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Abstract 
We present iterative numerical methods for solving the inverse problem of 
recovering the nonnegative Robin coefficient from partial boundary mea-
surement of the solution to the Laplace equation. Based on the boundary 
integral equation formulation of the problem, nonnegativity constraints in 
the form of a penalty term are incorporated conveniently into least-squares 
iteration schemes for solving the inverse problem. Numerical implementation 
and examples are presented to illustrate the effectiveness of this strategy in 
improving recovery results. 
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1. Introduction 

Consider the Robin boundary value problem for the Laplace equation on a 
smooth bounded domain 2RΩ ⊂ :  

0 in ,

on .

U
U pU g
ν

∆ = Ω

∂

+ = ∂Ω = Γ ∂

                 (1.1) 

Here ( ) 0p p x= ≥  is the Robin coefficient and ( ) 0g g x= ≥  is a prescribed 
input function on Γ . It is assumed that the support of p (denoted by 1Γ ) and 
the support of g are nonempty but non-overlapping. Then the Robin inverse 
problem is described as: to recover the Robin coefficient p on 1Γ  from given 
values of the solution 0U u=  on 0Γ ⊂ Γ  with 0 1Γ ∩Γ = ∅ . Such problems 
arise from the modeling of various nondestructive evaluation techniques where 
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the solution U can be measured directly on an accessible part 0Γ  of the boun-
dary in hope to extract the quantity of interest p defined on an inaccessible por-
tion 1Γ  of the boundary. For example, in the evaluation of metal-to-silicon 
contact quality in semiconductor transistors (e.g. [1] [2] [3]), voltage measure-
ments of U on an accessible 0Γ  in response to an applied current input pattern 
g are used to infer the contact quality modeled by p on the inaccessible contact 
window 1Γ . A similar situation arises from detection of material corrosion 
damages (e.g. [4] [5]), where static potential measurement u on an accessible 
part of the material boundary 0Γ  is taken to detect possible corrosion characte-
rized by the conductivity profile p on an inaccessible Γ . 

For this inverse problem, there have been many numerical studies in the lite-
rature, based either on the PDE model (e.g. [5] [6] [7] and references therein) or 
on an integral equation formulation (e.g. [3] [8] [9] and references therein). 
Most of these papers have focused on the recovery of the Robin coefficients by 
iterative schemes for the minimizers of some objective functional that consists of 
both a data fitting term and a certain form of regularization, and the nonnega-
tivity constraint for the Robin coefficient is often ignored, except for some sim-
ple truncation strategies on the side to ensure the well-posedness of the forward 
solver. It is well known that the inclusion of nonnegativity constraints improves 
the quality of solutions to ill-posed inverse problems when the quantity of inter-
est is known to be nonnegative (e.g. [10], Chapter 9). In this study, we propose a 
strategy to incorporate nonnegativity constraints in the iterative schemes, in the 
form of an additional term in the objective functional to penalize negativity 
throughout the iteration process. This approach is natural in the least-squares 
formulation for solving inverse problems or illposed problems in general and 
provides a convenient and computationally economical alternative to any con-
strained optimization methods. We demonstrate the simplicity of this strategy in 
both linear and nonlinear least-squares solution methods for the Robin inverse 
problem, and through numerical examples, we illustrate the effectiveness of the 
proposed approach in dealing with the ill-posedness, resulting in much im-
proved recovery results. 

Our presentation is organized as follows. In Section 2, we reformulate the 
problem (1.1) into its equivalent boundary integral equation formulation. Based 
on this formulation, we present two least-squares solution methods for the in-
verse problem in Section 3, with nonnegativity constraints incorporated into the 
iterative schemes. In Section 4, we conclude with discussions of numerical im-
plementation of the recovery algorithms, and examples of numerical results to 
illustrate how the added nonnegativity constraints have helped to improve solu-
tions to the inverse problem. 

2. Integral Equation Formulation 

Because the equation in (1.1) is Laplacian over the domain Ω  while the quan-
tities of interest, the Robin coefficient p and data measurement 0u , are both de-
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fined on the boundary Γ  only, it is natural and advantageous to formulate this 
boundary value problem (1.1) as a boundary integral equation on Γ . 

