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Abstract 
In this paper, we present a discrete duality finite volume (DDFV) method for 
2-D flow problems in nonhomogeneous anisotropic porous media under di-
verse boundary conditions. We use the discrete gradient defined in diamond 
cells to compute the fluxes. We focus on the case of Dirichlet, full Neumann 
and periodic boundary conditions. Taking into account the periodicity is the 
main new ingredient with respect to our recent works. We explain the pro-
cedures step by step, for numerical solutions. We develop a matlab code for 
algebraic equations. Numerical tests were provided to confirm our theoretical 
results. 
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1. Introduction 

The discrete ion finite volume is one of the new generation finite volumes very 
popular today in Geoscience Engineering. The works from [1] [2] [3] [4] [5] 
have been the first to propose the DDFV method as used today for anisotropic 
flow problems. The formulation in terms of explicit discrete duality has been in-
troduced in [5] [6]. The aim of this paper is to reformulate approach our DDFV 
approach by using the discrete gradient operators defined on the diamond 
meshes in order to show that, it is well adapted to very general meshes including 
the case of non-conformal locally refined meshes. We focus on general grids a 
survey of DDFV formulation for anisotropic flow problems under: 1) Dirichlet; 
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2) Full Neumann and 3) periodic boundary conditions. With regard to the ma-
thematical analysis, we will refer to [5] [6] for details. An example of such a 
problem reads as follows: Find a function ϕ  defined in Ω , that satisfies the 
following partial differential equation:  

( )( ) ] [ ] [in 0,1 0,1 with appropriate boundary conditionsdiv Kgrad fϕ− = Ω = ×

(1) 

where f is a given function and Ω  is a closure of Ω  that is a given open po-
lygonal domain (not necessarily convex). On the other hand, ( )K K x= , with 

( )T
1 2,x x x= ∈Ω  is a piecewise constant function in Ω  and is symmetric, i.e.  

( ) ( ) 1 ; 2ij ijK x K x i j= ∀ ≤ ≤                     (2) 

( ) ( )2 2T2such that , K xδ ξ δ ξ ξ ξ δ ξ± + − +∃ ∈ ∀ ∈ ≤ ≤        (3) 

in Ω , where  and ( )T.  denote respectively the euclidian norm and the 
transposition operator in 2

 .  

2. DDFV Formulation for Model Problem (1) on General  
Boundary Conditions 

We first recall Gauss’ divergence theorem which is very useful in this section.  
Theorem 1 (Gauss’ divergence theorem) Let’s S be a closed surface bound-

ing a soled D, oriented outwards. Let F


 be a vector field with continuous par-
tial derivatives then  

d d
S D

F s F v= ∇ ⋅∫∫ ∫∫∫
 

                        (4) 

Let us focus on a DDFV formulation of the problem (1) in terms of a linear 
system which involves { }P Pϕ

∈  and { }D D
ϕ

∈
  

 as discrete unknowns ex-
pected to be close approximations of { }P Pϕ

∈  (cell-point pressures) and  

{ }D D
ϕ

∈
  

 (vertex pressures) respectively, where ( )1 2,P P
p x xϕ ϕ=  and  

( )1 2,D D
D

x xϕ ϕ=
 

  and where   represents the dual mesh. The DDFV theory  

exposed in this work is inspired from the one developed in [6]. However we use 
the discrete gradient operators to simplify the heaviness concerns the DDFV 
discretization of balance equation for boundary cells from both primal and dual 
meshes.  

2.1. Domain Discretizations: Some Definitions and Notations 

For getting the DDFV formulation of the continuous problem (1), we first in-
troduce a primary mesh   over Ω  possessing the following properties: 1) 
  divides Ω  int o a finite number of convex mesh elements. The mesh ele-
ment vertices are named the primary mesh vertices. 2) The discontinuity points 
of ( )K K x=  are located in the mesh element interfaces. 3) For any edge of   
arbitrarily exhibited one point and named edge-point in what follows, denote by 
the set of edge-points, int  the set of internal edge-point and ext  the set of 
boundary edge-points. 
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Joining the edge points in suitable way defines an auxiliary mesh   neces-
sary for locating a family of cellpoints in mesh element (with one point per mesh 
element). The auxiliary mesh plays a key role in the theoretical analysis of our 
DDFV solution see [6] [7] for details. Note the (Figure 1) below illustrate the 
process of discretization. Note that degenerate dual cells are involved along the 
boundary for Neumann and periodic boundary conditions. 

Given two adjacent cellpoints P and L sharing A Bσ  =  
   as common in-

terface, for each I A B ∈  
  , can we introduce the quadrangle ( ), , ,P A L B   

diamond cell 
σσ
D   whose diagonals are A Bσ  =  

   and [ ]PLσ = , as 
shown in (Figure 2) below. Notice that the diamond cells are the union of four 
disjoint convex triangles. Furthermore, if I A B ∈ ∩∂Ω 

   then the quadrila-
teral 

σσ
D   degenerate in a single triangle. The set of diamond cells is denoted 

by D  and we have  

∈
Ω = ∪

D
D

D
 

Remark 1 Note that the set   will sometimes be identified with the set of 
diamond meshes since there is a trivial bijection between the two sets.  
 Dα  angle between 

A B
τ    and PLτ   

 
B IL

α   angle between 
A B

τ    and Lσ   

 ,

2
L I
hB IL

α θΠ
= +   

 

 

Figure 1. Domain discretizations for Dirichlet and Neumann boundary conditions (left) 
and for periodic boundary (right). The including is in black full lines, the corresponding 
auxiliary mesh in black dotted lines and the associated dual mesh in red discontinuous 
lines. 
 

 

Figure 2. Examples of diamond cells. Left: A normal diamond cell. Right: A degenerate 
diamond cell. 
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 [ ]
A
PLξ


 the unit normal to [ ]PL  exterior to triangle PLA  
 L P

A B A B
ξ ξ   
   

= −      

 mσ  the length of σ   
 m

σ 
 the length of σ    

 mD  the measure of the diamond cell  
 { }\

A A
C

σσ σσ
= ∈ ∩ ≠ ∅D D   D D   

 { }\P PC
σσ σσ

= ∈ ∩ ≠ ∅D D D D   
 

LA
Q   quarter diamond defines by the triangle ( LA I )  

 L
D  half diamond defines by the triangle ( LA B  ) 

 =L P
LA LB PA PBσσ

= ∪ ∪ ∪ ∪ D D D Q Q Q Q       
An elementary geometry in triangles (PLI), (PID) and (LID) with reference 

(Figure 3) permit us to write:  

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

2

2

2

0

0

0

A A A
IL IP PLLI PI PL

P A A
DI IP PDPI PLA B

A P A
IL DI DLLI PLA B

h h h

h h h

h h h

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

 
 

 
 

 + − =

 + − =

 − − =














  

 

 

 

 

                (5) 

this implies,  

[ ] [ ]
A P ADI DL
LI PLA B

IL IL

h h
h h

ξ ξ ξ 
 

= +
 

                     (6) 

[ ] [ ]
A P ADI DP
PI PLA B

IP IP

h h
h h

ξ ξ ξ 
 

= − +
 

                    (7) 

Main assumptions:  
( 1 ) We assume that the primary mesh   is compatible with the disconti-

nuities of the permeability tensor K defined in Ω . 
( 2 ) The permeability discontinuities divide Ω  into a finite number of 

convex polygonal subsets denoted by { }s s S∈
Ω . 

We suppose that the restriction over sΩ  of the exact solution ϕ  to the 
model problem (1), denoted by 

s
ϕ

Ω
, satisfies the following property:  

( )2
ss

C s Sϕ
Ω
∈ Ω ∀ ∈                       (8) 

 

   

Figure 3. Diamond cells and notations. 

https://doi.org/10.4236/jamp.2022.106135


H. Donfack, A. K. Jeutsa 
 

 

DOI: 10.4236/jamp.2022.106135 1972 Journal of Applied Mathematics and Physics 
 

Let us recall below the diverse boundary conditions that we are going to in-
vestigate in this paper:  

1) Dirichlet boundary conditions  

0 onϕ = Γ = ∂Ω                          (9) 

2) Full Neumann boundary conditions  

( ) onKgrad gϕ η− ⋅ = Γ = ∂Ω                   (10) 

where η  is a outward unit normal vector and g is a given function  
3) Periodic boundary conditions  

( ) ( )
( ) ( ) ( ) ( ) [ ]

( ) ( )
( ) ( ) ( ) ( ) [ ]

.,0 .,1
in 0,1

.,0 .,0 .,1 .,1 0

0,. .,1
in 0,1

.,0 0,. 1,. 1,. 0

So No

We Es

K grad n K grad n

K grad n K grad n

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

Γ Γ

Γ Γ

= 


⋅ + ⋅ = 
= 


⋅ + ⋅ = 

   (11) 

where NoΓ  (northern boundary), SoΓ  (southern boundary), EsΓ  (eastern 
boundary) and WeΓ  (western boundary) define a partition of the domain 
boundary denoted by Γ , and , , ,

No So Es We
n n n nΓ Γ Γ Γ  the corresponding outward 

unit normal vectors  
Due to periodicity conditions on the flux (see Equations (11), the source-term 

f should satisfy the following compatibility condition:  

d 0f x
Ω

=∫                           (12) 

