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Abstract

This paper studies the time-fractional Korteweg-de Vries (KdV) equations
with Caputo-Fabrizio fractional derivatives. The scheme is presented by using
a finite difference method in temporal variable and a local discontinuous Ga-
lerkin method (LDG) in space. Stability and convergence are demonstrated
by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of
the scheme are verified by numerical experiments.
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1. Introduction

Fractional differential equations have become increasingly important due to
their deep scientific and engineering background to correctly model challenging
phenomena such as long-range time memory effects, mechanical systems, con-
trol systems, etc. [1] [2]. In recent years, variable-order fractional calculus has
been found in some physical processes such as algebraic structure and noise re-
duction. Variable-order fractional calculus is a natural choice to provide an ef-
fective mathematical framework for describing complex problems and has many
advantages in describing the memory properties of systems [3]-[9].

Fractional partial differential equations can describe abnormal physical phe-
nomena more accurately than integer partial differential equations, which have
attracted more and more attention. However, it is difficult to obtain analytical
solutions to fractional partial differential equations when the fractional deriva-

tives are known. Therefore, we need to consider efficient numerical methods
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such as the finite element method [10] [11] [12] [13], discontinuous Galerkin
method [14] [15] [16] [17] [18], spectral method [19] [20], and finite difference
method [21] [22] [23], finite volume method [24] [25]. Wei [26] studied the ex-
act numerical scheme of a class of variable-order fractional diffusion equations,
using the fractional derivatives of Caputo-Fabrizio and the theoretical analysis
by the local discontinuous Galerkin method. Du [27] proposed different differ-
ence schemes for multi-dimensional variable-order time fractional subdiffusion
equations and found a special point approximation for the variable-order time
Caputo derivative. It is proved that the resulting difference scheme is uniquely
solvable. Li et al [28] carried out a numerical study on three typical Caputo-type
partial differential equations using the finite difference method/local disconti-
nuous Galerkin finite element method.

The KdV equation was first proposed by Boussinesq in 1877, and it is a typical
dispersion nonlinear partial differential equation. The nonlinear KdV equation
was derived by Korteweg and de Vries in 1895 [29], and it describes the propa-
gation of waves in various nonlinear dispersive media. Since then, the KdV equ-
ation has been widely used in various physical phenomena and engineering
modeling, such as nonlinear wave interactions [30], interfacial electrohydrody-
namics [31], plasma physics, geology, etc. Numerous numerical methods have
been proposed to solve this equation, such as finite difference schemes [32]
[33], pseudospectral methods [34], thermal equilibrium integration methods
[35], and discontinuous Galerkin methods [36] [37]. For sufficiently smooth
solutions, the following literature does some numerical work on the fractional
time KdV equation. Wei et al. [38] proposed the LDG finite element method of
the KdV-Burgers-Kuramoto equation, using variable-order Riemann-Liouville
fractional derivatives, and proved the unconditional stability and convergence of
the scheme. Zhang [39] constructed an efficient numerical scheme for solving
linearized fractional KdV equations on unbounded spaces. The non-local frac-
tional derivatives are obtained by exponentiating the convolution kernel and
approximately evaluating the initial boundary value problem.

In this paper, the Korteweg-de Vries equation (KdV) with Caputo-Fabrizio
fractional derivatives is constructed

Dll"”(‘)u(x,t)+5uxxx(x,t)JrﬂLg(u)X =f(xt), (xt)e(ab)x(0,T], Wy

u(x,0)=u,(x), xelab], .
where the fractional derivative orders a(t) IS (O,l) , f. 0 (u) and u, are
smooth functions. § and A are positive constants. In addition, the solutions
in this paper are periodic or compactly supported.

