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Abstract 
We consider a system modeled by a harmonic oscillator of frequency ω , 
coupled to the scalar potential inside a reflecting sphere of radius R. We use 
dressed states introduced originally in [1] and recently employed in [2] to 
present a non-perturbative unified description of the decay process of the 
system, in free space and in the case of the system being confined in a finite 
cavity. In the situation that we start from the initial condition that the system 
is in the first excited state, we give exact formulas to describe its time evolu-
tion for a cavity of arbitrary size. In the particular case of a very large cavity 
(free space), we recover the behaviour expected from perturbation theory in 
the limit of the small coupling constant. In the case of a very small cavity, our 
results are in good agreement with experimental observations. 
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1. Introduction 

Exact solutions to problems in physical sciences are known to researchers since a 
long time ago to be a rather rare situation. It is a common feature of different 
branches of physical sciences, such as celestial mechanics, field theory and statis-
tical physics, that the exact solution of coupled equations describing that the 
physics of interacting bodies is a very hard problem. In statistical physics and 
constructive field theory, general theorems can be derived using cluster-like ex-
pansions and other related methods [3]. In some cases, these methods allow the 
rigorous construction of field theoretical models (see for instance [4] and other 
references therein), but they are not of great usefulness in calculations of a pre-
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dictive character. Actually, apart from computer calculations in lattice field 
theory, the only available method to solve this kind of problem, except for a few 
special cases, is perturbation theory. The method, originally introduced to deal 
with orbital problems in celestial mechanics, has been extremely successful since 
the discovery of Neptune, treated as a “perturbation” to the orbit of Uranus by 
Le Verrier in 1846. In modern physics, a prototype situation, for instance in ab-
elian gauge theories, is a system composed of a charged particle described by a 
matter field interacting with a neutral (radiation) field through some (in general 
non-linear) coupling characterized by some parameter g, usually named the 
coupling constant or the charge of the particle. The perturbative solution to this 
situation is obtained by means of the introduction of bare, non-interacting mat-
ter and radiation fields, which are associated with bare quanta, the interaction 
being introduced order by order in powers of the coupling constant in the per-
turbative expansion for the observables. Perturbative Quantum Field Theory 
gives remarkably accurate results in Quantum Electrodynamics and in Weak in-
teractions. In high energy physics, asymptotic freedom allows applying Quan-
tum Chromodynamics in its perturbative form and very important results have 
been obtained in this way in the last decades. However, as a matter of principle, 
due to the non-vanishing of the coupling constant, the idea of a bare particle as-
sociated with a bare matter field is actually an artifact of perturbation theory and 
is physically meaningless. A charged physical particle is always coupled to the 
gauge field, in other words, it is always “dressed” by a cloud of quanta of the 
gauge field (photons, in the case of Electrodynamics). In perturbation theory, 
this dressing of the charged particle is done by the renormalization procedure, 
order by order in powers of the renormalized coupling constant. In practice, we 
are limited to relatively small orders, calculations becoming very involved at 
higher orders. In spite of its wide applicability, there are situations where the use 
of perturbation theory is not possible, as in the low energy domain of Quantum 
Chromodynamics, where confinement of quarks and gluons takes place. In this 
particular situation, no analytical approach in the context of Quantum Field 
Theory is available up to the present moment. There are other situations in the 
domain of Atomic Physics, Cavity Electrodynamics and Quantum Optics, where 
perturbation methods are of little usefulness, for instance, in resonant effects as-
sociated with the coupling of atoms with strong radiofrequency fields [5]. The 
theoretical understanding of these effects on perturbative grounds requires the 
calculation of very high-order terms in perturbation series, which makes the 
standard Feynman diagrams technique practically unreliable in those cases [5]. 
The trials of treating non-perturbative such kinds of systems have led to the idea 
of dressed atom, introduced in [6] [7]. Since then this concept has been used to 
investigate several situations involving the interaction of atoms and electromag-
netic fields [8] [9] [10]. The core of theoretical difficulties is the non-linear cha-
racter of the problem, which implies, as noted above, very hard mathematical 
problems to be dealt with. A way to circumvent these mathematical difficulties is 
to assume that under certain conditions the coupled atom-electromagnetic field 
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system may be approximated by the system composed of a harmonic oscillator 
coupled linearly to the field through some effective coupling constant g. This is 
the case in the context of the general QED linear response theory, where the 
electric dipole interaction gives the leading contribution to the radiation process 
[11] [12] [13]. Linear approximations of this type have been applied in cavity 
QED, in particular to the theoretical investigation of higher-generation Schro-
dinger cat-states in high-Q cavities, as has been done for instance in [14]. Also, 
approaches of this type have been used in condensed matter physics for studies 
of Brownian motion and in quantum optics to study decoherence, by assuming a 
linear coupling between a cavity harmonic mode and a thermal bath of oscilla-
tors at zero temperature [15] [16]. In fact, such an idea of confining the system 
in a finite volume is present since a long time ago in the literature as a kind of 
regularization mechanism to avoid divergences present in the continuous ma-
thematical language used in free space computations [17]. This device is intro-
duced to make the eigenvalue problem be mathematically well defined, but the 
limit of taking afterwards an infinite volume is not trivial [1] [17]. In particular, 
as is stressed in the appendix of [17], the states in a continuous formulation 
cannot simply be considered as the infinite volume limit of confined eigenstates. 
More recently very similar ideas have been employed in radiation theory [18]. 

