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Abstract 
The novel polycrystalline Bi0.85Gd0.15CuxFe1−xO3 (x = 0, 0.025, 0.05, 0.075, 0.10) 
multiferroics are synthesized by the usual solid-state reaction route. The syn-
thesis of the desired phase has been verified by the X-ray Diffraction (XRD) 
patterns. With major structural phases, few traces of secondary phases of 
Bi2Fe4O9 and Bi25FeO40 appear for all the compositions. A discontinuous se-
ries of structural changes with varying compositions are observed for the 
doped samples. The bulk density ( Bρ ) increases with Cu content reaches the 
highest at x = 0.05 and then declines. The complex initial permeability and 
dielectric characterizations are performed by Wayne Kerr Impedance Ana-
lyzer. The x = 0.05 samples having maximum density exhibit the highest 
permeability ( iµ′ ) implying a close relation between iµ′  and the density. 
The reduction of iµ′  at higher Cu concentration is due to the low density of 
the samples associated with the increased intragranular pores. The dielectric 
constant ( ε ′ ) is measured against frequency in the range 1 kHz - 10 MHz. It 
is perceived that ε ′  falls with the rise in frequency up to 100 kHz. This di-
electric dispersion is observed at a lower frequency as a result of interfacial 
polarization outlined by Maxwell-Wagner. The maximum ε ′  is obtained 
for x = 0.025 composition. In the low-frequency range, the AC conductivity 

ACσ  is practically independent of frequency and resembles the DC conduc-
tivity ( DCσ ). In the vicinity of high frequency recognized as the hopping re-
gion, ACσ  rises since the conductive grains are more active at high frequen-
cies. The co-doping with Gd and Cu in BiFeO3 ceramics enhances the mag-
netic and dielectric properties of the ceramics and hence can be utilized for 
fabricating multifunctional devices.  
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1. Introduction 

Multiferroic materials have lately achieved great attraction because of their ver-
satile device applications and triggering new physics. Multiferroics combine 
various primary ferroic orders in a single phase [1]. Conventionally, multifer-
roics unite ferroelectricity and ferromagnetism or, more liberally, with every 
kind of magnetism [2]. The major attractive feature of multiferroic ceramic is 
their reputed magnetoelectric (ME) coupling, while a ferroic property is by and 
large improved by means of the conjugate field (magnetic fields alter magnetiza-
tion, electric fields alter polarization, and likewise). A magnetic field can adjust 
the electric polarization and an electric field can adjust the magnetization in a 
multiferroic [2]. 

