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Abstract 
Purpose: The aim of this scientific contribution is to show the potential that 
integral calculus has offered to the analysis of thermodynamic processes. 
Method: Application of Integral Calculus. In this context, the document cov-
ers the theoretical principles of integral calculus, such as Theoretical frame-
work and background, Geometric interpretation of the primitive, Primitive 
existence theorem. Results: Integral calculus and generalized thermodynamic 
models, and their applications in various thermodynamic analysis contacts 
such as the Generalized Enthalpy Model, the Generalized Entropy Model, and 
the Generalized Model applied to gas mixtures and the General Model to 
elaborate the properties table. Conclusion: The mathematical analysis devel-
oped in this document is very useful in engineering and applied physics en-
vironments, a fact that supports its common pedagogical practice in univer-
sity institutions. 
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1. Introduction 

A mathematical expression with an equal sign is called an equation. An equation 
that includes the derivatives of one or more functions is called a differential equ-
ation. In other words, a differential equation expresses a relationship between 
functions and their derivatives. The term differential equation became known in 
1676, when Gottfried Wilhelm Leibniz (1646-1716) used it for the first time; 
since then, scientists and engineers have used differential equations extensively 
to model and solve a wide range of practical problems [1]. 
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The integral calculus has its origins in the need to determine the area of a sur-
face with curved contours. The applications of integral calculus can be very di-
verse. For example, it can determine the center of mass of a body or establishing 
the amount of fuel used in a space mission. The description of all scientific 
problems implies relationships that connect changes in some key variables; 
usually, the smaller the chosen increment in the changing variables, the more 
accurate the description will be. In the limit case of differential changes in the 
variables, we obtain differential equations that provide precise mathematical 
formulations for physical principles and physical laws representing the speed of 
changes as derivatives [2]. 

Therefore, differential equations are used to investigate a wide variety of 
problems in science and engineering. This fact establishes the pertinence of the 
integral calculation in the analysis of energy transformations [3]. Thermody-
namics is precisely the science that is responsible for studying the various 
processes of energy transformations [1] [2]. 

The study of thermodynamic phenomena involves two core aspects: 
 First: all the variables that affect the phenomena are identified, reasonable 

assumptions and approximations are made, and the interdependence of these 
variables is studied. Reference is made to the laws of physics and relevant 
physical principles, and the problem is formulated mathematically, usually in 
the form of a differential equation. This equation itself provides a lot of in-
formation because it shows the degree of dependence of some variables on 
others, and the relative importance of various terms. 

 Second: the differential equation is solved using a suitable method, and the 
relationship for the unknown function is obtained in terms of the indepen-
dent variables. 

This document focuses on integral calculus and its relevance in solving prob-
lems in thermodynamics. Thermodynamics can be defined as the science of 
energy. Although everyone has an idea of what energy is, it is difficult to define it 
precisely [4]. Energy can be considered as the ability to cause change. The term 
thermodynamics comes from the Greek words therme (heat) and dynamis 
(force), which corresponds to the most descriptive of the first efforts to convert 
heat into energy. Today, the concept is widely interpreted to include aspects of 
energy and its transformations, including power generation, cooling, and rela-
tionships between properties of matter. 

One of the most important and fundamental laws of nature is the principle of 
conservation of energy. It expresses that, during an interaction, energy can 
change from one form to another, but its total amount remains constant. That is 
to say, energy is neither created nor destroyed. The first law of thermodynamics 
can be understood as the principle of conservation of energy, and it holds that 
energy is a thermodynamic property. The second law of thermodynamics states 
that energy has quality as well as quantity, and real processes occur in the sense 
of diminishing the quality of energy. 
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This scientific contribution is composed of the following sections: 1) Theoret-
ical framework and background. 2) Geometric interpretation of the primitive. 3) 
Primitive existence theorem. 4) Fundamental integrals. 5) Fundamental rules of 
integration. 6) Integral calculus and generalized thermodynamic models. 7) Ge-
neralized Enthalpy Model. 8) Generalized model applied to the gas mixture. 9) 
General model to elaborate the property table. 10) Discussion. 11) Conclusions. 