Note that the set   of primal mesh vertices contains the set:  

( ) ( ) ( ) ( ){ }co 0,0 , 1,0 , 0,1 , 1,1   

made of four corner-points. To get advantage of the periodicity setting of the 
problem, the boundary-vertices are distributed along the domain boundary in 
such a way that the orthogonal projection of a boundary-vertex M (different 
from a corner-point) on the opposite side of Γ  is also a boundary-vertex (dif-
ferent from a corner-point) denoted by M ⊥ . Figure 1 (right) illustrates this fact 
that one can express in other words by: 

2.2. The DDFV Balance Equation in an Internal Cell 

For an internal cell the way for getting the DDFV balance equation is the same 
for Dirichlet, Neumann and periodic boundary conditions. Let PC  be an in-
ternal primary cell where P is the corresponding cellpoint. We start, with intro-
ducing a discrete gradient operator ∇  defined to be constant on each quarter 
diamond cell 

LA
Q   associated to the control volume LC   

( ) [ ],

1
cosLA

I A LA I L
ILL I A B

ILh IA
h h

ϕ ϕ ϕ ϕ
ϕ ξ ξ

θ  
 

 − −
∇ = + 

  
Q



 


            (13) 

Then integrating two sides of the balance Equation (1) in LC  and apply 
Gauss’s divergence theorem to the left-hand side. The discrete balance equation 
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follows from flux computations over the boundary of LC  by using a suitable 
gradient operator τ∇  defined above. Thus we have:  

( ) ( )

( )( ) ( )( )

d d

, ,
LA LA

L L L L L
A B A B A BA I IB

L L L L L
IA IAA B A B A B

L L LA B
h h L IA B A B

IL

F K grad K grad

h K h K T

h
b K a K T

h

τ τ

ϕ ξ γ ϕ ξ γ

ϕ ξ ϕ ξ

ϕ ϕ ϕ ϕ

        
        

     
     

 
 

= − −

= − ∇ − ∇ +

= − + − +

∫ ∫

Q Q

      

       

 

   

  (14) 

where  

( ) ( ),

,

cos

L L L
A B A B

L
h L I

h

K
a K

ξ ξ

θ

   
   =
   

 

( )
[ ]

( ),

,

cos

L A L
IL A B

L
h L I

h

K
b K

ξ ξ

θ

 
 =



 

 

, ,L I L
h L A B

measθ σ ξ 
 

 =  
 

   

( ) ( ){ }max ,h size size=   , Figure 3 gives an illustration of previous com-
ment. Note that , ,0 ,

2
P I L I
h hθ θ <

π
≤  and therefore ( ) ( ), ,0 cos ,cos 1P I L I

h hθ θ< ≤ . 
Definition 1 The system ( );   defines an eligible system of meshes if the 

following conditions are fulfilled:  

1) There exists 0,
2

θ  π∈   
, mesh independent, such that:  

,0
2

P I P
h P Iθ θ≤ ≤ − ∈

π
∀ ∀ ∈                 (15) 

2) There exists 0 1ϖ< ≤ , mesh independent, such that:  

* *,P
PI A B

P I h h h hϖ∀ ∈ ∀ ∈ ≤ ≤                (16) 

where PIh PI=


 and 
A B

h A B=


 
  .  

Following ideas we have exposed in [6], and the fact that approximate fluxes 

;
P
A B

F 
 
   and 

;
L
A B

F 
 
   meet the principle of flux continuity over the interface  

between PC  and LC  if and only if the approximate edge point pressure Iϕ  
satisfies to the following relation:  

( ) ( )
( ) ( )

( ) ( )

( )

P L
h h L A B

I h LB A
P L ILA B A B

h h
PI IL

P A B
h P

PI

b K b K h
a K

h h h
a K a K

h h
h

a K
h

ϕ ϕ ϕ ϕ

ϕ

+ = − +
+

+ 


 

 
   

 

  (17) 

Proposition 2 Under the only assumption (8) we have:  
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( ) ( )
( ) ( ) [ ]

( ) ( ) ( ) ( )
( ) ( )

P L
h hP A B

P LP LA B
h IL h PI

L P P L
h h PI h h IL

L P B A
h PI h IL

a K a K h
F

a K h a K h

a K b K h a K b K h

a K h a K h

ϕ ϕ

ϕ ϕ

∗ ∗

∗ ∗

∗ ∗

 
 

 
 ≈ −
 + 
 −
   + −  + 

   (18) 

In addition, if the system of meshes ( );   is eligible in the sense of Defini-

tion 1, the truncation error P
A B

T ∗ ∗ 
 

 (also denoted by ,P IT ) associated with this 

flux approximation satisfies the following inequality  

, 2P I P
A B

T T Ch∗ ∗ 
 

≡ ≤                      (19) 

where ( ),A A P I=  , ( ),B B P I=  , ( ),L L P I=  and where C is a mesh 
independent positive number.    

Recall that only the case P ext∩ =∅  , with P∈ , is concerned by the 
previous result. Summing the two sides of relation (18) on PI ∈  leads to the 
following result.  

Proposition 3 Let us suppose that the system of meshes ( );   is eligible in 
the sense of Definition 1. Under the assumption (8), the discrete balance equa-
tion in any primary cell PC , with P ext∩ =∅  , reads as:  

( ) ( )
( ) ( ) [ ]

( ) ( ) ( ) ( )
( ) ( )

,

d

P

P

P L
h hP I A B

P LP L
I h IL h IP

P L P L
h h IL h h IP

P L B A C
h IL h IP

a K a K h
T

a K h a K h

a K b K h b K a K h
f x

a K h a K h

ϕ ϕ

ϕ ϕ

∈

    + −
 +  

 −    + − =  +   

∑

∫

 

 



  (20) 

where ( ),A A P I=  , ( ),B B P I=   and ( ),L L P I=  (see Section 2 de-
voted mainly to Notations). 

Moreover, the truncation error ,P IT  satisfies the inequality (19).   
It is clear that the number of discrete unknowns { }P Pϕ

∈  and { }A A
ϕ

∈
  

 is 
greater than the number of discrete balance equations given by the system of 
Equation (20) valid for all P∈ . We naturally should close this system with 
discrete equations obtained from mass balance equations over dual cells. It is our 
purpose now to look for discrete balance equations over dual cells 

A
C  . So, we 

integrate the two sides of (1) in 
A

C  . The left-hand side is the flow exchanged 
between 

A
C   and outside of this cell, whereas the right-hand side is the 

term-source contribution (for a fixed time period) Let us look or a flux approx-
imation across the pseudo-edge [ ]PIL  viewed as part of the boundary of 

B
C  . 

Denoted by [ ]
B
PILF


, it can be expressed by the relation  

[ ] [ ] ( ) [ ] [ ] ( ) [ ]d dB P B L B
PIL PI ILPI IL

F K grad K gradϕ ξ γ ϕ ξ γ= − −∫ ∫
  

       (21) 

By using the same process, the approximate flux across the pseudo-edge is  

[ ] [ ] [ ]
,, ,

PB LB

B P B L B B I
PI ILPIL PI ILF h K h K Tτ τϕ ξ ϕ ξ= − ∇ − ∇ +Q Q

   

 
      (22) 
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Summing the two sides of the Equation (22) on BI ∈


  leads to what fol-
lows. 

Proposition 4 Under the assumption (8), the flux balance equation for any 
interior dual cell 

B
C   reads,:  

[ ] ( )d
BB

B
PIL BC

I

F f x x B C
∈

= ∀ ∈∑ ∫









               (23) 

In addition, if the system of meshes ( );   is eligible in the sense of Defini-
tion 1, the truncation error ,B IT


 obeys the following inequality:  

, 2B IT Ch≤


                         (24) 

where C is a mesh independent positive number.   

2.3. The DDFV Balance Equation in Boundary Cells 
2.3.1. Case of Dirichlet Boundary Conditions 
As shown in (Figure 1), there is no need of degenerate dual cell in the domain 
discretization for Dirichlet boundary conditions. Thus the set of boundary cells 
reduces to the set of primary cells adjacent to the boundary. Note that for 

( )2f L∈ Ω  one easily proves that Equations (1) and (9) get a unique variational  
solution in the Sobolev space ( )1

0H Ω . Letting 
int P

P
A B

I

F 
 ∈ ∩

∑  

 

 represent the left 

of the balance equation in primary cell PC  adjacent to Γ  reads as:  

( ) d
Pint P ext P

P P A B
h PA B C

PII I

h
F a K f x

h
ϕ 

 ∈ ∩ ∈ ∩

+ =∑ ∑ ∫
 

 

   

          (25) 

Because the degenerate discrete gradient reads as:  

( )
1

sinext
PP
A B

D LPhσσ

τ τ ϕ
ϕ ξ

α  
 

 −
∇ =  

 
 


                  (26) 

2.3.2. Case of Full Neumann Boundary Conditions 
In the Sobolev space ( )1H Ω  the existence and uniqueness of a variational so-
lution to (1) - (10) are ensured if:  

( ) ( )2 2 d d 0f L g L f x g γ
Ω Γ

∈ Ω ∈ Γ − =∫ ∫               (27) 

Let PΓ  denote the boundary of any primary cell PC , then the DDFV bal-
ance equation in a primary cell adjacent to domain boundary by using a suitable 
external discrete gradient operator reads as:  