In the recent past, the utilization of ferroelectric materials to transfer light into 
mechanical, electrical, or chemical energy has enticed vast attention for under-
standing the mechanisms in addition to applications in photovoltaic, photocata-
lytic, and photo-transducer devices [3]-[9]. The huge prospects for applications 
emanated from their distinctive ferroelectric properties and the spontaneous 
electric polarization owing to the disruption of powerful inversion symmetry 
[10]. Ferroelectrics can furthermore serve as novel candidates for photocatalysis 
with comparable advantages and mechanisms. Several researchers have estab-
lished that ferroelectric resources can perform improved photocatalysis than 
their counterparts. Among all the multiferroics, BiFeO3 (BFO) is an extensively 
studied material owing to its ferroelectric and magnetic transition temperature 
well above room temperature (RT) [11] [12]. In the last few years, a huge strug-
gle has been put to gain both durable ferroelectric (FE) and ferromagnetic (FM) 
polarizations. The stereo-chemically active 6s2 lone pair of Bi3+ is accountable for 
the ferroelectric process in BFO while the remnant moment from the canted Fe3+ 
spins’ structure is accountable for the weak ferromagnetic property of BFO [13]. 
The interaction between fields of magnetic and electric occurs as a result of lat-
tice distortion of BFO on the application of an electric or a magnetic field [14]. 
This puts forward novel paths to the recommendation and appliance of infor-
mation storage, spintronics, sensors, etc. The foremost troubles of BFO and ad-
ditional resources of this family are their huge leakage current density originat-
ing from charge defects, non-stoichiometry and impurity phases in BFO which 
creates it complicated to achieve a well-saturated ferroelectric hysteresis loop 
and small dielectric loss and hence obstructs its sensible applications [15] [16] 
[17]. In order to enhance the electrical properties of BFO, a number of research 
teams have tried to substitute with trivalent rare-earth ions such as La3+, Er3+, 
Dy3+, Sm3+ and Tb3+ at the Bi site of BFO [13] [18] [19]. The substitution has 
emanated in the decrease of the leakage current as well as upgrading of ferroe-
lectric properties of BFO reasonably. In addition, a few results confirmed that 
better ferroelectric parameters were strongly interconnected to the structural 
change resulting from rare earth doping [20] [21] [22]. Doping at Bi3+ site with 
rare earth and alkaline earth metal elements and doping at Fe3+ site with transi-
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tion metal elements have been lately studied [23] [24] [25] [26] [27] and im-
proved multiferroic properties have been reported. Li et al. studied the effect of 
La and Mn co-doping in BFO on structural and multiferroic properties of BFO 
[24]. The saturation magnetization and saturation polarization were found to be 
improved due to the co-doping. The effect of Nd and Mn co-doping on electrical 
and magnetic properties of BFO was investigated by Hu et al. [27]. The en-
hanced ferromagnetic property was attained owing to the structural transition 
from orthorhombic to tetragonal. The doping reduced the leakage current sig-
nificantly and hence improved the ferroelectric property. In the present research, 
we would like to investigate the response of Gd3+ and Cu2+ doping at Bi and Fe 
site of BFO respectively to the structural and multiferroic properties of BFO.  

2. Experimental 
2.1. Sample Preparation 

The multiferroic Bi0.85Gd0.15CuxFe1−xO3 (BGCFO) ceramics have been synthesized 
using conventional ceramic method. The various steps of the sample preparation 
method are shown in Figure 1. The high purity powers of Bi2O3 (99.9%), Gd2O3 
(99.9%), CuO (99.9%) and Fe2O3 (99.9%) are utilized as basic material for pro-
ducing BGCFO ceramics. At first, the required stoichiometric constituents are 
weighted and the weighted powders are blended thoroughly by grinding. Grind-
ing is performed to decrease the particle size to the micro level to facilitate the 
solid-state reaction to occur by atomic diffusion. In this case, mortar and pestle 
are utilized for grinding. Samples have been grinded for 6 hours. In hand milling 
process, particle size is decreased due to the friction of the powder with the pes-
tle. Finer particles can lessen the sintering temperature and time remarkably. 
The grinded powders are fired at 750˚C for 4 hours. For a better degree of un-
iformity, the fired powders were grinded again for 2 hours. Before making disk 
and toroid shaped samples 1 - 2 drops (depending on the amount of sample) of 
polyvinyl alcohol (PVA) are added as a binder. The disk and toroid shaped  
 

 
Figure 1. Various steps of conventional solid-state reaction method. 
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samples are made using a uniaxial hydraulic press with a pressure of 10 kN and 
15 kN, respectively. These disk and toroid shaped samples are sintered at 825˚C 
for 4 hours with a heating rate of 10˚C per minute. 

2.2. Characterization 

X-ray diffraction is a non-catastrophic technique for detection and quantitative 
determination of different structural phases of any material. To investigate crys-
talline phases of the samples PHILIPS PW 3040 X’pert PRO X-ray diffractome-
ter has been used. The samples are exposed to CuKα radiation of wavelength, λ = 
1.54178 Å with a primary beam of 40 kV and 30 mA with 0.02˚ sampling pitch 
and 1.0 second data collection step. 