In former works [2] [19] [20], we have presented separate studies for a quan-
tum small system in a cavity; in [19], the conditions for the existence of such a 
static system were studied and in the second one [20], we have investigated the 
time evolution of the system starting from a given excited state. In the present 
manuscript, we intend to present a unified treatment of both situations, in a 
small cavity and a very large sphere (free space). 

We consider a system composed of an atom (approximated by a harmonic os-
cillator) coupled linearly to the scalar potential, the whole system being confined 
inside a reflecting sphere of radius R. From a mathematical point of view the 
structure of our problem is basically the same as that of the diagonalization of 
the Lee-Friedrichs Hamiltonian, which describes a two-level atom interacting 
with a scalar field, that has been studied, for instance in [21]. This means that 
the eigenfrequencies spectra of both coupled systems are basically the same. This 
similarity reflects a formal relation between our system and previous results in 
the literature for the interaction of a two-level atom with a field in the rotating 
wave approximation (RWA). We give a non-perturbative treatment to the 
field-atom system by introducing some dressed coordinates that allow dividing 
the coupled system into two parts, the dressed atom and the dressed field, which 
makes it unnecessary to work directly with the concepts of the bare atom, bare 
field and interaction between them. For instance, to describe the radiation 
process, having as initial condition that only the mechanical oscillator (the 
atom), 0q  be excited, the usual procedure is to consider the interaction term in 
the Hamiltonian written in terms of 0q  and the field modes iq  as a perturba-
tion, which induces transitions among the eigenstates of the free Hamiltonian. 
In this way, it is possible to treat approximately the problem having as initial 
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condition that only the bare mechanical oscillator (the atom) be excited. But as 
is well known this initial condition is physically not consistent in reason of the 
divergence of the bare oscillator frequency, due to the interaction with the field. 
The traditional way to circumvent this difficulty is by the renormalization pro-
cedure, introducing perturbative order by order corrections to the oscillator 
frequency. 

In this paper we adopt an alternative procedure, as in [1] and [2], we do not 
make explicit use of the concepts of interacting bare oscillator and field, de-
scribed by the coordinates 0q  and { }iq . We introduce dressed coordinates 

0q′  and { }iq′  for, respectively the dressed atom and the dressed field modes. In 
terms of these new coordinates a non-perturbative approach to the radiation 
process and the distribution of energy inside the cavity is possible. For com-
pleteness in the next section, we review the formalism and results of [2]. 