[ ]... d d 0
P Pext P C

I

f x g γ
Γ∩Γ

∈ ∩

= − =∑ ∫ ∫
 

                (28) 

Note that the degenerate discrete gradient reads as:  

( ) [ ]
1

sinext
B PB A I P
IP A B

D PIB A
h hσσ

τ τ
ϕ ϕ ϕ ϕ

ϕ ξ ξ
α  

 

 − −
∇ = +  

 

 

 
  


         (29) 

And Iϕ  is given by Equation (17) with 0LK = , finally the degenerate dis-
crete gradient reads as:  
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( ) [ ]
( )
( )sinext

P
hB PB A

IP P A B
D hB A

b K

h a Kσσ

τ τ
ϕ ϕ

ϕ ξ ξ
α  

 

 −
 ∇ = +
 
 

 

 
  


          (30) 

It is easy to check that the balance equation in a dual cell (adjacent or not) to 
the domain boundary reads as:  

( ) [ ]
( )
( )sinext

P
hB PB A

IP P A B
D hB A

b K

h a Kσσ

τ τ
ϕ ϕ

ϕ ξ ξ
α  

 

 −
 ∇ = +
 
 

 

 
  


 

2.3.3. Case of Periodic Boundary Conditions 
Note that the periodicity condition (11) implies the periodicity of the discrete 
solution. Clearly the source f and the tensor K should be extended to 2  by 
periodicity. So there exists a periodic partition of whole space 2  into control 
volumes. Our strategy to obtain discrete balance equations associated with de-
generated dual cells is to consider a DDFV formulation in whole space 2  
(without distinguishing between boundary and interior control volumes). We 
extend the domain Ω  by introducing the fictitious domain around the boun-
dary of the initial domain Ω , the fictitious points (cell points and vertex points) 
are defined so as to have their corresponding in Ω , due to periodicity. To doing 
so, let’s compute the flux across the recomposed dual cells 

E E
C ⊥   and Cπ , we 

define the fictitious domain FΩ . Note that the original domain Ω  is embed-
ded inside a fictitious domain FΩ  such that F FΩ = Ω∪Σ∪∂Ω  The compu-
tational domain Ω  is meshed with respect to the periodicity setting of the 
problems. The boundary-vertices ( FA ∈∂Ω ) are distributed along the domain 
boundary F∂Ω  in such a way that the orthogonal projection of a boun-
dary-vertex on the opposite side of F∂Ω  is a latest vertex-point inside the orig-
inal domain Ω  denoted by A ⊥  which means that ( ) ( )FA AA A

ϕ ϕ⊥ ⊥∈∂Ω ∈Ω
=  

. 
The cell point pressure L are distributed inside the domain Σ  in such a way 
that the orthogonal projection of a boundary dual mesh on the opposite of ∂Ω  
is a least cell point inside the original domain Ω  denoted by L⊥  which means 
that ( ) ( )L L L L

ϕ ϕ ⊥ ⊥∈Σ ∈Ω
= . As illustrated in (Figure 4) in the particular case of 

the uniform rectangular mesh. The strategy allows to have all the dual meshes 
inside the fictitious domain which greatly simplifies the writing of discrete bal-
ance equations. It’s important to note that the introduction of the fictitious do-
main also makes possible to deal efficiently the Neunman boundary conditions, 
for that the permeability tensor must be null in Σ  domain. Then we use the 
same process to compute the flux across the boundary cells by defining the ap-
propriate discrete gradient operators. It follows that three types of discrete gra-
dient operators on the diamond mesh are necessary for the computation of the 
flux whether for the internal or external meshes. Note that this domain exten-
sion technique was used in [8] for numerical treatment of initial-Boundary value 
problems with Mixed Boundary Conditions.  

Definition 2 A diamond mesh is said to be fictitious or recomposed if at least 
one of its vertices is in Σ  domain. Let us denote int Fict= ∪D D D  where  
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Figure 4. A schematic illustration of the fictitious domain delimited by F∂Ω − ∂Ω  and 
recomposed dual cells around the domain ∂Ω  painted in blue. 
 

intD  is the set of internal diamond cells and FictD  is the set of fictitious di-
amond cells. It follows that the discrete gradients are written as follows  

( ) [ ]
1 :

sinint
B P intB A L P
PL A B

D LPB A
h hσσ

τ τ
ϕ ϕ ϕ ϕ

ϕ ξ ξ σ
α  

 

 − −
∇ = + ∀ ∈  

 

 

 
  




     (31) 

( )
1 : ,

sinFict
B PB A L P
P L A B

D B A P L
h hσσ

τ τ
ϕ ϕ ϕ ϕ

ϕ ξ ξ σ σ
α

⊥⊥ ⊥ ⊥

⊥ ⊥ ⊥
⊥ ⊥ ⊥

   
   

 − −
∇ = + ∀ ∈Σ  

 

 

 
  




 (32) 

( ) [ ]
1 :

sinFict
B PB A L P
PL A B

D B A PL
h hσσ

τ τ
ϕ ϕ ϕ ϕ

ϕ ξ ξ σ
α ⊥

 
 

 − −
∇ = + ∀ ∈∂Ω  

 

 

 
  




    (33) 

Remark 2 Note that the set   primary edges will sometimes be identified 
with the set D  of diamond meshes since there is a trivial bijection between the 
two sets i.e. σ∀ ∈  , σ∃ ∈  such that int

σσ
∈ D . 

2.3.4. DDFV Scheme of the Model Problem 
To obtain a DDFV scheme of the problem (1), we rewrite these fluxes across the 
primary edges and pseudo-edges calculated previously in the base ( )..

,A P
σσ

ξ ξ


  
taking in consideration the vectorial relations (6) and (7). By neglecting trunca-
tion errors in the Equations (19)-(24), using equally remark (2) and definition (2) 
we get the following discrete scheme of the problem (1).  

Proposition 5 The DDFV scheme associated of the model problem (1) 
We can define a DDFV of problem as find ( ) ( )( ),P P A A

τϕ ϕ ϕ
∈ ∈

=   
 such 

that  

( )

( )

.

.

,

,

P

A

P
P P P

A
A A A

m K meas C f C

m K meas C f C

τ τ
σ σ

τ τ
σ σ

ϕ ξ

ϕ ξ

∈

∈

− ∇ = ∀ ∈


− ∇ = ∀ ∈


∑

∑

D D
D

D D
D



    







D

D

       (34) 

Which can be written taking in consideration remark (2) as follows  
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( )

( )

.

.

,

,

P

A

P
P P P

A
A A A

m K meas C f C

m K meas C f C

τ τ
σ σ

σ

τ τ
σ σ

σ

ϕ ξ

ϕ ξ

∈

∈

− ∇ = ∀ ∈


− ∇ = ∀ ∈


∑

∑

D D

D D



    








D

D

       (35) 

where Pf  and 
A

f   denote the mean value of f over PC  and 
A

C   respec-
tively, the equivalent diffusion tensor KD  satisfies  

( )
( ) ( )

. . . .
. . , ,

. . . .

, ,
,

, cos , cos

P P P L P P
DP P

P P P L I L P P P I
h IL h IP

sin m K K
K

K h K h
σ σ σ σ σ

σ σ
σ σ σ σ

α ξ ξ ξ ξ
ξ ξ

ξ ξ θ ξ ξ θ

×
=

+
D    (36) 

( )
( ) ( ) ( )( )

. . . . . .. .
. 1. , ,

. . . .

, , , ,
,

sin , cos , cos

P P P L A P P P A L P P
DL DP

P A
P P P L I L P P P I

D h IL h IP

K K h K K h
K

K h K h

σ σ σ σ σ σσ σ
σ σ

σ σ σ σ

ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ

α ξ ξ θ ξ ξ θ−

+
=

+
D

 

 



(37) 

( )
( ) ( )

( ) ( )

( )

2 2
. . . .

. . , ,

. .. .

, ,

. . . .

,

, ,sin
,

cos cos

, ,

cos cos1
, ,

cos c

L A A P A A

DA A DL DP
L I P I

IL IPh h

P P A L P A

IL DP IP DLP I L I
h h

P P P L P P
IL IP

ILL I
h

K Kh hK
m h h

K K
h h h h

h h K K
h

σ σ σ σ
σ σ

σ

σ σσ σ

σ σ σ σ

ξ ξ ξ ξα
ξ ξ

θ θ

ξ ξ ξ ξ

θ θ

ξ ξ ξ ξ

θ


  = + 
 
 


−

−

+

D

   

    



 

 

( )

2

,os IPP I
h

h
θ

 
 
 
           

 (38) 

Remark 3 When the points P, I and L are aligned, which means D I= , then 

we have , ,

2
L I P I
h h Dθ θ α = = −

π
 
 
 , 

L P
m m mσ σ σ= + ,  

( ) ( ) ( ), ,sin cos cosP I L I
D h hα θ θ= = , 

L ILm hσ = , 
P IPm hσ = , in this case the matrix 

KD  is then defined by:  

( ) . . . .
. .

. . . .

, ,
,

, ,
L P

L P

P P P L P P
P P

P P P L P P

m m K K
K

K m K m
σ σ σ σ σ σ

σ σ
σ σ σ σ σ σ

ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ

+
=

+
D               (39) 

. . . . . .. .
. .

. . . .