2. Theoretical Framework and Background 

Primitive function or primary function of a given function is a variable  
( )dy f x x= , defined in a region whose derivative is equal to ( )f x  or, which 

is the same, whose differential is equal to ( )df x x : ( ) ( )F x f x′ =  o  
( ) ( )d dF x f x x=  In some cases, the field of definition of the primitive function 

is wider than the field of definition of the initial function. If the field of defini-
tion of the function ( )f x  is connected, with the exception of some isolated 
points, of discontinuity, 1 2 3 4, , , , , nx x x x x  then the field of definition of ( )F x  
can still contain these points of discontinuity [5]. 

For the given fusion there exists an infinite set of primitive functions; the dif-
ference between two primitive functions ( )1F x  and ( )2F x  is a constant 
quantity. The graphs of all the primitive functions ( ) ( ) ( ) ( )2 3 41 , , , ,F x F x F x F x   
of the given one represent the same curve and are obtained from each other as a 
result of a parallel translation of the curve in the direction of the ordinate axis, to 
one side or the other. 

2.1. Geometric Interpretation of the Primitive 

If the given function ( )f x  is represented by a row of Cartesian coordinates as 
shown in Figure 1. Then the numerical value of the primitive is equal to the area 
( )S x  limited by the curve ( )y f x= , by the xO  axis and by the two ordi-

nates: the constant AB (for x a= )) and by the variable CD (for the abscissa x). 
By arbitrarily choosing the constant (a), different primitives are obtained [1] [5]. 
In this case the area ( )S x  is understood in the algebraic sense  

( )ABCD d
x

a
f x x= ∫ . 

 

 
Figure 1. Geometric interpretation of the primitive (Bronshtein & Semendiaev, 1973, p. 
385). 
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2.2. Primitive Existence Theorem 

For every continuous function in a connected region, there is a primitive also 
continuous in this region [5]. A function that has discontinuities for some iso-
lated values of (x), has a primitive that is a continuous function, or is a function 
that has discontinuities for the same values of (x). 

2.3. Fundamental Integrals 

The integration formulas obtained by inverting the derivation formulas are 
shown in Table 1. In solving thermodynamic analysis exercises, we try to reduce 
the integrals by means of algebraic or trigonometric transformations, or by ap-
plying the integration rules [5]. 

2.4. Fundamental Rules of Integration 

These rules are based on the properties of the indefinite integrals that allow 
transforming the integral of a given function into integrals of other functions 
[5]. 
 The constant factor can be taken out of the integral sign: 

( ) ( )d daf x x a f x x=∫ ∫                       (1) 

 The integral of the sum is equal to the sum of the integrals of the separate 
terms. u, v, w, are functions of x. 

 
Table 1. Main integrals. In this table, the integration constants are omitted [5]. 

Potential functions Exponential functions 

( )
1

d 1
1

n
n xx x n

n

+

= ≠
+∫  

d lnx x
x
=∫  

e edx xx =∫  

d
ln

x
x aa x

a
=∫  

Trigonometric functions
 

Hyperbolic functions
 

sin d cosx x x= −∫  

cos d sinx x x=∫  

*tan d ln cosx x x= −∫  

*cot d lnsinx x x=∫  

2

d tan
cos

x x
x
=∫  

2

d cot
sin

x x
x
= −∫  

sh d chx x x=∫  

ch d shx x x=∫  

*th d ln chx x x=∫  

*cth d lnshx x x=∫  

2

d th
ch

x x
x
=∫  

2

d ch
sh

x x
x
= −∫  

Note: * In all formulas in which the composition function of the primitive formula con-

tains an expression containing ( )ln f x , it must be understood that it is ( )ln f x ; For 

simplicity, the sign of the absolute value the sign of the absolute value is omitted. 
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( )d d d du v w x u x v x w x+ − = + −∫ ∫ ∫ ∫                 (2) 

 Substitution rule: if x = φ(t), we have: 

( ) ( ) ( )d d'f x x f t t tϕ ϕ= ∗  ∫ ∫                   (3) 

 Integration by parts. u, v, are functions of x. 

d du v uv v u= −∫ ∫                         (4) 

3. Integral Calculus and Generalized Thermodynamic  
Models 

The equation of state is an equation that relates, for a system in thermodynamic 
equilibrium, the state variables that describe it; these have the general form: 
( ), , 0f P V T = , where P is pressure, V is volume and T is temperature. The ideal 

gas equation of state can be written in various ways: uPV NR T= , uPv R T= ,  

PV mRT= , where uR  is the universal gas constant and uR
R

M
= . Another 

useful expression for the ideal gas equation is 1 1 2 2

1 2

P v P v
T T
∗ ∗

= . The variations of  

internal energy and specific enthalpy for the ideal gas model, using the integral 
calculation, can be written as: 