A 2θ scan is taken from 20˚ to 70˚ to obtain probable elementary peaks and Ni 
filter is applied to diminish CuKα radiation.  

The X-ray density xρ  is measured applying the following expression: 

3g cmx
A

nM
N V

ρ =                          (1) 

where, n is the number of atoms per unit cell, NA is Avogadro’s number (6.02 × 
1023 mol−1), M is the molecular weight, V is volume of the unit cell. The porosity 
is calculated from the equation 

( )% 100%x B

x

P
ρ ρ
ρ
−

= ×                       (2) 

where, Bρ  is the bulk density which is measured by the formula: 

2B
m
r t

ρ =
π

                           (3) 

where m is the mass, r is the radius and t is the thickness of the pellet or ring 
[28]. 

Frequency dependent dielectric and magnetic characterization was performed 
at room temperature (RT) using WAYNE KERR Impedance Analyzer (Model 
No. 6500B). The real and imaginary part of complex initial permeability are cal-
culated using the formulae:  

0i SL Lµ′ =                           (4) 

tani iµ µ δ′ ′′=                          (5) 

where LS and L0 are the self-inductances of the sample with and without the core 
L0 is derived from the formula: 

2
0

0
N S

L
d

µ
=

π
                         (6) 

Here N is the number of turns of the coil (N = 5), S is the cross-sectional area 
and ( )1 2 2d d d= +  is the average diameter, where d1 and d2 are the inner and 
outer diameter of the toroidal shaped sample, respectively [29]. With a Vibrating 
Sample Magnetometer (VSM) the magnetic characterization of BBFSO is made 
at a maximum applied field of ±1 T at RT. The pellets are painted for dielectric 
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measurements with conducting silver paste on both sides to confirm good elec-
trical connection. The dielectric constant, ε ′ , is computed using the relation: 

0

Ct
A

ε
ε

′ =                           (7) 

where C, A and ɛ0 are the capacitance of the pellet, the cross-sectional area of the 
electrode and the permittivity of free space, respectively. 

The ac conductivity of the samples is estimated with the formula: 

0 tanacσ ωε ε δ′=                       (8) 

where ω  is the angular frequency and tanδ  is the dielectric loss. Real part 
( M ′ ) of dielectric modulus are computed applying the formulae:  

2 2M ε
ε ε

′
′ =

′ ′′+
                       (9) 

3. Results and Discussion 
3.1. Structural Characterization, Density and Porosity 

The XRD patterns of BGCFO ceramics are illustrated in Figure 2(a). The peaks 
in the XRD patterns have been pointed out with their equivalent miller indices. 
The XRD patterns verified the synthesis of desired ceramics with few trace of 
impurity phases of Bi2Fe4O9 and Bi25FeO40 [30] appeared for all the composi-
tions. The undoped sample exhibits orthorhombic perovskite structure. A dis-
continuous series of structural changes with varying composition are observed 
for the doped samples as illustrated in Figure 2(b). The composition x = 0.025 
exhibits rhombohedral structure and the other doped samples exhibit orthor-
hombic structure. The inconsistence structural change is due to the inhomoge-
neous diffusion of Cu in the lattice. 

Figure 3 indicates the change of xρ , Bρ  and P as a function of composition 
sintered at 825˚C. The xρ  is maximum for x = 0.025 which may be due to the 
structural transition. The Bρ  increases with Cu content reaches the highest at x 
= 0.05 and then reduces. The increase in Bρ  with Cu content is because of the 
fact that Cu stimulates grain development [31]. The decrease in Bρ  at higher  
 

 

Figure 2. XRD patterns of BGCFO (a) in the range 20˚ - 70˚ (b) between 27˚ and 30˚. 
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Figure 3. Variation of ρx, ρB and P of BGCFO as a function of composition. 
 
Cu content may be due to the expanded intragranular porosity resulting from 
higher rate of grain growth. Porosity degrades the material quality and high val-
ue of porosity is undesirable. The lowest P is obtained for x = 0.05 composition. 