, , , ,
,

, ,
L P

L P

P P P L A P P P A L P P

P A
P P P L P P

K K m K K m
K

K m K m

σ σ σ σ σ σ σ σσ σ
σ σ

σ σ σ σ σ σ

ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ

+
=

+
D

 

 

 (40) 

( )

. . . .
. .

2

. .. .

. . . .

, ,
,

, ,

, ,

L P

L P

L P

L P

L A A P A A

A A

P P A L P A

P P P L P P

m K m K
K

m m

m m K K

K m K m

σ σσ σ σ σ
σ σ

σ σ

σ σ σ σσ σ

σ σ σ σ σ σ

ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

+
=

+

× −
−

+

D

   

    



 

 

     (41) 

We recognize in (39) the weighted harmonic mean-value of . .,P P PK σ σξ ξ  and 

. .,L P PK σ σξ ξ  and in the first term of (41) the weighted arithemetic mean-value 
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of 
. .
,L A AK

σ σ
ξ ξ

 

   and 
. .
,P A AK

σ σ
ξ ξ

 

  . In this particular case this scheme was 
already proposed in [9], we also recognize in particular case the median-dual 
mesh based on the primal centers and the midpoint of the edges proposed in [4]. 

Proposition 6 Discrete integration by parts formula associated to the model 
problem (1) For all ,τ τ τϕ φ ∈  we have  

( )

( ) ( )
,

P A

P P P A A A
C C

meas K

meas C f meas C f

τ τ τ τϕ φ

φ φ
∈

∈ ∈

∇ ∇

= +

∑

∑ ∑

D D D
D

D

  

 

D
 

Proof. Since [ ] [ ]. ..
A A A

IL IPIL IPm h h
σ σ
ξ ξ ξ= +

  

   the proof is similar to the one ex-
posed in [4]. 

3. Existence of Discrete Solutions of the Model Problem 
3.1. Existence and Uniqueness of DDFV Scheme (Case of Dirichlet  

Boundary Conditions) 

Let us check the existence and uniqueness of the discrete solution. 
Proposition 7 The matrix associated with the linear system (34)-(31)-(26) is 

symmetric and positive definite 
Proof. It is easily seen that the symmetry of the matrix M associated with the 

system (26), (31) and (34) essentially follows from the symmetry of the diffusion 
coefficient K. We should now prove the positive definiteness of that matrix. 

Development of the quadratic expression: 

( )

( )

( )
( ) ( ) ( )

( ) ( )( )

( )
( ) ( )

( )

2

2

, 2 ,

2 ,

,
sin

2 ,

sin

,
sin

A A
B A

D

P A

L PB A
D

P P
L P

D

M meas K

meas K

mes
K

mes

K

mes
K

mes

σσ σσ σσ
σσ

σσ
σσ

σσ

σσ

σσ

σ σ

σ σ

σ σ

ϕ ϕ ϕ ϕ

ϕ ϕ

σ
ξ ξ ϕ ϕ

σ α

ξ ξ
ϕ ϕ ϕ ϕ

α

σ
ξ ξ ϕ ϕ

σ α

∈

∈

∈

= ∇ ∇

= ∇ ∇

= −


+ − −

+ − 


∑

∑

∑

D D D
D

D D D
D

D
D

D

D

D

D    


 

 






 



     

   





D

D

D

 

This quadratic form is elliptic if and only if: 
2

, , , 0A A P P P AK K K
σσ σσ σσ

σ σ σ σ σ σξ ξ ξ ξ ξ ξ− D D D

  

  
         (42) 

In effect we have: 

( )
( ) ( )

( )
( ) ( )

( )

2

, ,
sinsin

1 ,
sin

K P P A A

DD

P A

D

mesmes
K K

mesmes

K

σσ

σσ σσ

σσ

σ σ σ σ

σ σ

σσ
ξ ξ ξ ξ

σ ασ α

ξ ξ
α

∆ = ×

 
−  
  

D

D D

D
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( )

2
2

1 2

1 , , ,
sin

P L

A A P P P A

D

K K

K K K

N N

σσ σσ σσ
σ σ σ σ σ σξ ξ ξ ξ ξ ξ

α
   = −       

= ×∆ + ×∆

D D D

  

    

where 1N  and 2N  are strictly positive numbers defined as 

( ) ( )
( )

( ) ( ) ( )( )

2

1 , ,

2 ,

2, , ,

,

, cos , cos

, , cos

cos , cos , cos

L P P
PD

P P P L I L P P P I
h IL s s h IP

L A A L P P L I
PD h IL

P I P P P L I L P P P I
IP h h IL s s h IP

h K
N

K h K x x q h

K K h h

h K h K x x q h

σ σ

σ σ

σ σ σ σ

σ σ

ξ ξ

ξ ξ θ

ξ ξ ξ ξ θ

θ ξ ξ θ

 
 =
 + 

×
+

+

   

( ) ( )
( )

( ) ( ) ( )( )

2

2 , ,

2 ,

2, , ,

,

, cos , cos

, , cos

cos , cos , cos

P P P
LD

P P P L I L P P P I
h IL s s h IP

L A A L P P P I
LD h IP

L I P P P L I L P P P I
IL h h IL s s h IP

h K
N

K h K x x q h

K K h h

h K h K x x q h

σ σ

σ σ

σ σ σ σ

σ σ

ξ ξ

ξ ξ θ

ξ ξ ξ ξ θ

θ ξ ξ θ

 
 =
 + 

×
+

+

   

Since the diffusion matrix K is symmetric and positive definite, the 
Cauchy-Schwartz inequality for the inner product associated with K ensures that 

2
, , , 0

PK P A A P P P P P AK K Kσ σ σ σ σ σξ ξ ξ ξ ξ ξ∆ = − 

  
 

and 
2

, , , 0
LK L A A L P P L P AK K Kσ σ σ σ σ σξ ξ ξ ξ ξ ξ∆ = − 

  
 

as either P
σξ  and A

σξ


 are not collinear. Therefore 0
K

σσ∆ 

D  , thus the ma-
trix K

σσ
D 

 are symmetric and positive definite matrices. Under the assumption 
1 the matrix KD  possesses strictly positive eigenvalues. Let minδ D  be its least 
eigenvalue. so we have  

( )
2

min
1 ,
2

meas Mτ τ τ τδ ϕ ϕ ϕ
∈

∇ ≤∑D
D

D

D
D

             (43) 

the equality holds in Equation (43) if and only if 0ϕ = . Thus, the positive de-
finiteness of the matrix M is proven. 

Proposition 8 The linear system (26), (31) and (34) possesses a unique solu-
tion. 

Proof. It follows from the previous proposition. 

3.2. Existence and Uniqueness of DDFV Scheme (Case of Periodic  
Boundary Conditions) 

Remark 4 The proof of existence and uniqueness of discrete solutions with 
Neumann conditions is very similar with that of periodic boundary conditions. 
For Neumann case we refer to [10] for more details  

Let us start this subsection with some preliminary remarks and results. First of 
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all, we assume that the cell-points and the vertex-points from the primary grid 
are numbered. The numbering is performed in such a way that any boun-
dary-vertex (different from a corner-point) and its orthogonal projection on the 
opposite side get the same number. On the other hand, the four corner-points 

*
1O , *

2O , *
3O  and *

4O  are given the same number. This way of numbering ac-
counts with the periodicity setting of the discrete problem.  

Remark 5 Note that to obtain a square system, due to the periodicity we will 
only compute the fictitious diamond cells located at the northern and eastern 
boundary or western and southern boundary  

Proposition 9 Let hM  be the total number of discrete unknowns according 
to the previous numbering of cell-points and vertex-points. Set that:  

( ) ( ) { }
1

int
So We O

D∗ = ∪ Γ ∪ Γ ∪     , where int  is the set that consists of 
dual cells associated with interior vertexpoints and where ( )SoΓ  and 

( )WeΓ  respectively denote the sets of dual cells associated with boundary ver-
texpoints different from cornerpoints and located in the 1x -axis and the 2x
-axis. Of course 

1O
D   is the dual cell associated with 1O . The two following 

discrete problems are equivalent: 
(DP1): Find { } { }( );P P D D

ϕ ϕ
∈ ∈

∈ ×  
 

 
 such that Equations (31), (32), 

(33) and (34) are satisfied 
And 
(DP2): Find { } { }( ) *

*
; hM

P P D D
ϕ ϕ

∈ ∈
∈ ≡ ×   


 

 such that Equations 
(31) and (32) and (33) and (34) are satisfied 

Where, for a given set of mesh elements  , one has set:  

{ }{ }; ,K KKv K v
∈

= ∀ ∈ ∈ 


 .              (44) 

For the sake of clarity of the exposition, P∈  will be used either for denot-
ing a cellpoint or its associated number, idem for D ∈ ≡    concerning 
primal vertex-points. 