2
2 1 1

dvu u u c T∆ = − = ∫                       (5) 

and 
2

2 1 1
dph h h c T∆ = − = ∫                       (6) 

These two equations are valid for any ideal gas process. Specific thermal ca-
pacities are only a function of temperature and are related by p vR c c= − . When 
superheat data is lacking, for engineering calculations Pv ZRT=  can be as-
sumed, where Z is the compressibility factor. The Z values are correlated as a  

function of the reduced pressure r
c

PP
P

=  and the reduced temperature 

r
c

TT
T

= . The compressibility factor and reduced coordinates can be used to  

evaluate properties such as enthalpy, entropy and specific heat capacity at con-
stant pressure for gases at very high pressures. The usefulness of this method is 
that you only need to know the critical pressure and temperature of any sub-
stance. This approach is widely used in the thermodynamic analysis of various 
processes such as: petrochemicals, power plants, heat pumps, among others. 

3.1. Generalized Enthalpy Model 

Enthalpy is a thermodynamic quantity, symbolized by the letter h, whose varia-
tion expresses a measure of the amount of energy absorbed or transferred by a 
thermodynamic system, that is, the amount of energy that a system exchanges 
with its environment [1] [6]. The entropy of a simple compressible substance 
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can be evaluated from the generalized equation: 

d d dp
P

uh c T u T P
T

 ∂ = + −  ∂  
                   (7) 

The first term of the right member of this equation is not difficult to evaluate 
since it only requires the knowledge of the variation of the pc  with the temper-
ature at the desired pressure. However, the variation of h with pressure is not so 
simple, since it is necessary to know the PvT behavior of each substance of in-
terest. Since there are no detailed data for many substances, a more general me-
thod should be used. The enthalpy variation at constant temperature can be 
written mathematically as: 

The first term of the right member of this equation is not difficult to evaluate 
since it only requires the knowledge of the variation of the pc  with the temper-
ature at the desired pressure. However, the variation of h with pressure is not so 
simple, since it is necessary to know the PvT behavior of each substance of in-
terest. Since there are no detailed data for many substances, a more general me-
thod should be used. The enthalpy variation at constant temperature can be 
written mathematically as: 

d dT
P

vh v T P
T

 ∂ = −  ∂  
                     (8) 

Using the compressibility relation Pv ZRT= , we have: 
2 2

d d dT
P

ZRT ZRT RT RT Zh P P
P P P P T

  ∂ = − − = −   ∂  
         (9) 

Before integrating this expression, it must be transformed to reduced coordi-
nates, so that the result is generally valid. By definition, c rT T T= , c rP P P= . Por 
tanto: d dc rT T T= , d dc rP P P= . Substituting this expression in the equation 
d Th  we obtain: 

2 2
2d d d ln

rr

c r
T c r c r r

c r c r r PP

RT T Z Zh P P RT T P
P P T T T

   ∂ ∂
= − = −   ∂ ∂  

      (10) 

Integrating at constant temperature we have: 

2 d ln
r

fT
r ri

c r P

h ZT P
RT T

 ∆ ∂
= −  ∂ 
∫                   (11) 

where the symbols i and f identify the initial and final reduced pressure limits. 
For convenience, enthalpy is evaluated from the ideal gas state to the real gas 
state at the same temperature. The lower limit of the left hand of the equation is 
zero pressure, a state for which rP  is equal to zero. The emtalpy of an ideal gas 
is indicated by an asterisk, that is, *h . The upper limit is the enthalpy h of the 
real gas at high pressure P. Therefore: 

*
2

0
d ln

r

r r
c r

P

P

h ZT P
RT T

h  ∂
 ∂ 

−
= ∫                  (12) 
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The value of the integral is obtained by graphical integration, using the data 
from the generalized compressibility diagram. The integration results in values  

of the deviation source 
*

c

h h
RT
−  in source of rP  and rT . The state graph is  

called a generalized enthalpy diagram, and a characteristic diagram is shown in 
Figure 2. 
 