Let ( ),x yΦ = Φ  stand for the fundamental solution for the Laplacian in 
2R :  

( ) 1 1, ln for .
2

x y x y
x y

Φ ≠
−π

=  

Then the boundary value problem (1.1) for ( )1U H∈ Ω  in Ω  is equivalent to 
the following boundary integral equation for ( )1 2u H∈ Γ  on Γ  (as the trace 
of U) (see e.g. [11] [12] [13]):  

( ) ( ) ( ) ( ) ( ) ( ) ( )
,1 , d , d , .

2 y y
y

x y
u x p y x y u y s x y g y s x

νΓ Γ

 ∂Φ
+ + Φ = Φ ∈Γ  ∂ 
∫ ∫ (2.1) 

In the operator form, (2.1) can be written as  

( )1 ,
2

u pu g + + = 
 
                     (2.2) 

with the single and double-layer potential operators defined by  

( )( ) ( ) ( ) ( )( ) ( ) ( )
,

, d and d for .y y
y

x y
u x x y u y s u x u y s x

νΓ Γ

∂Φ
= Φ = ∈Γ

∂∫ ∫   

Note that the operators have the following mapping properties (e.g. [13]): 
( ) ( )1 2 1 2: H H− Γ → Γ  and ( ) ( )1 2 1 2: H HΓ → Γ . It is well known that the 

Robin boundary-value problem (2.1) admits unique solution 0U ≥  in Ω  for 
given nonnegative model parameters p and g on Γ , and thus the equivalent 
boundary integral equation (2.1) yields nonnegative solution u on Γ  as well 
(see e.g. [11]). 

Alternatively, we can use single-layer potential to express the solution ( )U x  
on Ω  by  

( ) ( ) ( ), d , ,yU x x y y s xϕ
Γ

= Φ ∈Ω∫               (2.3) 

where the density function ϕ  on Γ  solves the boundary integral equation  

( ) ( ) ( ) ( ) ( ) ( ) ( )
,1 d , d , .

2 y y
x

x y
x y s p x x y y s g x xϕ ϕ ϕ

νΓ Γ

∂Φ
+ + Φ = ∈Γ

∂∫ ∫  (2.4) 

In operator form, (2.4) becomes  

1 ,
2

p gϕ ϕ ′+ + ⋅ = 
 
    

where the dual operator ′  of   is given by  

( )( ) ( ) ( )
,

d , .y
x

x y
x y s xϕ ϕ

νΓ

∂Φ
′ = ∈Γ

∂∫  

In our numerical implementation, we use the direct formulation (2.1) as the 
model equation that relates between u and p, and only use the alternative for-
mulation (2.3) - (2.4) for generating synthetic data 0u  which, after the addition 
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of random noise, are used to test our numerical algorithms for recovering the 
Robin coefficient p. 

3. Solution Methods for the Inverse Problem 

A common approach to the inverse problem of finding p on 1Γ  from given 
boundary measurement 0u  of u on 0Γ  is to regard u as dependent on p 
through the model equation (2.2), and then solve the data-fitting nonlinear equ-
ation 0u u=  for p by least-squares methods (see e.g. [3] [7]). In this section, we 
consider two slightly different solution methods, each of which is based on solv-
ing ( ),u p  simultaneously from the system consisting of both the model equa-
tion (2.2) and the data fitting equation 0u u=  on 0Γ  by least-squares (see e.g. 
[9] [11] [14]). Then in the iterative scheme for solving the least-squares problem, 
we will introduce nonegativity constraints in the form of a penalty term in the 
minimizing objective functional, so to steer toward nonnegative solutions. 

3.1. A Linear Least-Squares Method 

As in [9] [11], we introduce a new variable  

( ) ( ) ( ) 1,v x p x u x x= ∈Γ                    (3.1) 

in place of ( )p x . Then equation (2.2) becomes linear in both u  and v :  

1
1 ,
2

u v g + + = 
 
                        (3.2) 

where  

( )( ) ( ) ( )
1

1 , d for .yv x x y v y s x
Γ

= Φ ∈Γ∫  

Denote the restriction operator from Γ  to 0Γ  by ( ) ( )2 2
0 0: L LΓ → Γ . 

That is, ( )( ) ( )0u x u x=  for 0x∈Γ . Then the given measurement 0u  of u on 

0Γ  can be expressed as  

0 0 .u u=                            (3.3) 

We recast the inverse problem of finding p from given 0u  as directly solving 
for ( ) ( ) ( )T 2 2

1,w u v L L= ∈ Γ × Γ  from (3.2) - (3.3) as a linear system:  

1

0
0

1
or .2

gu
w f

uv

 +     = =         

  


 
             (3.4) 

Here   denotes the zero operator from ( )2
1L Γ  to ( )2

0L Γ . Once u on Γ  
and v on 1Γ  are found from (3.4), then the Robin coefficient p on 1Γ  can be 
found from u and v by the simple relation (3.1). 