2. The Dressed State Approach 

We consider an atom approximated by a harmonic oscillator ( )0q t  of fre-
quency 0ω  (we will introduce below a renormalized frequency ω  which is 
physically meaningfull) coupled linearly to the scalar potential φ , the whole 
system being confined in a sphere of radius R centered at the oscillator position. 
The equations of motion are,  

( ) ( ) ( ) ( )2 3
0 0 0 0

2 d ,
R

q t q t gc tω φ δπ+ = ∫ r r r               (1) 

( ) ( ) ( )
2

2
02 2

1 , 2 .t gcq t
c t

φ φ δπ
∂

−∇ =
∂

r r                (2) 

Using a basis of spherically symmetric Bessel functions defined in the domain 
0 R< <r , the equations above can be written as a set of equations coupling the 
atom to the harmonic field modes,  

( ) ( ) ( )2
0 0 0

1
i i

i
q t q t q tω η ω

∞

=

+ = ∑                   (3) 

( ) ( ) ( )2
0 .i i i iq t q t q tω ηω+ =                    (4) 

In the above equations, g is a coupling constant (with dimension of frequency), 
2gη ω= ∆  and c Rω∆ = π  is the interval between two neighbouring field 

frequencies, 1i i c Rω ω ω+ − = π∆ =  and iq  stands for the harmonic modes of 
the field. Using the coordinate transformation r

rq t Qµ µ=  in the equations of 
motion and explicitly making use of the normalization condition ( )2

0 1N rtµµ= =∑ , 
we get,  

02 2 ,r rk
k

k r

t t
ηω

ω
=

−Ω
                       (5) 

( )

1
22 2

0 22 21
1

N
r k

k
k r

t
η ω

ω

−

=

 
 = +
 −Ω  

∑                    (6) 

with the subsidiary condition giving the eigenfrequencies spectrum,  
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2
2 2 2 2
0 2 2

1

N

k k

Nω η η
ω=

Ω
− −Ω =

−Ω∑                 (7) 

We consider for a moment as in [1], the problem of a harmonic oscillator 0q  
coupled to N other oscillators. In the limit N →∞  we recover our original sit-
uation of the coupling oscillator-field after redefinition of divergent quantities, 
in a manner analogous as renormalization is done in field theories. In terms of 
the cutoff N the coupled Equations (3) and (4) are simply rewritten taking the 
upper limit N instead of ∞  for the summation in the right hand side of Equa-
tion (3). Our system of 1N +  coupled oscillators 0q , { }iq  is described by the 
Hamiltonian,  

( )2 2 2 2 2 2
0 0 0 0

1

1 2 ,
2

N

k k k k k
k

H p q p q q qω ω ηω
=

 = + + + −  
∑           (8) 

which can be turned to principal axis by means of a point transformation, 
r

rq t Qµ µ= , r
rp t Pµ µ= , performed by an orthonormal matrix ( )rT tµ= , ( )0, kµ = ,

1,2, ,k N=  , 0, ,r N=  . The subscript 0 and k refer respectively to the atom 
and the harmonic modes of the field and r refers to the normal modes. The 
transformed Hamiltonian in principal axis reads,  

( )2 2 2

0

1 ,
2

N

r r r
r

H P Q
=

= +Ω∑         (9) 

where the rΩ ’s are the normal frequencies corresponding to the possible collec-
tive oscillation modes of the coupled system. Using the coordinate transforma-
tion r

rq t Qµ µ=  in the equations of motion and explicitly making use of the 
normalization condition ( )2

0 1N rtµµ= =∑ , we get,  

02 2 ,r rk
k

k r

t t
ηω

ω
=

−Ω
                        (10) 

( )

1
22 2

0 22 21
1

N
r k

k
k r

t
η ω

ω

−

=

 
 = +
 −Ω  

∑                     (11) 

with the subsidiary condition giving the eigenfrequencies spectrum, 
2

2 2 2 2
0 2 2

1

N

k k

Nω η η
ω=

Ω
− −Ω =

−Ω∑                  (12) 

There are 1N +  solutions rΩ  to Equation (12), corresponding to the 1N +  
normal collective oscillation modes. It is easily seen that if 2 2

0 Nω η> , Equation 
(12) yields only positive solutions for 2Ω , what means that the system oscillates 
harmonically in all its modes. Indeed, in this case the left hand term of Equation 
(12) is positive for negative values of 2Ω . Conversely the right hand term is 
negative for those values of 2Ω . Thus there is no negative solution of that equa-
tion when 2 2

0 Nω η> . On the other hand, it can be shown that if 2 2
0 Nω η< , 

Equation (12) has a single negative solution 2
−Ω . This means that there is an os-

cillation mode whose amplitude varies exponentially and that does not allows 
stationary configurations. We will not care about this last situation. Nevertheless 
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it is interesting to note that in a different context, it is precisely this negative 
squared frequency solution (runaway solution) that is related to the existence of 
a bound state in the Lee-Friedrichs model. This solution is considered in [22] in 
the framework of a model to describe qualitatively the existence of bound states 
in particle physics. 