 

Figure 2. Generalized enthalpy diagram. On the horizontal axis, we have the reduced pressure values rP , while on the vertical 

axis we have the relationship 
*

c

h h
RT
− . Reduced temperature r

c

TT
T

= . Reduced pressure r
c

PP
P

= . Critical temperature cT . Criti-

cal pressure cP . Ideal gas enthalpy *h . Real gas enthalpy h. [7]. 
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3.2. Generalized Entropy Model 

Entropy, symbolized as S, is the physical quantity that measures the part of 
energy that cannot be used to produce work. In a broader sense it is interpreted 
as the measure of the uniformity of the energy of a system. It is an extensive state 
function and its value, in an isolated system, grows in the course of a process 
that occurs naturally [8] [9] [10]. 

It is of interest to scientists and engineers to have a generic entropy diagram. 
The entropy diagram is based on the generalized equation for the entropy varia-
tion of a simple compressible substance, as shown in the following equation: 

d
d dp

P

C T vs P
T T

∂ = −  ∂ 
                     (13) 

As in the case of the enthalpy function, it is pointed out that the first term of 
the right side of the equation requires only information on the specific thermal 
capacity of the substance at the required pressure. The second term of the right 
member of this equation is in some cases difficult to evaluate, because not always 
enough PvT information is available for the substances of interest. Therefore, in 
these cases a generalized approximation is necessary. Following the procedure 
carried out in the previous section for the enthalpy source, the equation is inte-
grated from practically zero pressure to the desired pressure, keeping the tem-
perature constant. The resulting equation is written as: 

( )*
0 0

d
P

p T
P

vS S P
T
∂ − = −  ∂ ∫                   (14) 

Normally, the next step would be to introduce into this expression the defini-
tion of the compressibility factor and the reduced pressure and temperature. 
However, it cannot be used directly in the above equation, because the entropy 
of the ideal gas in the zero-pressure state is infinite. This dilemma is obviated as 
follows: Equation (13) is applied to an isothermal change between zero pressure 
and the given pressure P, but assuming that the gas behaves like an ideal gas at  

all times. As for an ideal gas 
P

v R
T T
∂  = ∂ 

, then: 

( )* *
0 0 0

dd
P P

P T
P

v PS S P R
T P
∂ − = − = − ∂ ∫ ∫              (15) 

The state presented by *
PS  is a fictitious state, since the ideal gas exists only 

at zero pressure. However, you can still assign values to this state even though it 
is not successful, if you now subtract the Equation (14) from the. Equation (15), 
we have: 

( )*
0

d
P

P P T
P

R vS S P
P T
 ∂ − = − −  ∂  

∫                (16) 

From the definition of compressibility factor PvZ
RT

= : 

P P

v RZ RT Z
T P P T
∂ ∂   = +   ∂ ∂   

                  (17) 
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Using this equation allows Equation (16) to be written as: 

( )*
0

1 d
P

P P T
P

Z T ZS S R P
P P T

 − ∂ − = − −  ∂  
∫             (18) 

This last result can now be expressed in terms of reduced properties as: 

( )*
0 0

d1 dr r

r

P P r
P P r rT

r r rP

PZ ZS S R P RT
P T P

 − ∂
− = − +  ∂ 

∫ ∫         (19) 

By comparing the last term of the right side of this equation with Equation 
(12), it is found that this term can be written as a source of *h h−  The final re-
sult is: 

( )
( )

* *

0

d
1rPP P T r

r c r

S S Ph h Z
R RT T P

− −
= − −∫               (20) 

The value of the first term of the right side of the equation can be obtained by 
means of the generalized enthalpy diagram. The last term of the right-hand side 
of the equation must be evaluated through a graphical integration of the infor-
mation of the compressibility factor. Equation (20) allows evaluating the devia-
tion of the entropy value with respect to that of the ideal gas at the same pressure  

and temperature. A graphical representation of the deviation function 
( )*

P P T
S S

R

−
  

versus reduced pressure and temperature is shown in Figure 3 as a generalized 
entropy diagram. 