System (3.4) is a linear system for ( )T,w u v= , but is ill-posed. In addition to 
using the classical Tikhonov regularization method to address the ill-posedness 
(as in [11]), we wish to incorporate an additional term to penalize negativity in 
w and encourage nonnegagive solutions. Thus we seek the minimizer of the fol-
lowing objective functional that consists of the system residual from (3.4), a re-
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gularization for w, and a penalty for negative part of w:  

( )
22

2 2

1 , ,
2 2 2

J w w f w w wα β −= − + +             (3.5) 

with regularization parameter 0α >  and penalty parameter 0β > . The regu-
larization is defined through the operator  

( )T2 2
0,pw D u D v= − −  

where 2
pD  and 2

0D  are the second-order derivative operator for periodic 
boundary condition and for zero boundary condition respectively, and the pe-
nalty for the negative part of w by  

( ) ( ) ( )1min 0, .
2

w w w w wψ− = − = − ≡  

The function ( )sψ  is differentiable except at 0s = , and when its derivative is 
needed, we use the derivative of its smooth approximation:  

( ) ( ) ( )2

2

1 11 where
2 2

ss s s s
s

ε εψ ψ ε
ε

 
′ = − = + −  + 

 

for some very small 0ε >  (e.g. the machine epsilon). Hence we can arrive at 
the first-order optimality condition of ( )J w :  

( ) ( ) ( )w w w fεα βψ ψ′ ′ ′+ + =                 (3.6) 

where ′  denotes the dual of  . 
In (3.6), while the parts from the linear system and Tikhonov regularization 

are linear, the part from the penalty term is not. Hence we devise an iterative 
scheme to solve (3.6) using the Gauss-Newton direction as follows. At each ite-
rate ( )kw , the step increment ( )kd  is determined by the linear equation  

( )( )( ) ( ) ( )2
k k kw d rεα β ψ ′ ′+ + = − 

 
               (3.7) 

where  
( ) ( )( ) ( ) ( )( ) ( )( ) ,k k k k kr w f w w wεα βψ ψ′ ′= − + +    

and the next iterate is set to be  

( ) ( ) ( )1 .k k kw w d+ = +                        (3.8) 

We note that, when 0β = , i.e. when the penalty term is not present, no itera-
tion is needed, and this reduces to the direct method introduced in [11]. How-
ever, such a direct method may produce w that admits negative values, and thus 
it requires some remedy, such as simple truncation, in order to obtain the non-
negative Robin coefficient p from (3.1) (see [9] [11]). By incorporating the pe-
nalty term in the least-squares formulation, we are able to ensure the nonnega-
tivity of the solution it produces, with only a few additional iterations, so the 
Robin coefficient p can be readily obtained from (3.1). Moreover, when the pe-
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nalty term is active, it steers the iteration to produce better solutions, especially 
in situations where the ill-posedness is more severe. 

3.2. A Nonlinear Least-Squares Method 

In this method, we regard both u on Γ  and p on its support 1Γ  as variables to 
be found from given data 0u , and cast the inverse Robin problem as finding 

( ) ( ) ( )T 2 2
1,z u p L L= ∈ Γ × Γ  from the nonlinear system of equations consisting 

of both the model equation (2.2) and data fitting equation (3.3):  

( ) ( )
0 0

1 ,
or .2

,

u pu g
z f

u u

 + + =  = 
 =

   



            (3.9) 

Here p in ( )T,z u p=  to be solved refers to the part of the Robin coefficient on 
its support 1Γ , while in the formulations p remains as defined on Γ  with the 
understanding that its support is contained in 1Γ . It is noted that   is linear 
in u and p individually, but not jointly in z. 