3.2.1. Some Useful Vector Spaces and Preliminary Results 
In view to algebraically address the linear discrete system (31) - (34), we intro-
duce some adequate vector spaces. Recall that   denotes the auxiliary mesh i.e. 
an intermediate mesh between the primal mesh   and the dual mesh  . The 
main feature of   is that each auxiliary cell involves either one only cellpoint 
or one only vertexpoint. Consequently, we have the following relation between 
 ,   and  :  

{ } { }P P D D∈ ∈
= Ω ∪ Ω   

                     (45) 

where PΩ  and 
D

Ω   denote the two kinds of auxiliary cells emerging from the 
definition of the mesh  . These cells will play a key role for the definition of 
DDFV solutions to the system of Equations (1) - (10) or (1) - (11). Let us intro-
duce the following vector spaces:  

{ } { }( ){ }; ; , , ,P PP D DD
v v P D v v

∈ ∈
= ∀ ∈ ∀ ∈ ∈  

 
 

      (46) 

https://doi.org/10.4236/jamp.2022.106135


H. Donfack, A. K. Jeutsa 
 

 

DOI: 10.4236/jamp.2022.106135 1982 Journal of Applied Mathematics and Physics 
 

{ } { }( ) ( ) ( ){
}

1 2 3 4

; ; ,

and

Perio P So WeD D D

O O O O

v v D v v

v v v v

⊥= ∈ ∀ ∈ Γ ∪ Γ =

= = =

   

   

    
   (47) 

Recall that ( )SoΓ  and ( )WeΓ  respectively denote the sets of boundary 
vertex-points different from corner-points and located in the 1x -axis and the 

2x -axis. In the sequel, we will sometimes do the following identification:  

.≡ ×      

Note that Perio  is an hM -dimensional subspace of  . So, the following 
identification will be sometimes considered:  

.hM
Perio

∗≡ ≡ ×      

Proposition 10 The matrix h  associated with the discrete system (DP2) is 
singular.  

Proof. The proof is elementary. Indeed it suffices to remark from the discrete 
system (31) - (34) that 

( )
1

0 1 .
h

h hij
j M

i M
≤ ≤

= ∀ ≤ ≤∑   

Thus, the kernel ( )hKer   of h  defined by  

( ) { }; 0hM
h h h hKer V V= ∈ =    

involves a nonzero vector, namely ( )1,1, ,1 hM
h = ∈  , and therefore h  is 

singular.  
We know from the previous proposition that the discrete problem (DP2) could 

get either no solution or an infinite number of solutions. Indeed, existence of 
solutions to this problem depends on whether the right-hand side to (DP2) is in 
the orthogonal of the kernel of h . Our purpose now is to give a characteriza-
tion of ( )hKer  , the kernel of h . Before that, we recall a result we need for 
proving the characterization of ( )hKer  .  

Proposition 11 (Characterization of ( )hKer  ) 
 ( ) ( ){ }; 0h tM

h h Perio h h hKer V V V= ∈ ≡ =    ;  
 ( ) 0 ht M

h h h h h PerioV V V Vσ σ
∗ ∗

= ⇔ = + ∀ ∈ ≡        , 
where we have set:  

( ) ( )1 if 1 if
and

0 otherwise 0 otherwise.i i

i i
∗

∗∈ ∈ 
= = 
 

  

 
 

and where σ  and σ
∗
 are given real numbers.   

Proof. The inclusion of ( )hKer   in ( ){ }; 0h tM
h h h hV V V∈ =   is trivial. 

Let us concentrate on the proof of the inclusion of ( ){ }; 0h tM
h h h hV V V∈ =   

in ( )hKer  . For this purpose, let { } { }( ); hM
h P P D D

V V V ∗

∗

∪
∈ ∈

= ∈ ≡  
 

 
 

be a vector such that  

( ) 0.t
h h hV V =  
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where one has set 

( ) ( ) { }
1

.int
So We O

D∗ = ∪ Γ ∪ Γ ∪      

Therefore, it follows from the integration by parts formula that:  

( )

( )

( )
( ) ( ) ( )

( ) ( )( )

( )
( ) ( )

( )

2

2

2 ,

2 ,

,
sin

2 ,

sin

,
sin

h h h h h h
h

h h h h

A A
B A

D

P A

L PB A
D

P P
L P

D

, j meas K

meas K

meas
K

meas

K

meas
K

meas

σσ σσ σσ
σσ

σσ
σσ

σσ

σσ

σσ

σ σ

σσ

σ σ

ϕ ϕ ϕ

ϕ ϕ

σ
ξ ξ ϕ ϕ

σ α

ξ ξ
ϕ ϕ ϕ ϕ

α

σ
ξ ξ ϕ ϕ

σ α

∈

∈

∈

= ∇ ∇

= ∇ ∇

= −


+ − −

+ − 


∑

∑

∑

 D D D
D

D D D
D

D
D

D

D

D

D



   
 

 

 
 





 

 





D

D

D

 (48) 

According to [6], there exists minλ  a mesh-independent, strictly positive real 
number that minimizes both of least eigenvalues of K

σσ
D 

. We then deduce 
from Equation (48) that  

( ) ( ){ }2 2
min ,h h

L P hB A
j

σσ

λ ϕ ϕ ϕ ϕ ϕ
∈

− + − ≤∑ 
D

 

 D

       (49) 

It is obvious from the previous inequality that the space  
( ){ }; 0h tM

h h h hV V V∈ =   is included in the one spanned by the vectors   
and 

∗
  defined by 

( ) 1 if i.e. is a cellpoint number
0 otherwisei

i i∈
= 





 

and  

( ) 1 if
0 otherwise.i

i
∗

∗∈
= 





 

Remarking that   and 
∗

  are two (linearly independent) eigenvectors 
with zero as corresponding eigenvalue with respect to the matrix h , the proof 
of Proposition 11 is completed.  

Remark 6 Note that the dimension of the space ( )hKer   is equal to 2. This 
information plays a key-role for uniqueness conditions investigated in the next 
section.   

3.2.2. Existence and Conditions for Uniqueness of a Solution to (DP2) 
Let us start with an existence result for the discrete problem (DP2) which in-
volves the system of Equations (31)-(34). 

Proposition 12 (Existence) 
Under the assumption (12), the discrete system (DP2) possesses an infinite 

number of solutions.  
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Proof. Just remark that the condition (12) ensures that the right-hand side of 
the system of Equations (34) is a vector of hM  orthogonal to ( )hKer  .  

Recall that for the continuous problem (1), the assumptions (2) - (12) ensure 
the existence of a family of variational solutions i.e. set of functions ϕ  living in 
the space  

( ) ( ) ( ) [ ] ( ) ( ) [ ]{ }1 ; .,0 ., in 0, and 0,. ,. in 0, ,v H v v b a v v a b= ∈ Ω = =  

and such that  

( ) ( ) ( ) ( ) ( )d d .K x grad x gradv x x f x v x x vϕ
Ω Ω

⋅ = ∀ ∈∫ ∫   

The uniqueness of a solution to this continuous problem is got from the sub-
space of   made up of functions v satisfying the following condition:  

( )d 0.v x x
Ω

=∫                          (50) 

This condition makes obvious the necessity of associating a discrete function 

hv  (defined almost everywhere in Ω ) with any vector { } { }( );P P D D
v v

∈ ∈
  

 
from perio . 
 Basic discrete function spaces. Denote by ( )perioE   the space of such dis-

crete functions hv  and let S  be the characteristic function of a subset S  
of Ω  i.e. ( ) 1x =S  if x∈S  and 0 otherwise. We define the space 

( )perioE   as:  

( ) { } { }( )
( ) ( ) ( )

: ; ; such that

a.e. in
P D

Perio P PerioP D D

P D
P D

E v v v

v x v x v x

∈ ∈

Ω Ω
∈ ∈


= Ω→ ∃ ∈



= + Ω


∑ ∑

  

 

 

 


 
 

 

    (51) 

where PΩ  and 
D

Ω   are two generic notations of the two kinds of auxiliary 
cells from  . Let us introduce the following mappings (viewed as projections 
in some sense): 

( ) [ ]( ) ( ) ( ) ( )Ph Perio h h P C
P

v E v x v x v x E
∈

∈ Π ≡ = ∈∑     


   (52) 

( ) [ ]( ) ( ) ( ) ( )
D

h Perio h h CD
D

v E v x v x v x E
∈

∈ Π ≡ = ∈∑   


   



  (53) 

where ( )E   and ( )E   are function spaces respectively associated with 
vector spaces   and   (see relation (44) for the definition of these vector 
spaces). 
 Looking for uniqueness conditions. Since the dimension of ( )hKer   is 

equal to 2, we should look for two discrete analogues of (50) (namely qua-
drature formulas), linearly independent, that should ensure uniqueness for a 
solution to the discrete problem (DP2). These discrete analogues are defined 
as:  

( ) ( )d 0 and d 0h hv x x v x x
Ω Ω

= =∫ ∫   

In other words,  
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( ) ( )0 and 0P P D D
P D

mes C v mes C v
∈ ∈

= =∑ ∑  
 

 

Proposition 13 Define two quadrature expressions ( ).  and ( ).  on 
the discrete function space ( )E   as follows: for all  

{ } { }( ) ( );h P D
v v v E= ∈ 

  

( ) ( ) ( ) ( )and .h P P h D D
P D

v mes C v v mes C v
∈ ∈

= =∑ ∑   


 

 

 

Then, ( ).  and ( ).  are linearly independent linear forms on ( )E  . 
   

Proof. Let λ  and λ  be two real numbers such that ( ) ( ). . 0λ λ+ =  
   

on ( )E  , that is, ( ) ( ) ( )0 .h h hv v v Eλ λ+ = ∀ ∈    
   

Taking hv  to be successively 
P

P
Ω

∈
∑ 


 and 
D

D
Ω

∈
∑ 


 

, one easily see that 

0λ λ= =  . This proves the proposition.  