The Caputo-Fabrizio fractional derivative in (1.1) is defined as

Dl_“(t)u(x,t)= 1 J-tGU(X,S)explza(t)—l(t_s)}ds’ se(O,t]- (1.2)

‘ a(t)  os al(t)

There are many definitions of fractional derivatives, of which the most widely

used are Riemann-Liouville fractional derivatives and Caputo fractional deriva-
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tives. The Caputo-Fabrizio fractional derivative used in this paper was proposed
by Caputo and Fabrizio [40] in 2015. Compared with the Caputo fractional de-
rivative model, the Caputo-Fabrizio fractional derivative model can describe
different scales and configurations of matter. The Caputo-Fabrizio fraction-
al-order derivatives have been widely used by researchers such as Ann Al Sawoor
et al. [41] who studied the asymptotic stability of linear and interval linear frac-
tional-order neutral delay differential systems described by the Caputo-Fabrizio
fractional derivatives.

The key to the KdV equation LDG method is to rewrite the equation into a
first-order equation system by introducing two auxiliary variables. The LDG
method was first introduced by Cockburn and Shu to solve the convec-
tion-diffusion equation [42]. One of its advantages is that its solution and spatial
derivatives have optimal (k£ + 1) order convergence on the Z? norm. Yan and Shu
[43] developed a numerical method for LDG for general KdV-type equations
involving third-order derivatives. Wei and He [44] used the LDG finite element
method to solve the time-fractional KdV equation problem, discretized using fi-
nite differences in time and local discontinuous Galerkin methods in space. In
[45], the authors established the I? conservative LDG numerical scheme and
compared it with the dissipative LDG scheme of the KdV type equation to show
the dissipative induced phase error. In [46], Baccouch investigated the nonlinear
KdV partial differential equation LDG numerical scheme. The results show that
the LDG solution is superconvergent to a special Gauss-Radau projection of the
exact solution.

The structure of this paper is as follows. In Section 2, some basic notation and
mathematical foundations are introduced. Section 3 mainly introduces discrete
methods and constructs the LDG scheme. Section 4 presents the stability and
convergence results of the scheme. In Section 5, we give numerical experiments
to illustrate the accuracy of our proposed format. Finally, we summarize and

discuss our results in Section 6.

2. Preliminaries

2.1. Notations and Projection

Divide the interval Q=[a,b] as J:a=x, <X, <--<x , =b.For
2 2 N+3
j=1---,N,define I;=/x ;,x ;|,and AX;=x , —x ;, h=maxAx;.
i i I RS - 1<j<N

We divide the interval [0,T] evenly into time steps At:l:t -t
M

n
t,=nAt,n=0,1.--,M are mesh points.

The left and right limits of zat x , are denotedby U" ;, and U~ ,, respec-

j+ J+= J+1
"2 2 2

tively. Where U™ ; isin therightcell |;,,,and U ; isintheleftcell I;.Define
]+

= +=
2 J2

[uh]-+l =u’ U g
I+

NS
J+2 ) 2
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The associated discontinuous Galerkin space V,* is defined as follows
A ={V:Ve P"(Ij), xel;, ] =1,2,...,N}.

In proving the error estimate, we will use two projections on the one-dimen-
sional interval [a,b].
Denoted as P,

[ (Po(x)-o(x)v(x)=0,ve P (), 2.1)

]

and P*,

and

[, (Po0-ato -0 wer (). 7ol x J-ofx .| @

HE

For the above projection P,P*, it can be obtained from the standard ap-
proximation theory [47] [48] [49] [50],

< Ch**, (2.4)

Th

1
ol +hllel. +h? e

where p=Pw-w or p=P w—w.We want to denote all element boundary
points in one-dimensional space by 7,. Furthermore, we have the following de-
finition [51]

Azl o))

In this paper, Cis a positive constant, which may take different values in dif-

le

ferent positions. (~,~)D represents the scalar inner product over L’ (D) , ||||D

represents the correlation norm. When D =Q, we drop it.