To solve the nonlinear system (3.9) for ( )T,z u p= , we consider minimiza-
tion of the least-squares functional of the system residual, with the addition of 
both a regularization term and a penalty term:  

( ) ( )
22

2 2

1 ,
2 2 2

J z z f z z zα β −= − + +              (3.10) 

with regularization   and penalty ( )z zψ− =  as in (3.5). Note that the case 
without penalty (when 0β = ) was considered in [14]. For minimization of J 
above, we propose the Gauss-Newton iteration scheme: at each iterate ( )kz , the 
new increment ( )kd  is determined by the Gauss-Newton step from J:  

( )( ) ( )( ) ( )( )( ) ( ) ( )2
k k k k kz z z d rεα β ψ

 ′ ′+ + = − 
 
            (3.11) 

where  

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( ) ,k k k k k kr z z f z z zεα βψ ψ′ ′= − + +     

and ( )z  is the derivative operator of ( )z  given by  

( ) ( ) ( )

0

1
2

p u
z

 + + =
 
  

 



     


 
 

where   denotes operator composition, and ( )z ′
  the dual of ( )z . Once 

( )kd  is found from (3.11), the next iterate is set to be  

( ) ( ) ( )1 .k k kz z d+ = +                       (3.12) 

Note that the addition of the penalty term in (3.10) results in a similar itera-
tive scheme (3.11), and it does not add much computational cost. As it steers the 
iterations to satisfy the nonnegativity constraints, it does improve the quality of 
the solutions, as numerical examples in the next section will illustrate. 
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4. Numerical Examples 

Given a regular 1-periodic parametrization with counterclockwise orientation 
for the boundary Γ :  

( ) ( ) ( )( )1 2, , 0 1,x t x t x t t= ≤ ≤  

where ( ) ( ) [ ]2
1 2, 0,1px t x t C∈  and ( ) 0x t′ >  for 0 1t≤ ≤ , the integral opera-

tors in (2.1) and (2.4) can be expressed explicitly as integral operators on 
[ ]0,1t∈  for ( ) ( )( )u t u x t=  as  

( )( ) ( ) ( ) ( )
( )

( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( )
( )

( )( ) ( ) ( ) ( ) ( )
( )
( )

1

0

2
1

0

2

1

0

1, d with , ln ,
2

1 , ,
2

, d with ,
1 , ,

4

, d with , ,

s s

c c

c c c

x s
u t K t s u s s K t s

x t x s

x s x t x s
t s

x t x s
u t K t s u s s K t s

x t x t
t s

x t

x s
u t K t s u s s K t s K s t

x t

⊥

⊥

′
= =

−

 ′ ⋅ −
 ≠
 −= = 

′ ′′⋅
=

′
′

′ ′ ′= =

π

π

′

π

∫

∫

∫







 

for 0 , 1t s≤ ≤ , where we denote ( ) ( )1 2 2 1, ,x x x x⊥ = − . The kernel sK  is weakly 
singular while cK  and cK ′  are continuous. The singularity in sK  can be 
rearranged as  

( ) ( ) ( )( )( ) ( )0ln ln 2 sin ,x t x s t s K t s− = − +π  

with continuous kernel  

( )

( ) ( )
( )( )

( )
0

ln ,
2 sin

,

ln ,
2

x t x s
t s

t s
K t s

x t
t s

 −
≠

−= 
π

π

 ′
=



 

so that integrals involving this singularity can be dealt with by exact integration, 
as we employ Nyström’s method with trigonometric interpolation on regular 
grids (see e.g. [12], Chapter 12). 

In our examples, we take Ω  as the elliptic region for the sake of simplicity:  

( ){ } ( ) ( )2 2 2 2
1 2 1 2, : 1 with , 1,0.4 .x x x a x b a bΩ = + < =  

We should note that this choice of the aspect ratio of the ellipse gives rise to a 
more severely ill-posed case of the Robin inverse problem than most cases in 
other studies, yet as observed consistently in our numerical experiments and 
demonstrated in examples below, the inclusion of nonnegativity constraints in 
the iterative schemes does help to combat the ill-posedness effectively and pro-
duce markedly better results for p. 