We have gathered all the ingredients for existence and uniqueness of a solu-
tion to the discrete problem (DP2). 

Proposition 14 (Existence and Uniqueness) The problem that consists in 
finding { } { }( );P PerioP D D

ϕ ϕ
∈ ∈

∈ 


 
 such that the Equations (31) - (34) are 

satisfied possesses a unique solution if condition (12) is fulfilled and if  

( ) ( ) 0.P P D D
P D

mes C mes Cϕ ϕ
∈ ∈

= =∑ ∑  
 

              (54) 

  
Proof. We already know from Proposition 12 that under the condition (12), 

the discrete system (31)-(34) possesses an infinite number of solutions in Perio . 
Moreover, in the proof of Proposition 11, we have shown the fact that  

( ) 0t
h h h h PerioV V V≥ ∀ ∈                     (55) 

So, to end the proof of Proposition 14, we just need to prove the positive defi-
niteness of h  over the subspace ,0Perio  of Perio  made up of vectors hV  
satisfying the conditions (54). For this purpose, it suffices to show the assertion:  

( ) ,00 0 .t
h h h h h PerioV V V V= ⇒ = ∀ ∈   

The second part of Proposition 11 lets this assertion be trivial.  

4. A Short Survey of the 2D Implementation of DDFV Scheme  
on Uniform Mesh 

4.1. DDFV Formulation on the Internal Meshes 

Let us consider the model problem (1), in two dimensional region ( ) ( )0,1 0,1Ω = ×  
(where the permeability D is used instead of K). Before starting the implementa-
tion step, let us introduce the controle volume (Figure 5) and the main nota-
tions. We consider a primal mesh composed of rectangular cells  

; 1 1 1 1
2 2 2 2

, ,i j i i j j
K x x y y

− + − +

   
= ×   
   

, { }; 1, 2, ,i j N∀ ∈  . For the sake of simplicity,  
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Figure 5. Controle volume of DDFV scheme up (primal) and down (dual). 
 
we will assume that the mesh is uniform, and we enforce  

1 1 1 1
2 2 2 2

i i i i
x x y y h
+ − + −
− = − =  for all { }; 1, 2, ,i j n∈   where 1 0h

N
=   is fixed. 

we denoted by 1 1
2 2

,
i j

x y
+ +

 
  
 

 the vertices of the primal mesh and by ( ),i jx y  

the center of the primal cell ;i jK . Around each vertex of the primal mesh  

1 1
2 2

,
i j

x y
+ +

 
  
 

, we construct a dual cell [ ]1 1 1 1;
2 2

, ,i i j ji j
K x x y y+ +

+ +
 = ×   . The set of 

the dual cells 
{ }

1 1;
2 2 , 1,2, , 1

i j
i j N

K
+ +

∈ −

 
  
 



 constitutes a second mesh wish will call 

dual mesh. The diamond meshes are defined by the vertices  

( ) ( )1 1 1 1 1
2 2 2 2

, , , , , , ,i j i ji j i j
x y x y x y x y+

− + + +

   
      
   

 or  

( ) ( )1 1 1 1 1
2 2 2 2

, , , , , , ,i j i ji j i j
x y x y x y x y−

+ + + −

   
      
   

 and denoted respectively by 1 ,
2

i j+
  

or 1,
2

i j+
 . As you can see in Figure 6, the centers of the dual cells are the vertic-

es of the primal mesh and conversely. The set  

( )
{ }

1 1 1
2 2 , 0,1, ,

, , ,i j i j
i j N

h x y x y+
+ +

∈

   ∆ =       


 made of finite number of nodes is called 

the computational grid. Recall that:  

{ }
1 1 1 1
2 2 2 2, , , 1, 2, ,

2 2

i i j j

i j

x x y y
x y i j N

+ − + −
+ +

= = ∀ ∈   

We also adopt the following conventions: 0 1 0 1
2 2

0x x y y= = = =  and.  

1 1 1 1
2 2

1N NN N
x x y y+ +

+ +
= = = =  We are looking for values , 1 1,

2 2

,i j i j
ϕ ϕ

+ +
 which 

approximate ( ),i jx yϕ  and 1 1
2 2

,
i j

x yϕ
+ +

 
  
 

 respectevely. By rewriting Formula  

(34) in this particular case, the DDFV formulation of the model problem (1) on 
the internal meshes is written as follows 
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Figure 6. The natural ordering nodes for 4N = : Dirichlet boundary conditions. (LEFT), for Neu-
mann boundary conditions (middle) and for periodic boundary (Right). 

 

( )

( )

, , 1 , , 1 , , 1
22 22 22 21 21 22

, , 1 1 1 1 1, , 1 , , 1 , ,
22 22 22 22 2 2 2 2

, , 1 , , 1 , , 1
22 22 22 21 21 22

, , 1, , 1 , ,
22 22 22 22

2

2

i j i j i j i j i j i j

i j i ji j i j i j i j i j i j

i j i j i j i j i j i j

i j i ji j i j i j i j

D D D D D D
D D D D

D D D D D D
D D D D

ϕ ϕ ϕ ϕ

ϕ ϕ

+ + +

++ + − + + +

− − −

−−

 +
− + −  + +  

+
+ − +

+ +

( )

( )

1 1 1 11 , ,
2 2 2 2

, 1, , 1, , 1,
11 11 11 12 12 11

, 1, 1 1 1 1, 1, , 1, , ,
11 11 11 11 2 2 2 2

, 1, ,
11 11 11 12

, 1,, 1,
11 11

2

2

i j i j

i j i j i j i j i j i j

i j i ji j i j i j i j i j i j

i j i j i j i

i j i ji j i j

D D D D D D
D D D D

D D D D
D D

ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

− + − − −

+ + +

++ + + − + +

−

−−

 
−  

 
 +

+ − + −  + +  

+ − +
+

,

1, , 1,
12 11

1 1 1 1, 1, , ,
11 11 2 2 2 2

d 1 ,
i j

j i j i j

i j i j i j i j

K

D D
D D

f x i j N

ϕ ϕ
− −

+ − + − −

 +
−  +  

= ∀ ≤ ≤∫

 (56) 

and  

( )( )
( )

( )

1, 1 1, 1 , 1 1, 1 , 1 1, 1
12 12 21 21 22 22

1 1 1 3, 1 1, 1 , ,
2 2 2 211 11

, 1 1, 1 1, 1 , 1
11 21 11 21

, 1 1, 1, 1 1, 1
11 11

12

22

i j i j i j i j i j i j

i j i j i j i j

i j i j i j i j

i j i ji j i j

D D D D D D
D D

D D D D
D D

D

ϕ ϕ

ϕ ϕ

+ + + + + + + + + +

+ + + + + + +

+ + + + + +

+ + ++ + +

 − −  + + −   +   
 +

+ − + 

+
( )( )

( )

( )

( )

1, , , 1, , 1 1,
12 21 21 22 22

1 1 1 1, 1, , ,
2 2 2 211 11

1, , , 1,
11 21 11 21

, 1 ,, 1 1, 1
11 11

1, 1 1, 1 1,
21 21 12 12

22

i j i j i j i j i j i j

i j i j i j i j

i j i j i j i j

i j i ji j i j

i j i j i j i

D D D D D
D D

D D D D
D D

D D D D

ϕ ϕ

ϕ ϕ

+ + + +

+ + + + −

+ +

++ + +

+ + + + +

 − −  + + −   +   
 +

+ − + 

− −
+

( )
( )

1, 1 , 1 1, 1
11 11

1 1 3 11, 1, 1 , ,
2 2 2 222 22 22

j i j i j

i j i j i j i j

D D
D D

ϕ ϕ
+ + + + +

+ + + + + + +

   + + −   +   

 

( )

( )( )
( )

1, 1, 1 1, 1 1,
22 12 22 12

1, 1, 11, 1, 1
22 22

, 1 , , , 1 , , 1
21 21 12 12 11 11

1 1 1 1, , 1 , ,
2 2 2 222 22

, 1 , ,
22 12 22

22

i j i j i j i j

i j i ji j i j

i j i j i j i j i j i j

i j i j i j i j

i j i j i

D D D D
D D

D D D D D D
D D

D D D

ϕ ϕ

ϕ ϕ

+ + + + + +

+ + ++ + +

+ + +

+ + + − +

+

 +
+ − + 
 − −  + + + −   +   

+
+ ( )

1 1,
2 2

, 1
12

, 1 ,, , 1
22 22

d 1 , 1
i j

j i j

i j i ji j i j

K

D
D D

f x i j N

ϕ ϕ

+ +

+

++

 
− + 

= ∀ ≤ ≤ −∫

       (57) 
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The DDFV method can be viewed as a double classical finite volume acting on 
the primal meshes and on the dual meshes. When the medium is isotropic sys-
tems (56) and (57) are decoupled and therefore independent. In the homogene-
ous and nonhomogeneous anisotropic case there is a connectivity between the  
unknown ,i jϕ  and 1 1,

2 2
i j

ϕ
+ +

. For every fixed primary mesh  

; 1 1 1 1
2 2 2 2

, ,i j i i j j
K x x y y

− + − +

   
= ×   
   

 or dual mesh [ ]1 1 1 1;
2 2

, ,i i j ji j
K x x y y+ +

+ +
 = ×     

the corresponding Equation (56) or (57) involves nine unknown nodal values. 
For that reason in this particular case DDFV scheme is so called the nine point 
scheme.  

