0 0

!
.

!

p p p

p

p

p

p

N N

NN p

N p N

N

N p N

N p

N p N

P P P

P P P P

u

N v v v

N p

αα α α α α αα α α α

αα
α α

αα
α α α

α α α
α α α

αα

κ δ φ φ
δ

χ χ
δ

χ χ

δ
χ χ

−

−

−

−

  
−

−

′=

′=
′

=
′

ϒ
=

′−

� � ��

�

�
�

�

�

�

�

�

       (30) 

The Equation (28), (29) and (30) can be used in computer program to com-
pute any kinds of nuclear transfer amplitude between two given nuclei, since all 
parameters [the paired particle number N, the number of paired particle to 
transfer p, the structure coefficients vα  and vα′ , the normalization factors Nχ  
and Nχ′ , and the transfer factors Nϒ  which can be compute by recursive rela-
tions (24) and (25)] are known. 

4. Summary 

In summary, I propose a new algorithm that uses recursive relations to compute 
spectroscopic factor, pair transfer amplitude and cluster transfer amplitude. This 
work starts from the inner product between two different nuclei. In order to 
compute the product, I define the asymmetry many-pair density matrix and 
drive its recursive relations. The recursive relations can be calculated very quickly 
and stored within small computer memory consumption, which is the founda-
tion of performing the next step. Due to the properties of the recursive relations, 
it could be easy to compute the transfer amplitude such as the spectroscopic 
factor, the pair transfer amplitude and the cluster transfer amplitude using the 
asymmetry many-pair density matrix. 
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