2.2. Numerical Flux

In this paper, we will use the flux Q(l,zl_,l//+), which is related to the disconti-
nuous Galerkin spatial discretization. Q(l//’ , W+) is a monotonic numerical
flux that depends on the left and right limits of the function y at point x ,,
satisfying the following conditions: -

1) It is local Lipschitz continuous, so § (l//_ , (//+) is bounded when the func-
tion y* isinabounded region;

2) It is consistent with the flux ¢ (t//) , Le, gA(t//’,!//+ ) =g (1//) ;

3) It is a function with monotonic properties, the first parameter is a non-de-

creasing function, and the second parameter is a non-increasing function.

3. The LDG Schemes

This section introduces the LDG method for the time-fractional KdV Equation
(1.1).

First, we discretize the fractional derivative in the time direction
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—exp{(a(;"gﬁ(n—kﬂ)lﬁ (3.1)

=———————> (u(xt)—u (Xt ) )W +R"(x),

(1-a(t,))Ati

where R" (X) is the truncation error in the time direction,
1 & e o*u(x,¢,) a(t,)-1
-t t —s) |ds,
N e e I
t )—-1)At t )-1)At
Wkn zexplim(n_k)]_exp[m(n_k+1)],

and ¢, e(t;,t).

By further calculation we can get

DOy (x.t. ) = 1
ule) (1-a(t,))At

R"(x)=

(Wn”u (xt,)-W"u(x,t,)
(3.2)

+:Zj(wk“ “W Ju(xt, )j+ R ().

Lemma 3.1. [52] [53] When 0< a(t) <1, the truncation error R" (X) satis-
fies the following estimation

R" (x)|<C(at)”. (3.3)
W, has the following properties

0<W" <W,' <---<W

n

(3.4)
W -we <c, wk<n-1,
and
3 3 (a(tn)—l)At (a(t )—1)At
DW= exp[ n-1 ]—exp[ n
n=2 n=2 (tn) ( ) (Z(tn) ( )
(3.5)
t)—1)At t)—1)At
=exp M —exp M‘] <C.
a(t,) a(t,)
Rewrite the Equation (1.1) as a first-order system of equations,
D “Yu(x,t)+5a, (x,t)+2g(u), = f(xt),
p=u, (3.6)

a= Py
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U, Pn. On €V, represent approximate solutions of u(-t,), p(.t,) a(-t,),
respectively. f"=f(.t,).Find ul, p, g eV such that for the test function
v, ¢, @ €V,S, we have

j=1

N
Wn”J'Qudex—ﬂé ngﬁvxdx—z (QQV —(QEW
1
j+=

it
=

~pA JQg(uh")vxdx—i

j=1

-1

= > (W, W) [ ufvex+W," [ upvax+ B[ v, (3.7)

N
quﬁ¢dx+jgpa¢xdx—z_l [m l—(paqﬁ* =0
g I3 =
n n A n__— n__+
J'Qphgodx+jguh(pxdx—jz_; Ujp - Upo 1 =0,
) ) 3

where B =(1-aft,))At.

The hat function in the element boundary term resulting from the integral by

>

=
1
AN

parts in (3.7) is the numerical flux. To ensure stability, we can take the following

alternating numerical fluxes
ur=(u) . er=(pr) . an=(a) - (3.8)
The choice of flux (3.8) is not unique, only uy and p;,q; can take the
opposite sides [54].
The fluxes @((UQ )_ ,(UQ )+) are monotonic fluxes as described in Section 2.2.
Examples of monotonic fluxes suitable for local discontinuous Galerkin methods

can be found [55] [56]. For example, we can use the Lax-Friedrich flux, which

consists of
§f (l/f’,l/f)=%(g(w‘)+g(w*)—ﬂo(w* v ) A= max|g’(y ).

In the next section, we discuss the stability and convergence of the numerical
Scheme (3.7).

4. Stability and Convergence

To simplify the notation, we consider the case of f =0 in the numerical analy-
sis.