Thus we take 2 2
0 Nω η>  and define the renormalized oscillator frequency 

ω , 2 2
0 Nω ω η= − . In the limit N →∞  the meaning of the frequency re-

normalization becomes clear. It is exactly the analogous of a mass renormaliza-
tion in field theory, the infinite 0ω  being chosen in such a way as to make the 
renormalized frequency ω  finite and equal to the observed oscillator frequency. 
In terms of the renormalized frequency Equation (12) can be writen, after some 
manipulations, in the form [1],  

2

cot 1 .R c R
c g R gc

ω Ω Ω  = + −   Ω   π π
                 (13) 

The solutions of Equation (13) with respect to Ω  give the spectrum of ei-
genfrequencies rΩ  corresponding to the collective normal modes. The trans-
formation matrix elements turning the oscillator-field system to principal axis is 
obtained taking the limit N →∞ , after some rather long but straightforward 
manipulations in [1]. They read,  

( ) ( )
0 02 222 2 2 2 2

; .
1 3

2 2 2

r r rkr
k

k r
r r r

t t t
R gR
gc c

ηω
ω

ω ω

Ω
= =

−Ω
Ω − + Ω − + Ω

π
π

   (14) 

3. Dressed States and the Distribution of Energy inside the  
Cavity 

We define below some coordinates 0q′ , iq′  associated to the dressed atom and 
the dressed field. These coordinates will reveal themselves to be appropriate to 
give an appealing non-perturbative description of the atom-field system. We 
start from the eigenstates of our system, represented by the normalized eigen-
functions,  

( ) ( )0 1 2

1
2

0, 2 ! e ,s ss s
s

i n tn s
n n n s n s

s
Q t n H Qφ

− − Ω− ∑
  Ω

= Γ      
∏





       (15) 

where 
snH  stands for the sn -th Hermite polynomial and 0Γ  is the norma-

lized vacuum eigenfunction. Let us introduce dressed coordinates 0q′  and { }iq′  
for, respectively the dressed atom and the dressed field, defined by [1],  

,r r
r

r
q t Qµ
µ µ

ω Ω′ = ∑
 

                        (16) 

valid for arbitrary R and where { }, iµω ω ω= . In terms of the bare coordinates 
the dressed coordinates are expressed as,  

1; .r r
r

r
q q t tµ µν ν µν µ ν

ν µ

α α
ω

′ = = Ω∑ ∑                  (17) 
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Let us define for a fixed instant the complete orthonormal set of functions [1],  

( ) ( )0 1

1
2

02 ! ,q H qµ

µ

κ µ
κ κ µ κ µ

µ

ω
ψ κ

−−
  

′ ′  = Γ
    

∏




          (18) 

where 0 , iq q qµ′ ′ ′= , { }, iµω ω ω= . Note that the ground state 0Γ  in the above 
equation is the same as in Equation (15). The invariance of the ground state is 
due to our definition of dressed coordinates given by Equation (16). Each func-
tion ( )

0 1
qκ κψ ′



 describes a state in which the dressed oscillator qµ′  is in its 

µκ -th excited state. Using Equation (16) the functions (18) can be expressed in 
terms of the normal coordinates rQ . But since (15) is a complete set of ortho-
normal functions, the functions (18) may be written as linear combinations of 
the eigenfunctions of the coupled system (we take 0t =  for the moment),  

( ) ( ) ( )0 1
0 1 0 1 20 1

0 1

0 ,0 ,n n
n n n

n n
q T Qκ κ κ κψ φ′ = ∑ 

 