3.2. Complex Initial Permeability 

Permeability is one of the leading factors used in assessing magnetic materials. 
Figure 4 indicates the change of iµ′  with frequency of BGCFO as a function of 
composition. The iµ′  persists quite steady over the whole frequency range for 
all the compositions. This is owing to the fact that their cut-off frequency falls 
outside the investigated frequency scale. The cut-off frequency is the frequency 
at which iµ′  gains 71% of its starting value. The above findings concurs well 
with the Globus model [32], which correlates the resonance frequency with 
permeability as given by ( )1 21 constanti rfµ − = . Conforming to this relation-
ship, the higher the value of iµ , the lower the value of rf  and vice-versa. The 

iµ′  goes up with Cu content up to x = 0.5 and then falls with additional rise in 
Cu content in the composition. The samples having maximum density show the 
highest iµ′  indicating a close relation between iµ′  and the density. The reduc-
tion of iµ′  at higher Cu concentration is because of the low density and defect 
of the samples resulting from the increased intragranular porosity. 

Figure 5 indicates the change of tan Mδ  with frequency of BGCFO in the 
frequency range 100 kHz - 120 MHz. It is noticed from the figure that lowest 
tan Mδ  is obtained at higher frequency for all the compositions. The alteration 
of RQF in terms of frequency is revealed in Figure 6. For applied implementa-
tion the RQF is frequently taken as a measure of performance. It is detected that 
RQF rises with the frequency and tends to show a peak at high frequency. The 
highest RQF is attained for the sample with x = 0.05 for which the highest den-
sity is obtained. 

3.3. Dielectric Property 

Figure 7 illustrates the alteration of ε ′  with frequency of BGCFO in the  
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Figure 4. Variation of iµ′  as a function of frequency of BGCFO in the frequency range 
100 kHz - 120 MHz. 
 

 

Figure 5. Variation of tan Mδ  as a function of frequency of BGCFO in the frequency 
range 100 kHz - 120 MHz. 
 

 

Figure 6. Variation of RQF as a function of frequency of BGCFO in the frequency range 
100 kHz - 120 MHz. 
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frequency range 1 kHz - 10 MHz. It is perceived that ε ′  goes down with rising 
frequency up to 100 kHz. This dielectric dispersion at low-frequency is due to 
Maxwell-Wagner [33] [34] type interfacial polarization in agreement with 
Koop’s phenomenological theory [35]. The interfacial polarization develops be-
cause of the heterogeneities of the sample following from porosity, interfacial 
defects and grain structure. These heterogeneities are produced in the sample 
during high temperature calcination and firing procedure. At higher frequencies, 
the ε ′  persists approximately frequency independent owing to the incapability 
of electric dipoles to go along the rapid change of the alternating applied electric 
field [36]. These frequency independent values are known as the static dielectric 
constant. The alteration of ε ′  with composition at 1 kHz frequency is indi-
cated in Figure 8. The ε ′  first goes up with Cu content and then goes down. 
The maximum ε ′  is obtained for x = 0.025 composition. Figure 9 demon-
strates the change of tan Eδ  with frequency. The tan Eδ  is often ascribed to 
ion relocation, ion oscillation and distortion and electric polarization. Ion relo-
cation is predominantly significant and strongly influenced by temperature and 
frequency. The losses owing to ion relocation rise at low-frequency and the 
temperature rises. The samples show low loss at high frequency because of the 
less mobility of charge carriers and might be useful for microwave applications. 
 

 

Figure 7. Variation of ε ′  with frequency of BGCFO in the frequency range 1 kHz - 10 
MHz. 
 

 

Figure 8. Variation of ε ′  with composition of BGCFO at 1 kHz frequency. 

https://doi.org/10.4236/jamp.2022.106138


S. C. Mazumdar et al. 
 

 

DOI: 10.4236/jamp.2022.106138 2034 Journal of Applied Mathematics and Physics 
 

 

Figure 9. Variation of tan Eδ  with frequency of BGCFO in the frequency range 1 kHz - 
10 MHz. 