The deviation function that is presented as a graph in Figure 3 is used as fol-
lows. Since entropy is a property, its variation is independent of the path chosen 
to evaluate it. Thus, between two states of the real gas we can write: 

( ) ( ) ( )1 1 2 21 2

* * * *
2 1 2 1P P P PT T

S S S S S S S S− = − + − − −             (21) 

The first and third terms of the right-hand side of the equation are obtained 
from the generalized entropy diagram for the initial and final states. The re-
maining term is determined by the entropy variation of an ideal gas between the 
initial and final states. This term is given by: 

* * 2 2
2 1 ,

1 1

ln lnp m
T PS S C R
T P

− = −                    (22) 

or 

* * 0 0 2
2 1 2 1

1

ln
PS S S S R
P

− = − −                    (23) 

Substituting Equation (23) into Equation (21), for example, shows that: 

( ) ( )1 1 2 21 2

* 0 0 *2
2 1 2 1

1

lnP P P PT T

PS S S S S S R S S
P

− = − + − − − −         (24) 

In this analysis it is evident that Equation (22) can be used instead of Equation 
(23). Besides the evaluation of the entropy variations for real gases, Equation 
(24) is also very useful for the evaluation of isentropic processes of these gases. 
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Figure 3. Generalized entropy diagram. On the horizontal axis we have the reduced pressure values rP , while on the vertical axis 

we have the relationship 
( )*

P P
T

n

S S

R

−
. Reduced temperature r

c

TT
T

= . Reduced pressure r
c

PP
P

= . Critical temperature cT . 

Critical pressure cP . Ideal gas entropy *
PS . Real gas entropy PS . [7]. 

3.3. Generalized Model Applied to Gas Mixture 

The concept of enthalpy, entropy, has already been discussed. in this section is 
important declares the concept of internal energy. The internal energy is the re-
sult of the contribution of the kinetic energy of the molecules or atoms that con-
stitute it, of their energies of rotation, translation and vibration, in addition to 
the intermolecular potential energy due to the forces of gravitational, electro-
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magnetic and nuclear type [11] [12] [13]. 
The internal energy, enthalpy and entropy of an ideal gas mixture can be de-

termined by subtracting the contribution of each of the components separately. 
That is, per unit of substance:  

, ,m i i m i i m i iu y u h y u s y u= = =∑ ∑ ∑                (25) 

This rule can be applied to a real gas mixture, with some caveats. 
 First, the properties , ,i i iu h s  of each component must be evaluated at the 

pressure and temperature of the mixture, and not at the pressures and tem-
peratures of the components. If the volume and temperature of the mixture 
are known data, Dalton’s law (John Dalton 1766-1844) of adiabatic pressures 
should first be used to obtain the approximate pressure of the mixture. 

 Second, this addition rule provides approximate results for. , ,m m mu h s , ana-
logously to when applying Dalton’s rule to real mixes for PvT. 

The values of , ,i i iu h s  are determined from the relationships generated from 
properties developed in [14]. Alternatively, the data from the generalized dia-
grams can be used. In this case the reduced pressure rP  of each component 
must be evaluated as the pressure of the mixture. 

3.4. General Model to Elaborate the Property Table 

The tables of saturation and superheated steam are very useful for thermody-
namic analysis in various contexts. Considering the analysis carried out up to 
this section of the document, we have the necessary and pertinent information 
to develop the general method for the elaboration of tables containing v, u, h and 
s as a function of P and T. The method requires three sets of experimental data 
that are represented analytically by the following equations: 
 An equation of state for PvT accurate for the saturation and superheated 

steam regions based on sperimetal data. 
 An equation for vapor pressure similar to Equation (26), based on experi-

mental vapor pressure data. The constants A, B, C, D, E, etc; are adjusted to 
obtain the best agreement with the experimental data. 

 From experimental measurements, you must develop an equation for the 
ideal gas ,0PC  data in the defined temperature range. 

2ln lnsat
BP A C T DT ET
T

= + + + + +              (26) 

The first point of those declared above allows the evaluation of the data of v in 
previously defined states. To illustrate the general method, arbitrary values of h 
and s are assigned in a given reference state. These reference values can be, for 
example, zero. As a clarification, the state of saturated liquid at a defined tem-
perature is chosen for the reference state. This reference state is indicated as state 
1 in the Ts diagram of Figure 4. It is intended to determine with respect to this 
state, the values of the properties in the arbitrary saturation states 2, 5, and 6. 
And the superheated steam states 3 and 4. The values in other states can be de-
termined in a similar way. 
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Figure 4. Ts diagram illustrating the evaluation of the data for the saturation and 
superheated steam tables. 
 