             (19) 

where the coefficients are given by,  

( )0 1
0 1 0 1 20 1

0 d ,n n
n n nT Q κ κκ κ ψ φ= ∫

 

                 (20) 

the integral extending over the whole Q-space. 
We consider the particular configuration ψ  in which only one dressed os-

cillator qµ′  is in its N-th excited state, all other being in the ground state,  

( ) ( ) ( )
1
2

00 0 2 ! .N
NN q N H qµ

µµ

ω
ψ

−−
 

′ ′ = Γ
 
 

 



            (21) 

The coefficients (20) can be calculated in this case using Equations (20), (18) 
and (16) with the help of the theorem [23],  

( )
( )

( ) ( )0 1

0 1
0 1

22

2

0 1
0 1

0 1
0 1

1
!

! !

rN r
rr

r
N

rr
r

m m

m m
m m N

t Q
t H

N t

t t
H Q H Q

m m

µ

µ

µ

µ µ

+ + =

 Ω
        
 
 

   Ω Ω
=      

  

∑
∑

∑

∑








  

     (22) 

We get,  

( ) ( ) ( )0 10 1

1
2

0 1
0 0

0 1

! ,
! !

n nn n
N

NT t t
n n µ µµ

 
=  
 



 





               (23) 

where the subscripts 0, iµ =  refer respectively to the dressed atom and the 
harmonic modes of the field and the quantum numbers satisfy the constraint 

0 1n n N+ + = . 
In the following we focus our attention on the behaviour of the system with 

the initial condition that only one dressed oscillator qµ′  (the dressed atom or 
one of the modes of the dressed field) be in the N-th excited state. We will study 
in detail the particular case 1N = , which will be enough to have a clear under-
standing of our approach. Let us call 1

µΓ  the configuration in which only the 
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dressed oscillator qµ′  is in the first excited level. We have from Equations (21), 
(19), (23) and (16) the following expression for the time evolution of the 
first-level excited dressed oscillator qµ′ ,  

( ) ( ) ( )1 1 0 ,t f tµ µν ν

ν
Γ = Γ∑                     (24) 

where the coefficients ( )f tµν  are given by  

( ) e .si ts s

s
f t t tµν

µ ν
− Ω= ∑                      (25) 

From Equation (24) we see that the initially excited dressed oscillator natural-
ly distributes its energy among itself and all other dressed oscillators as time goes 
on, with probability amplitudes given by Equation (25). If the dressed oscillator 

0q′  (the atom) is in its first excited state at 0t = , its decay rate may evaluated 
from the time evolution equation,  

( ) ( ) ( )0 0
1 1 0 .t f tν ν

ν
Γ = Γ∑                    (26) 

In Equation (26) the coefficients ( )0f tν  have a simple interpretation: 
( )00f t  and ( )0if t  are respectively the probability amplitudes that at time t 

the dressed atom still be excited or have radiated a photon of frequency iω . We 
see that this formalism allows a quite natural description of the radiation process 
as a simple exact time evolution of the system. We consider in the following the 
time evolution of the excited atom, in the cases of a very large and a very small 
cavity. 

1) A very large cavity 
In the case of a very large cavity our method generalizes what can be obtained 

from perturbation theory. The probability that the atom be still excited at time t 
can be obtained in continuous language from the amplitude given by Equation 
(25),  

( )
( )

2
00

20 2 2 2 2 2

2 e d .
i tgf t

gω

− Ω
∞ Ω Ω

=
Ω − + Ωπ

∫                (27) 

For large t ( 1t
ω

 ), but for in principle arbitrary coupling g, we obtain for 

the probability of finding the atom still excited at time t, the result [1],  

( )
2 2 2 2200

2 4 3 2 8 6

8 16e 1 e sin cos ,
24

gt gtg g g gf t t t
t t

ω ω
ωω ω ω

−π π−   π π π π
 

π π
= + + + +  

 
   (28) 

where 
2 2

2

4
gω ω= −

π
 . In the above expression the approximation 1t

ω
  

plays a role only in the two last terms, due to the difficulties to evaluate exactly 
the integral in Equation (27) along the imaginary axis using Cauchy’s theorem.  