Theorem 4.1. Under periodic or tightly supported boundary conditions, the
fully discrete LDG scheme (3.7) is unconditionally stable, and the numerical so-

lution u; satisties
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n
l']h

<fur] n=1.2-Mm. (4.1)

Proof. Add the three equations in the scheme (3.7),

N —~
w" J'Q uyvax + IQ qr gax + J'Q Py dx — ﬁ&{fg qnv,dx — Z{(qﬁv‘ ) o
HE

@), )} ”[Iﬂg(”“n)v*dx‘%[(mv)ﬁz (g(A))B
+[, P —i[(p:%)ji —(pAh”W)jJ (4.2)

j=1

N —~ —~
+_[Q uﬁq)xdx—z“[(ur?(p)“l —(u;(p+)- 1]
2

j=1 J*E
= :Z;(Wki1 -W," )JQ ugvdx +W," IQ upvdx.

Substitute the test function v=uy,,¢=/85p,, p=—F5q, into the scheme
(4.2), using flux (3.8) and the Cauchy-Schwarz inequality, we get

w; Jur ]+ ps]az | oa- £ pi o
-5 [ an (), dx—i{((‘ﬂ ) () ) ol (e () )J‘EJ]
-A2 [,9(u)(ur), dx‘é{(m(”ﬁ))H;_(m(u“ny)iiﬁ

| [, en (eh), dx_%{((pQY(p?)_)ﬁ; (o) e ”J‘JJ
s ().

15 jQU,?(qh”)xdx—i(((uﬁ)_(q”),};_((

n-1

< Z (Wkn+l _Wkn )

k=1

k 0
Up U,

n
uy

n
+W,

n
up

which is

w fun +BAG(u] )

+iﬂ5(‘I’(UR, prar), 1 = (u. plar) 1 @(ur, pﬁ,qh”)j1] (4.3)
2 2 2

i=1

n-1

sk:1(wk”+1—wk") uf oW i),
here
()| J oo, - o0 ), -(oT ] |
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+(P) (R) —(uf) (ar) -

The above scheme can be calculated by
N
Z/ﬁ[‘P(uh”, PR o) 2 = (u, ph“,QE)j_lj=0,
j=1 2 2
n n n 1 n 2
o(u. p.av), 1 =5l ni], -
2 2

For nonlinear terms, let G(u J. g(u)du. Using the mean value theorem
and the monotonicity of hquldlty yields ~( Q):(G'(f)—ﬁ)[ ]> 0, where
& isavalue between Uy~ and u;*.

Substituting (4.4) into (4.3), we get

2 N ﬂ5 2 n-1
a2 S e ] = (W)
-1

1 k=1
=

(44)

uy Al T (4.5)

Prove Theorem 4.1 by mathematical induction. Let n=1 in the scheme (4.5),

we have

wi ]+ S22 0T, < ],

A
since
Juiuhox <ol il
we can get the following result
w ] <we (Gl Sl )
which means
o< el

Suppose the following inequalities hold
<[ur]. m=123--n-1

Next prove "Ur? " < "Ur?"
From (4.5) we get

W < X (Wt =)k |+ o
k=1
<( 1(Wk”l—Wk”)+W1”j uﬁ" (4.6)
k=1
=W, u,?"
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Therefore, we have

{

In summary, Theorem 4.1 is proved.

Next, we will state the error estimates of the equation g(u)=u in the linear
case, and use (3.8) as the flux choice. We have the following theorem.

Theorem 4.2. Let u(xt,) is the exact solution of the problem (1.),
u(t)eH m”(D) is 0<m<k+1 is smooth enough. Let u, be the numerical
solution of the fully discrete LDG scheme (3.7), then there are the following er-

ror estimates
1 et
Ju(xt,)-ur] < (At+(At)1hk”+(At)2 h' 2], (4.7)

C'is a positive constant that dependson u,T .
Proof. Denote

el =u(xt)-ur =& —n, &P =Pe, n =Pu(xt,)-u(xt,),

ey =p(xt)-p=¢3-m, &5 =Pe, M =Pp(xt)-p(xt,) (48)

e =a(xt)-al =& -y, ¢ =Pel, g =Pa(xt)-a(xt,).