4.2. Matrix Form of the Linear System (56) and (57) and Node  
Numbering 

If we adopt the lexicographic (Figure 6) order according to which nodes (cor-
respondingly, the unknown components) are numbered by proceeding the pri-
mary mesh to the dual mesh, from left to right and from the bottom to the top. 
By so doing we obtain a symmetric linear system whose matrix form is:  

T
cc cc

vc vc

FA B
FB C

Φ    
=     Φ     

                   (58) 

where ccF  is a subvector with ( )card   components, cvF  is a subvector with 
( )card  , A is a ( ) ( )card card×   symmetric matrix, C is a  
( ) ( )card card×   symmetric matrix, B is a ( ) ( )card card×   matrix and 

TB  it its associated transpose matrix. Note that the components of ccF  and 

vcF  depend on f.  

4.3. The Mesh Data Structure and Connectivity between General  
Nodal and Its Neighbors 

Global indices generally used for building the full system of equations over the 
computational domain while local indices are employed to define the local sten-
cil for an element information that is useful during the discretization process. In 
this case system local indices are used interchangeably as global indices ( ),i j ,  

1 1, local index
2 2

i j + + ← 
 

, global index←  because they can be readily  

translated to global indices and vice versa, as illustrated in Tables 1-3. As you 
can see on the equation systems (57) and (56), the unknowns located at the ver-
tex of the primal cells have the half-integer indices, which complicates the task in 
terms of Matlab coding, to break obstacle we modify the local indices so as to 
have only integer indices, the numbering of the local indices remains unchanged. 
Prior to assembling the nodal equations in matrix form, each node needs to be 
assigned a unique number (global index), this because the solution to the system 
shown by Equation (58) is a vector [ ]T,cc vcΦ Φ  i.e. it is a 1D column matrix, 
not a 2D matrix. Essentially this implies combining the new i and j indices into a  
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Table 1. Connectivity between indices and coordinates of the associated node case of Di-
richlet boundary conditions 0.5h = . 

Old index ( ),i j  New index ( ),i j  Global index N Coordinae ( ),X Y  

( )1,1  ( )1,1  1 ( )0.2500,0.2500  

( )2,1  ( )3,1  2 ( )0.7500,0.2500  

( )1,2  ( )1,3  3 ( )0.2500,0.7500  

( )2,2  ( )3,3  4 ( )0.7500,0.7500  

3 3,
2 2

 
 
 

 ( )2,2  5 ( )0.5000,0.5000  

 
Table 2. Connectivity between indices and coordinates of the associated nodes case of 
Neumann boundary conditions 0.5h = . 

Old index ( ),i j  New index ( ),i j  Global index N Coordinae ( ),X Y  

( )1,1  ( )1,1  1 ( )0.2500,0.2500  

( )2,1  ( )3,1  2 ( )0.7500,0.2500  

( )1,2  ( )1,3  3 ( )0.2500,0.7500  

( )2,2  ( )3,3  4 ( )0.7500,0.7500  

1 1,
2 2

 
 
 

 ( )0,0  5 ( )0.0000,0.0000  

3 1,
2 2

 
 
 

 ( )2,0  6 ( )0.5000,0.0000  

5 1,
2 2

 
 
 

 ( )4,0  7 ( )1.0000,0.0000  

1 3,
2 2

 
 
 

 ( )0,2  8 ( )0.0000,0.5000  

3 3,
2 2

 
 
 

 ( )2,2  9 ( )0.5000,0.5000  

5 3,
2 2

 
 
 

 ( )4,2  10 ( )1.0000,0.5000  

1 5,
2 2

 
 
 

 ( )0,4  11 ( )0.0000,1.0000  

3 5,
2 2

 
 
 

 ( )2,4  12 ( )0.5000,1.0000  

5 5,
2 2

 
 
 

 ( )4,4  13 ( )1.0000,1.0000  
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Table 3. Connectivity between indices and coordinates of the associated nodes case of 
periodic boundary conditions 0.5h = . 

Old index ( ),i j  New index ( ),i j  Global index N Coordinae ( ),X Y  

( )1,1  ( )1,1  1 ( )0.2500,0.2500  

( )2,1  ( )3,1  2 ( )0.7500,0.2500  

( )1,2  ( )1,3  3 ( )0.2500,0.7500  

( )2,2  ( )3,3  4 ( )0.7500,0.7500  

1 1,
2 2

 
 
 

 ( )0,0  5 ( )0.0000,0.0000  

3 1,
2 2

 
 
 

 ( )2,0  6 ( )0.5000,0.0000  

5 1,
2 2

 
 
 

 ( )4,0  5 ( )1.0000,0.0000  

1 3,
2 2

 
 
 

 ( )0,2  7 ( )0.0000,0.5000  

3 3,
2 2

 
 
 

 ( )2,2  8 ( )0.5000,0.5000  

5 3,
2 2

 
 
 

 ( )4,2  7 ( )1.0000,0.5000  

1 5,
2 2

 
 
 

 ( )0,4  5 ( )0.0000,1.0000  

3 5,
2 2

 
 
 

 ( )2,4  6 ( )0.5000,1.0000  

5 5,
2 2

 
 
 

 ( )4,4  5 ( )1.0000,1.0000  

 
single index, which in fact is aforementioned unique number assigned to the 
node. But this case does not fulfill these requirements because the unknowns lo-
cated on the Eastern EΓ  and Western WΓ  boundary are equal, similarly for 
those on the Northern NΓ  and Southern SΓ  boundary. This requires special 
treatment afterwards. We start by showing the full matrix assembly strategy. 
This requires writing the function named IndexGlobalnode which takes as input 
the global index and the mesh size h and as output the associated local indices, 
then the function Globalnode Index which takes as input the local index, the 
mesh size h and returns global index. Let us set a general nodal point P asso-
ciated to the global index k nodal located inside the domain, which can be a ver-
tex or a center of the primary mesh. This general nodal point P as you can see in 
Figure 7 is defined by its neighbors nodes on the West, East, North, South, 
North-West, North-East, South-west and South-East are defined as follow; W, E,  
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Figure 7. Grid showing both node numbers and general nodal point K with its neighbors 
in the case of periodic boundary conditions. (left) Connectivity node and its neighbors in 
the primal cell: 2K N≤ : right Connectivity node and its neighbors in the dual cell: 

2 1K N≥ + . 
 
N, S, NE, NW, SW and SE. The discretized Equations (56) and (57) have found 
to take the following general form (59). So we have all gradients to assemble the 
matrix in Dirichlet and Neumann boundary case. Let’s now examine the period-
ic boundary case.  

P P nb nb P
n

C C fϕ ϕ+ =∑                   (59) 

where ∑  indicates summation overall neighboring nodes (nb), nbC  are the 
neighboring coefficients , , , , , , ,W W S N NE NW SE SWC C C C C C C C  and nbϕ  are the 
approximate values of pressure at the neighboring nodes. Table 2 shows the 
connectivity between the indices and the coordinates of the associated nodes in 
the case of Neumann boundary conditions. We can see that the boundary nodes 
are unknowns. However for the periodic case, we select from Table 3 only the 
nodes belonging to ( )\ N EΩ Γ ∪Γ  of discretization domain, keeping in mind 
that to get the others by periodicity. Matlab offers several ways (meshgrid, ndgr-
id) to generate the list of nodes and the corresponding coordinates. The chal-
lenge remains to find the connectivity between the neighboring nodes constitut-
ing the nine point stencil. Figure 7 illustrates how we proceed to convert Equa-
tions (56) and (57) in the form (59).  

5. Numerical Results 

In this section, we confirm with some numerical tests the theoretical results we 
have proven in the previous section. For each test-case, a uniform rectangular 
mesh is used with different levels of refinement materialized by successive  

decreasing values assigned to the mesh size 1h
N

= . In the following test-cases 

we have taken: 1 1 1 1, , ,
4 8 16 32

h =  and 1
64

.  

5.1. Notations 

In the following tables, ndu denotes the number of discrete unknowns. Recall 
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that .
  stands for the discrete 1

0H - norm and let 1,.
  denote the discrete 

1H -norm defined as:  

( )2

1
2 2 2

1, Lv v v
Ω

 = +  
                    (60) 

When the exact solution is available, the relative discrete 2L -norm of the er-
ror for the exact potential is defined as:  

( ) ( )
( ) ( )

1
2 2

2
2

p
P P

P

p
P

P

meas C x
erL

meas C x

ϕ ϕ

ϕ

∈

∈

  −  
=  
     

∑

∑




 

Defined by analogy, 1,.er −
  is the relative discrete 1H -norm of the error 

for the exact potential. For a given mesh, since different levels i of refinement 
may be considered, we denote by ( )2erL i  and ( )1,.er i−

  the corresponding 
relative discrete 2L -norm and relative discrete 1H -norm of the exact potential. 
Let us set for any integer i (with 2i ≥ ): 

( )
( ) ( )
( ) ( )

2 2
2

1
2

1

ln erL i ln erL i
raL i

ln ndu i ln ndu i

   − −   = −
− −      

 

We define ( )1,.ra i−
 , for any integer 2i ≥ , with the same relation as for 

( )2raL i , except that in this relation ( )2erL i  is replaced with ( )1,.er i−
 . On 

the other hand, erflm  stands for L∞ -norm of the error on the exact mean val-
ue of the flux across the mesh edges. So we have: 

( )
1maxerflm Q Q

meas σ σσ σ∈
= −


 

where Qσ  and Qσ  are respectively the exact and the approximate flux across 
σ  which is either a primal edge or a dual edge. The symbol erL∞  denotes the 
pressure error for L∞ -norm. 