Standard parametrization of the ellipse is used:  

( ) ( ) ( )( )cos 2 , sin 2 , 0 1.x x t a t b t tπ π= = ≤ ≤  
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The two segments 1Γ  (where p is defined) and 0Γ  (where 0u  is given) are 
chosen as  

( ) [ ]{ } ( ) [ ]{ }1 0: 0.1,0.4 and : 0.6,0.9 .x t t x t tΓ = ∈ Γ = ∈  

The input function g is set as  

( ) [ ]
[ ]

1, when 0.5,0.6
0, elsewhere in 0,1 ,

t
g t

 ∈= 


 

and the true profile for p as  

( ) [ ]

[ ]

4 0.1sin , when 0.1,0.4
0.3

0, elsewhere in 0,1 .

t t
p t

 −  ∈  =  
π




 

Discretization grid size is set to 1 400h =  for discretization of the integral 
operators and the systems w f=  in (3.4) and ( )z f=  in (3.9). To gener-
ate the synthetic data 0u  on 0Γ , we solve the discretized alternative formula-
tion (2.3) - (2.4), and add to it uniformly distributed random noise of noise level 

0.01δ = , relative to the L2 norm of 0u . 
In both iterative methods, we stop the iteration when the L2 norm of the 

Gauss-Newton step ( )kd  from (3.7) or (3.11) is less than 10−10. 
Our selection of the regularization parameter α  is guided by the idea of the 

normalized cumulative periodogram (NCP) method (see e.g. [15]), which is 
based on monitoring the noise pattern in the data-fitting residual 0 0u u−  in 
(3.4) or (3.9). If the residual is dominated by white noise, then α  is a suitable 
choice; if it is dominated by high frequency noise, the current parameter α  
shall be increased, and if it is dominated by a low frequency signal, then α  
shall be reduced to a smaller value ([16]). See also ([10], Chapter 7) for other 
methods of selecting a proper regularization parameter value for illposed prob-
lems. 

The performance of the algorithms is less sensitive to the choice of β , and 
they work very similarly for values of β  from the range between 10−1 to 102. 
We set 1β =  in our experiments. 

We first experiment using the linear least-squares method (3.7) - (3.8), and 
the result of one such example is presented in Figure 1. We select 95.0 10α −= × . 
Starting with ( )0 0w = , it typically takes only a few iterations (less than 10) to sa-
tisfy the stopping criterion throughout our experiments. For comparison, we al-
so present the result without the penalty term (when 0β = ), which is direct and 
does not require iterations, but followed by converting from ( ),u v  to p  

using ( )( )2
p u v uε+ + += + , as in [11], where ( )max ,0f f+ =  and 0ε >  as  

the machine epsilon. As seen, the few iteration needed for the nonnegativity 
constraints indeed have helped to improve the overall quality of the recovered 
coefficient p. 

We then test on the nonlinear least-squares method (3.11) - (3.12), with the 
result of one such example presented in Figure 2. We choose 105.0 10α −= ×  in  

https://doi.org/10.4236/jamp.2022.106137


W. Fang, F.-R. Lin 
 

 

DOI: 10.4236/jamp.2022.106137 2023 Journal of Applied Mathematics and Physics 
 

 

Figure 1. Recovered p by the linear least-squares method with nonnegativity constraints 
(solid), and by the direct method with truncation (dotted), in comparison with the true 
profile (dashed). 
 

 

Figure 2. Recovered p by the nonlinear least-squares method, with nonnegativity con-
straints (solid) and without (dotted), in comparison with the true profile (dashed). 
 
this case. Typically it takes about 10 iterations from initial ( )0 0z =  to satisfy the 
stopping criterion in our experiments. For comparison, we also carry out parallel 
calculations without the penalty term (by setting 0β = ), and as expected, the 
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resulting solution assumes some negative values due to the absence of nonnega-
tivity constraints. As can be seen, adding the penalty term not only ensures the 
nonnegativity of the recovered coefficient p, but also improves its quality. 

Throughout our numerical experiments, we have consistently observed the 
effectiveness of this approach in dealing with the ill-posedness of the Robin in-
verse problem and in improving recovery results, which is achieved within the 
same iterative framework and without additional computational cost. 

We conclude with some final remarks: 1) It is possible to fine-tune these 
least-squares methods by introducing different weights between the model equa-
tion residual and the data fitting residual in (3.4) or (3.9), but at the expense of 
one more parameter (the weight ratio) to adjust, as studied in [14]. Even in this 
setting, the penalty strategy proposed here remains readily applicable, and the 
penalty parameter β  is generally less sensitive and easier to determine than the 
weight ratio and regularization parameter; 2) In the more common approach 
where the dependence of u on p is determined exactly by solving the model equ-
ation (1.1) or (2.2) and only the data fitting residual is to be minimized, it is still 
possible to include the penalty strategy proposed here to better facilitate the so-
lution process for maintaining nonnegativity of p, and it is reasonable to expect 
the improvement of quality of the recovered p in more ill-posed situations, as we 
have experienced and reported here. 
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