The first term comes from the residue at 
2
giωΩ = +
π

  and would be the same  

if we have done an exact calculation. If we consider in Equation (28) g ω , 
which corresponds in electromagnetic theory to the fact that the fine structure 
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constant α  is small compared to unity (for explicit calculations we take below 
g ω α= ), we obtain the well known perturbative exponential decay law. 

2) A very small cavity 
Let us now consider the atom placed at the center of a very small cavity, i.e. 

that satisfies the condition that its radius be much smaller than the coherence 
lenght, R c g . To obtain the eigenfrequencies spectrum, we remark that 
from a numerical analysis of Equation (7) it can be seen that in the case of a 
small cavity radius R, its solutions are near the frequency values corresponding  

to the asymptots of the curve cot R
c
Ω 

 
 

, which correspond to the field modes  

i i c Rω = π . The smallest solution departs more from the first asymptot than the 
other larger solutions depart from their respective nearest asymptot. As we take 
larger and larger solutions, they are nearer and nearer to the values correspond-
ing to the asymptots. For instance, for a cavity radius R of the order of 10-2m and 

10~ 10 sω , only the lowest eigenfrequency 0Ω  is signicantly different from the 
field frequency corresponding to the first asymptot, all the other eigenfrequen-
cies , 1, 2,k kΩ =   being very close to the field modes k c Rπ . For higher val-
ues of ω  (and lower values of R) the differences between the eigenfrequencies 
and the field modes frequencies are still smaller. 

Thus to solve Equation (13) for the larger eigenfrequencies we expand the 

function cot R
c
Ω 

 
 

 around the values corresponding to the asymptots. We 

write,  

( ) ,  1, 2,k k
c k k

R
εΩ + =

π
=                   (29) 

with 0 1kε< < , satisfying the equation,  

( ) ( )
21cot 1 .k k

k

c Rk
gR k gc

ωε ε
ε

 
= + + − +  

π
π

            (30) 

But since for a small cavity every kε  is much smaller than 1, Equation (30) 
may be linearized in kε , giving,  

2 2 2 2 2 .k
gcRk

c k R
ε

ω−
π

π
=                       (31) 

Equations (29) and (31) give approximate solutions to the eigenfrequencies 
, 1, 2,k kΩ =  . 

To solve Equation (13) with respect to the lowest eigenfrequency 0Ω , let us 
assume that it satisfies the condition 0 1R cΩ   (we will see below that this 
condition is compatible with the condition of a small cavity as defined above). 
Inserting the condition 0 1R cΩ   in Equation (13) and keeping up to qua-
dratic terms in Ω  the solution for the lowest eigenfrequency 0Ω  can be wri-
ten,  

0 .
1 gR

c

ω
Ω =

+
π

                         (32) 
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Consistency between Equation (32) and the condition 0 1R cΩ   gives a 
condition on the cavity radius,  

22

2

41 1  .
2

c gR
g g

ω
ω

π
π

     + +         
                (33) 

Let us define the coupling constant g to be such that g ωα= , where α  is 
the fine structure constant, 1 137α = . Then the factor multiplying c g  in the 
above equation is ~0.07 and the condition R c g  is replaced by a more re-
strictive assumption ( )0.07R c g

. For a typical infrared frequency, for in-
stance 11~ 2.0 10 sω × , our calculations are valid for a radius 310 mR −


. 

From Equation (14) and using the above expressions for the eigenfrequencies 
in a small cavity, we obtain the matrix elements,  

( ) ( )2 20
0 0 24 3

3

1 21 ;

1 1
2

kgR gRt t
c ckg g RR

c c
ω

= ≈ − ≈

+ + +

π
ππ

π

      (34) 

To obtain the above equations we have neglected the corrective term kε , 
from the expressions for the eigenfrequencies kΩ . Nevertheless, corrections in 

kε  should be included in the expressions for the matrix elements k
kt , in order 

to avoid spurious singularities due to our approximation. 
Let us consider the situation where the dressed atom is initially in its first ex-

cited level. Then from Equation (25) we obtain the probability that it will still be 
excited after a ellapsed time t,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

4 2 2200 0 0
0 0 0 0

1

2 2

0 0
, 1

2 cos

cos .