3.4. Complex Impedance Spectra Analysis 

Figure 10 indicates the change of M ′  with frequency of the samples. The value 
of M ′  is low in the lower frequency part disclosing the relief of polaron hop-
ping and minor function of electrode effect [37] [38]. The value of M ′  rises 
with frequency for all the samples and shows a sharp rise at high frequency. This 
is because of the incapability of several dipoles to follow up the rapid varying 
electric field at high frequency.  

3.5. AC Conductivity 

The ACσ  is an essential factor for interpretation the conduction process in dif-
ferent materials. Figure 11 demonstrates the change of ACσ  with frequency at 
RT in the frequency range 1 kHz - 1 MHz. In lower part of the frequency, the 
conductivity is nearly frequency independent which resembles DC conductivity 
( DCσ ). The reason is that the resistive grain borders are more active at lower 
frequencies in agreement with the Maxwell–Wagner double layer model for di-
electrics. However, in the higher frequency side (above 10 kHz) known as the 
hopping region, ACσ  rises [39] because at higher frequencies the conductive 
grains become more active thereby increasing hopping of charge carriers [40] 
and obeys the following Joncher’s law: ( ) 0

s
AC Aσ ω σ ω= + , where ( )ACσ ω  is 

the total electrical conductivity, 0σ  is the frequency-independent dc conduc-
tivity, A is a temperature-dependent pre exponential factor known as the Uni-
versal Dynamic Response (UDR) [41] and s is the power law exponent which 
usually varies between 0 and 1 depending on the temperature. Alteration of 
log ACσ  in terms of logω  is depicted in Figure 12. The log ACσ  rises almost 
linearly with logω  for all the samples. The conduction mechanism in the 
low-frequency dispersive region mostly depends on the long-range hopping as-
sociated with grain boundaries [42] and that in the high frequency dispersive re-
gion is because of the restricted or reorientational short-range hopping inside 
the grain [42] [43]. 
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Figure 10. Real part (M') of electric modulus spectra of BGCFO in the frequency range 1 
kHz - 10 MHz. 
 

 

Figure 11. Variation of AC conductivity with frequency of BGCFO in the frequency 
range 1 kHz - 1 MHz. 
 

 

Figure 12. Variation of log ACσ  as a function of logω  of BGCFO. 

4. Conclusion 

The multiferroic BGCFO ceramics are synthesized by a cost-effective solid-state 
reaction technique. The XRD patterns verify the synthesis of the desired struc-
tural phase with few traces of impurity phases of Bi2Fe4O9 and Bi25FeO40. The 
composition x = 0.025 exhibits rhombohedral structure and the other doped 
samples exhibit orthorhombic structure. The xρ  is maximum for x = 0.025, 
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which may be due to the structural transition. The Bρ  increases with Cu con-
tent reaches a maximum at x = 0.05 and then decreases. The iµ′  rises with Cu 
content up to x = 0.5 and then falls with an additional rise in Cu content in the 
composition. The samples having maximum Bρ  exhibit the highest iµ′  and 
RQF implying a direct relation of iµ′  and RQF with Bρ . The dispersive cha-
racter of ε ′  at lower frequencies is due to Maxwell-Wagner type interfacial 
polarization. At higher frequencies, the ε ′  persists nearly constant with fre-
quency owing to the incapability of electric dipoles to follow up the rapid varia-
tion of the applied alternating electric field. The maximum ε ′  is obtained for x 
= 0.025 composition. The samples exhibit low loss at high frequency on account 
of the low mobility of charge carriers and can be used for microwave applica-
tions. In the low-frequency region, ACσ  remains almost constant but in the 
high frequency hopping region, ACσ  increases as the conductive grains are 
more active at high frequencies. 
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