The data of the properties in state 2 are obtained from the Clapeyron equa-
tion. The differentiation of the vapor pressure equation provides data for  

d
d sat

P
T

 
 
 

 Substituting that magnitude in the Clapeyron equation, written as: 

( )2 1
d
dfg g f

sat

Ph h h T v v
T

 − = = − −  
 

              (27) 

you get a value for 2h . 
The values of fv  and gv  in states 1 and 2 are found from the equation of 

state. The entropy and internal energy in state 2 is obtained from: 

2 1
1

fgh
s s

T
= +                         (28) 

and 

( )2 1 1 2 1fgu u h P v v= + − −                    (29) 

The same type of calculation provides ∆h, ∆s, and ∆u between states 5 and 6. 
State 3 is at the same temperature as state 2, but at different pressures. Constant 
temperature calculations of this type are most easily performed using the con-
cept of deviation source discussed in the section entitled: Generalized Enthalpy 
Model. The deviation function Ry  is defined as: 

*Ry y y≡ −                           (30) 

where y is the desired value of y at ( ),P T , and *y  is the value of the property 
that the fluid would have a ( ),P T , if it were an ideal gas. Since the equations of 
state are usually explicit in pressure, we start from the general Helmholtz ration 
d dTa P v= − . Through proper manipulation, this equation leads to the Holm-
holtz residual function of the form: 

* d ln
v RTa a P v RT Z

v∞

 − = − + 
 ∫                 (31) 

Like d d da P v s T= − − , it will have to 
v

as
T
∂ = − ∂ 

 or: 
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( )* *

v
S S a a

T
∂

− = − −
∂

                    (32) 

Substitution of Equation (31) in Equation (32) is obtained: 

* d ln
v

v

P RS S v Z
T v∞

 ∂ − = − − −  ∂  
∫                (33) 

Considering h a Ts Pv= + + , Equations (31) and (33) can be used to show 
that: 

( )* d 1
v

v

Ph h T P v RT Z
T∞

 ∂ − = − − + −  ∂  
∫             (34) 

by definition  
* * * *u u h h P v Pv− = − − −                   (35) 

So 

( )* * 1u u h h RT Z− = − + −                   (36) 

Equations (33), (34) and (36), together with the equation of state PvT, allow 
us to evaluate the values of s, h, and u in a given state. For the change of state in 
the superheated steam region, for example: 

( ) ( ) ( )* * * *
3 2 2 2 3 3 3 2y y y y y y y y− = − − − + −             (37) 

y is any property of interest. The third term of the right member of Equation 
(37) is the variation of the property between the two states if the gas were ideal. 
Remember that for an ideal gas: 

* *
,0d

y
y x Px

h h C T=− ∫                       (38) 

,0d
ln yP

y x
x

PC T
S S R

T P
− = −∫                   (39) 

where x and y are two arbitrary states. To determine the values of the properties 
in state 4, the calculation must be carried out along the path 3-3'-4'-4 of Figure 
4. This is necessary since the ,0PC  data is known only along the pressure line 

0P , which is low enough for the gas to behave like an ideal gas. This analysis is 
expressed as: 

( ) ( ) 4* *
4 3 3 3 4 4 ,03

dPh h h h h h C T− = − − − + ∫              (40) 

( ) ( ) 4 ,0* * 4
4 3 3 3 4 4 3

3

d
lnPC T PS S S S S S R

T P
− = − − − + −∫          (41) 

Once the data for state 4 is known, those for states 5 and 6 are determined by 
the reverse process to that of states 1, 2, and 3. In this way, through the series of 
calculations previously analyzed, the values of the properties in any desired state 
relative to the reference values for h and s. 

4. Discussion 

Only a few of the many generalized diagrams that can be devised are shown in 
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this contribution. When the generalized equation is available for a property in 
relation to the variables P and T, it is possible to develop many diagrams. In the 
absence of abundant PvT data for a substance, generalized diagrams are power-
ful tools for predicting the properties of a liquid or gas. 