k
k

k

k l
k l

k l

f t t t t t

t t t

∞

=

∞

=

= + Ω −Ω

+ Ω −Ω

∑

∑
          (35) 

Using Equations (34) in Equation (35), we obtain  

( ) ( )

( )

200 2 2 2
02

1

2
2 2 2

, 1

11 4 cos

4 1 cos ,

k
k

k l
k l

f t t
k

t
k l

δδ δ δ

δ

∞

=

∞

=

 π π  π 

π

= − + + − Ω −Ω

+ Ω −Ω

∑

∑
       (36) 

where we have introduced the adimensional parameter 1Rg cδ =  , corres-
ponding to a small cavity and we remember that the eigenfrequencies are given 
by Equations (29) and (31). As time goes on, the probability that the atom be ex-
cited attains periodically a minimum value which has a lower bound given by,  

( )( ) 2200 25 14Min 1 .
3 9

f t δ δπ π
= − +               (37) 

For a frequency ω  of the order 14~ 4.00 10 sω ×  (in the red visible), which 
corresponds to ~ 0.005δ  and 62 ~ 1.0 10 mR −× , we see from Equation (37) 
that the probability that the atom be at any time excited will never fall below a 
value ~0.97, or a decay probability that is never higher that a value ~0.03. In 
other words, atoms having such emission frequency, placed in a such a small 
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cavity in the first excited level, will be stable in the excited state to the order of 
97%. It is interesting to compare this result with experimental observations in 
[24] [25], where stability is found for atoms emiting in the visible range placed 
between two parallel mirrors a distance 61.1 10 mL −= ×  apart from one another. 
For lower frequencies the size of the cavity ensuring quasi-stability of the same 
order as above, for the excited atom may be considerably larger. For instance, for 
ω  in a typical microwave value, 10~ 2.00 10 sω ×  and taking also ~ 0.005δ , 
the probability that the atom remain in the first excited level at any time will be 
larger than a value of the order of 97%, for a cavity radius 2~ 1.0 10 mR −× . The 
probability that the atom remain excited as time goes on oscillates with time 
between a maximum and a minimum values and never departs significantly 
from the situation of stability of the atom in the excited state. Indeed for an 
emission frequency 14~ 4.00 10 sω ×  (in the red visible) considered above and 

6~ 1.0 10 mR −× , the period of oscillation between the minimum and maximum 
values of the probability that the atom be excited, is 

141~ 10 s
12

T −× , while for 10~ 2.00 10 sω × , and 2~ 1.4 10 mR −× , the period is 

101.4~ 10 s
6

T −× . 

4. Concluding Remarks 

We have used in this paper a formalism that allows a unified approach to the 
radiation process by an atom, in rather different situations, as the atom is con-
fined in a very small cavity or in free space. The behaviour of atoms confined in 
small cavities is completely different from the behaviour of an atom in free space 
or in a large cavity. In the first case, the emission process is very sensitive to the 
presence of boundaries, a fact that has been pointed out since a long time ago in 
the literature [26] [27] [28]. Our dressed states approach gives a unified descrip-
tion for the dressing of the atom by the field modes and the emission process in 
a cavity of arbitrary size, which includes microcavities and very large cavities 
(free space emission). We recover here with our formalism the experimental ob-
servation that excited states of atoms in sufficiently small cavities are stable. We 
are able to give formulas for the probability of an atom to remain excited for an 
infinitely long time, provided it is placed in a cavity of appropriate size. For an 
emission frequency in the visible red, the size of such cavity is in good agree-
ment with experimental observations [24] [25]. Also, our approach gives results 
in good agreement with previous theoretical results for the emission in free 
space, generalizing the well-known exponential decay law. Moreover, the de-
tailed behaviours which we obtain with our formalism are very different in the 
two situations: The atom in a very large cavity has a probability decay rate 
weekly oscillating and monotonically varying with time (the probability that the 
atom be excited decreases almost exponentially with increasing time). In the case 
of an excited atom placed in the center of a very small cavity, the probability that 
it remains excited as time goes on oscillates very rapidly with time and never de-
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parts significantly from the situation of stability of the atom in the excited state. 
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