Let [ ]ocv × × ×  denote the error order of convergence to zero for the norm 
[ ]× × ×  which may be taken to be one of the following norms 2. L

, 1,.
  and 

. L∞
. The first two norms are used for pressure error estimates while the last 

one serves for the flux error estimate. The quantity [ ]ocv × × ×  is defined as:  

[ ]
[ ]( ) [ ]( )( )( )

( ) ( )1

1

imax imax

ln er imax ln er imax
ocv

ln h ln h −

× × × − × × × −
× × × =

−
 

where imax  is the maximum level of refinement of a given primal mesh. 
At last, we denote by [ ]slope × × ×  the error order of convergence to zero for 

the norm [ ]× × ×  when computed with the least-square method. The quantity 
[ ]slope ×××  obeys the relation:  

[ ]( ) [ ] ( ) ,ln er i slope ln h i ν × × × = × × × +     

where ν  is a real number. 

5.2. Test Problems 

We consider two groups of test problems. In the first group, the medium is ho-
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mogeneous and so is spatially periodic. In the second group, the medium is tak-
en to be heterogeneous and spatially periodic. 

5.2.1. Group I 
We consider in this group two cases: a homogeneous isotropic medium and a 
homogeneous anisotropic medium. 

Data from Test problem 1: The medium ] [ ] [0;1 0;1Ω = ×  is associated with 
the following diffusion coefficient matrix. 

( )
1 0

,
0 1

K x y  
=  
 

                        (61) 

The exact solution to Equations (1) such that:  

( )d 0u x x
Ω

=∫                          (62) 

is  

( ) ( ) ( ), sin 2 sin 2 .u x y x yπ π=  

Note that it is easy to determine the corresponding (source term) function f 
and check that this function satisfies the compatibility condition (12). The same 
remark remains valid for all the test problems analyzed in this section. 

According to Table 4, DDFV computations of the approximate solution to 
Test problem number one display a quadratic convergence for 2L -norm and 
discrete 1H -norm concerning the pressure. The same rate of convergence is 
observed for .

∞
-norm concerning the interface fluxes. The quadratic conver-

gence for 2L -norm and discrete 1H -norm numerically obtained in the homo-
geneous diffusion analyzed here is not in contradiction with our theoretical re-
sults. Indeed, the order one of convergence is based upon much weaker assump-
tions on the diffusion coefficient which is supposed to be piecewise constant. 
Note that similar results have been obtained for Dirichlet and Neumann boun-
dary conditions by diverse authors in FVCA5 Benchmark [11]. 
 
Table 4. Convergence rate of flux and pressure errors for L∞ -norm, 2L -norm and dis-
crete 1H -norm in Test-problem number 1. 

i h(i) ndu ( )erL i∞  ( )2erL i  1,
.er −


 erflm ( )2raL i  1,

.ra −


 

1 1/4 41 0.2711 0.3197 1.9039 0.9348 - - 

2 1/8 145 0.0530 0.0532 0.4636 0.3000 2.349 2.401 

3 1/16 245 0.0130 0.0130 0.1153 0.0793 2.122 2.100 

4 1/32 2113 0.0032 0.0032 0.02878 0.0201 2.091 2.048 

5 1/64 8321 8.03E−04 8.03E−04 0.007145 0.005 2.017 2.033 

6 1/128 33,025 2.0E−04 2.0E−04 - - 2.010 - 

[ ]slope × × ×  2.08 2.13 2.01 1.89   

[ ]ocv × × ×  2.0031 2.0031 2.01 2.007   
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Data from Test-problem 2: Let ] [ ] [0;1 0;1Ω = ×  be a square with the fol-
lowing diffusion coefficient: 

( )
1 2

1
1

,
12

K x y  
=  
 

                       (63) 

The exact solution to (1) - (11) such that 

( ), d 0u x y x
Ω

=∫                         (64) 

is  

( ) ( ) ( ), sin 2 cos 2 .u x y x yπ π=  

Results from Table 5 confirm the comment we have developed about the ho-
mogeneous flow in Ω  exposed in Table 1. The result trends do not change 
even if one considers homogeneous media with contrasting diffusion coefficients 
like 

( )
1 10

10 1000
K x  

=  
 

                      (65) 

5.2.2. Group II 
Now we consider a nonhomogeneous isotropic and anisotropic porous domain 
Ω . Computation results are presented in (Table 6) below. 

Data for Test-problem 3: We have taken ] [ ] [0;1 0;1Ω = ×  associated with 
the following diffusion coefficient: 

( ) ( ) ( )
( ) ( )

2 sin sin
,

sin sin 1
x y

K x y
x y

 
=

π
π π



π



 

The exact solution to the system (1) - (11) such that  

( ), d 0u x y x
Ω

=∫                         (66) 

is what follows:  

( ) ( ) ( ), 2sin cos .u x y x y x y= + +    π  π  

 
Table 5. Convergence rate of flux and pressure errors for L∞ -norm, 2L -norm and dis-
crete 1H -norm in Test-problem number 2. 

i h(i) ndu er L∞−  2erL  1,
.er −


 erflm 2raL  1,.ra

  

1 1/4 41 1 0.3996 1.9160 0.9348 - - 

2 1/8 145 0.7071 0.1347 0.4826 0.300 1.703 2.28 

3 1/16 245 0.3827 0.0362 0.1208 0.0793 1.984 2.12 

4 1/32 2113 0.1951 9.2E−03 3.0139E−02 0.0201 2.021 2.062 

5 1/64 8321 0.0980 2.3E−03 0.7558E−02 0.0050 2.013 2.028 

[ ]slope × × ×  0.955 1.87 2.01 1.89  

[ ]ocv × × ×  1.005 2.009 1.995 2.007  
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Table 6. Convergence rate of pressure error for L∞ -norm, 2L -norm and for discrete 
1H -norm in Test-problems 3 and 4. 

Parameters Test problem 3 Test problem 4 

i h(i) ndu erL∞  2erL  1,
.er −


 erL∞  2erL  1,

.er −


 

1 1/4 41 2.00 0.7551 3.4897 4.9834 0.5182 2.716 

2 1/8 145 1.311 0.193 1.2036 0.2748 0.2134 1.379 

3 1/16 245 0.6619 0.060 0.5813 0.1212 0.0835 0.549 

4 1/32 2113 0.316 0.0235 0.3223 0.101 0.0439 0.3209 

5 1/64 8321 0.1502 0.0085 0.1616 0.0694 0.0209 0.1595 

[ ]slope × × ×  0.90 1.48 1.007 0.496 0.97 0.98 

[ ]ocv × × ×  1.07 1.52 0.94 0.54 1.08 1.02 

 
Data for Test-problem 4: Let Ω  be the square ] [ ] [0;1 0;1×  associated with 

the following diffusion coefficient: 

( )

1000 0 1 3 1 3if ; ;
0 1000 4 4 4 4

750 0
otherwise.

0 2000

x
K x

     ∈ ×         = 
 
  

          (67) 

The exact solution to the system (1) - (11) such that  

( ), d 0u x y x
Ω

=∫                         (68) 

is what follows:  

( ) ( ) ( ), 2sin cosu x y x y x y= + +    π π  .   

5.2.3. Concluding Remarks 
The numerical simulations in comparison with the exact solutions show the ac-
curacy of the method as you can observe it in Figure 8 and Figure 9.  

The numerical experiments were performed on uniform square meshes and 
have shown that: 

1) For isotropic homogeneous media, one gets a quadratic convergence of the 
approximate pressure for L∞ -norm, 2L -norm and discrete 1H -norm as well. 
The same convergence rate is observed concerning the flux for the vector 
max-norm. These results are in accordance with those published in the Finite 
Volume literature (see test-problem number 1). 

2) For anisotropic homogeneous media, one can see that the rate of conver-
gence remains globally the same, except for the L∞ -norm that displays a linear 
convergence (see test-problem number 2). 

3) For spatially varying diffusion coefficients D, the cell mean value of D is tak-
en to be the cell-center diffusion coefficients. Approximations of pressure are per-
formed with the order one of convergence for L∞ -norm and discrete 1H -norm 
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Figure 8. A numerical solution test-problem Group I 6

1
2

h =  LEFT: Approximation so-

lution; Right: Exact solution. 
 

 

Figure 9. A numerical solution test-problem Group II 6

1
2

h =  LEFT: Approximation 

solution; Right: Exact solution. 
 
while a 1.50 order of convergence is got for 2L -norm (see test-problem number 
3). 

4) For piecewise constant diffusion coefficients D, the same results as for spa-
tially varying diffusion coefficients are obtained except for the L∞ -norm that led 
to a 0.5 order of convergence (see test-problem number 4). 
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