According to the concepts developed from the energy transformation laws 
and the definitions of the Helmholtz (a) and Gibbis (g) functions, four very use-
ful relationships between properties of simple compressible substances can be 
inferred. These are: 

d d du T s P v= −                        (42) 

d d dh T s v P= +                        (43) 

d d da P v s T= − −                       (44) 

d d dg v P s T= −                        (45) 

From these relationships, the four additional actions given below have been 
deduced: 

s v s P

T P T v
v s P s

∂ ∂ ∂ ∂       = − =       ∂ ∂ ∂ ∂       
                (46) 

v T P T

P s v s
T v T P
∂ ∂ ∂ ∂       = = −       ∂ ∂ ∂ ∂       

                (47) 

This group of equations is known as Maxwell’s relations. Two very important 
relationships of the specific thermal capacities are: 

v

v

Cs
T T
∂  = ∂ 

                        (48) 

and 

P

P

Cs
T T
∂  = ∂ 

                        (49) 

When these expressions and the Maxwell relations are substituted in the total 
differentials of du, dh and ds, the following generalized relations are obtained: 

d d dv
v

Pu C T T P v
T

 ∂ = + −  ∂  
                  (50) 

d d dP
P

vh C T v T P
T

 ∂ = + −  ∂  
                  (51) 

d d
d d dv P

v P

C T C TP vs v P
T T T T

∂ ∂   = + = −   ∂ ∂   
            (52) 

They are called Generalized Equations because they are not restricted to any 
particular substance or any particular phase. However, these equations are re-
stricted to simple compressible substances. The generalized relationships for cp 
and cv can be written as: 

2

2
v

T v

C PT
v T

 ∂ ∂  =   ∂ ∂   
                      (53) 
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2

2
P

T P

C vT
P T

 ∂ ∂  = −   ∂ ∂   
                     (54) 

2

P v
P T

v PC C T
T v
∂ ∂   − = −    ∂ ∂   

                   (55) 

The experimental data applications, together with the last equation, show that 
0 P vC C≤ − . The slope of the vapor pressure curve in a PT diagram is theoreti-
cally given by the Clapeyron equation. This can be written as: 

fg

sat fg

hP
T Tu
∂  = ∂ 

                        (56) 

An approximation of this equation, which does not contain the specific vo-
lume, is: 

2

1 2 1

1 1ln fg

sat

hP
P R T T

   
= − −   

   
                  (57) 

This equation is one of the forms of the Clausius-Clapeyron equation. This 

equation expresses that ln satP  is a linear function of 1
T

. The generalized rela-

tionship of the Joule-Thomson coefficient is written as: 

1
JT

h PP

T vT v
P C T

µ
 ∂ ∂   ≡ = −    ∂ ∂    

              (58) 

This equation is useful for predicting when the temperature of a gas will de-
crease during a throttling process. This analysis is of great importance to 
re-determine the efficiency of a refrigerant substance. Well, the refrigerant effect 
consists of extracting the thermal energy of a body to reduce its temperature. 
Due to thermodynamic properties, this energy is transferred to another material 
[15] [16]. 

The generalized diagrams and tables have been developed based on the gene-
ralized data for Z as a source of the reduced pressure and temperature and in 
accordance with the generalized equations for dh and ds. Normally, the values of  

the deviation functions 
*

c

h h
RT
−  and 

( )*
P P T

S S

R

−
 are represented for selected  

values of rP  and rT . This allows the estimation of h and s exclusively from the 
initial and final pressures and temperatures and from the critical data of the 
substance. This concept is also applicable to real gas mixtures. 

It could be said that almost all human activities have some kind of connection 
with mathematics. These links may be obvious, as in engineering, or less con-
spicuous, as in medicine or music. Thermodynamics is a science that has a close 
relationship with mathematics and its evolution. 

5. Conclusion 

The aim of this scientific contribution is to show the potential that integral cal-
culus has offered to the analysis of thermodynamic processes. In this context, the 
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document ranges from the theoretical principles of the integral calculus, such as 
Theoretical framework and background, Geometric interpretation of the primi-
tive, Primitive existence theorem, Integral calculus and generalized thermody-
namic models; to its applications in various contacts of thermodynamic analysis, 
such as Generalized py Model, Generalized Entropy Model, Generalized model 
applied to gas mixture and General model to elaborate the property table. The 
mathematical analysis developed in this document is very useful in engineering 
and applied physics environments, and this fact supports their common peda-
gogy practice in university institutions. The main argument that develops 
throughout this work is focused on the mathematical demonstration of obtain-
ing the model from the saturation and superheated steam tables. The tables of 
saturation and superheated steam are very useful for thermodynamic analysis in 
various contexts ranging from steam generation, refrigeration processes, and pe-
trochemical processes to applied physics and earth science studies. The study of 
thermodynamic laws is essential in the training process of energy engineers and 
studies in applied physics. Mathematical analysis is the pillar that supports the 
cognitive development of the very diverse processes of energy transformation. 
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