The above 77, ,77;,77: can be estimated by the inequality (2.4). Next, we
mainly discuss £, ¢},8y .
We can easily verify that the exact solution of the partial differential Equation

(1.1) satisfies the following

wnnjgu(x,tn)vdx_ﬁa(qu(x,tn)vxdx_i[(q(xt) )H;‘(q(x'tn)v*)j;D

j=1

_I[M[jﬂu(x,tn)VXdX—i[(u(X’tn)v)j+; ‘<“(X't")v+)J§D

j=1

n-1

( g — )Igu(x,tk)vdx+W1nJ'Qu(x,t0)vdx+ﬁJQf( Jvex — ,BJ' x)vdx, (4.9)

k=

qu(x,tn ¢dx+j p(xt,)ddx— Z((p(x,tn)(b)Hl—(p(xltn)(f)jljzo,

iN

j=1

[ p(ut,)pdx+ [ u(xt,)p,dx— i((”(xvtn)¢’_),—+;—(U(X,tn)qo*)j;j=0-

j=1

Select the flux (3.8), and subtract the Equations (3.7) and (4.9) to get the error

equation

wif oo e () )L (v L)
Ao gflere) v,

5 (Wk“+1 —-W," )Jﬂ elfvdx —W," Iﬂ elvdx + ,BIQ R" (x)vdx

k=1
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+er3¢dx+IQe:¢xdx—i_l{((eﬂ)+¢')H;‘((EEW)J-2]
e goon 3@ o), (€1 ¢, -0
Substitute (4.2) into (4.10) to get
il el w36 ) ).
_m[mwx_g[(@mv—)ﬁi—((:h" )“)j-;}]
o] Cogx [ £ z(((g"p) v ;—((43)+¢+)le
+f, o jQ;u"wxdx—Z[((é’u“ )l o),

. u
= 4=

j=1 ] 2
-1

(4.10)

= (W, W) [ Shvax+ W [ govdx— B R"(
k=1

vdx

W J v - ﬂf{f ek i[(("‘?yv)i+i_((ng)+v+)"'§ﬁ
_ﬂ/{j v, dx— ;[((Uh" ) "),-+;_((’7“n)_ “)1—;]}

n-1

= (Wkrll W ).[g 7, v W fg 77, vax

+f_migdx+ [ i, dx- Z[((%) ¢),-+;_((77‘n’)+¢+) J

=

S g [ gk Z(((m) v), ;'(("“n)qf) ]

=

(4.11)

- (2.3) and the test functions v=¢_

o= poc 2 ,and @ =-PC CT in (4.11), the following equality holds

wif, () e 234 MZML,

(8 W")je“g“dx+W"j Cocyax - p] R (x) ¢l

+Wn“jgf73§u“dx+ﬂ5jil(((n§ ) (¢ )7)141 —((ﬂq” ) (¢ )+)le (4.12)

1 — W 77: grax =W, I 104, dx
-2 ), o
1

B} ﬁ&%[((’]; ) (63) )H; () (& ”J‘J'

:

=
Il
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Note that ¢ =0, the following equation can be obtained

ool ﬂ‘szm ”zm.f

<3 (W, W) [, Cigndx— B R ()¢ Jdx+ 0

::

-1

=
Il

1

+ﬁ6§[((n:)*(:$))H;—((n:)*(cf)*) ;] o

gl @), ar), )

where

0=W, [ ni¢ dx— Z(Wkil —W) [ i gidx =W, [ nd¢ dx < Ch?

Sl

Using the Cauchy-Schwarz inequality, we have
5 AN 2
ﬁ Z[gp] ﬂ?_ Z[glJ]j_é
i=1 2
n-1
<5\ (i) &

+ﬂai(((f7§)TCJ])—((UE)T?S]))J_;+Chk*1 ;

1
Use ab<ea?+—b?,
£

A

n

af

Su

- R

+p

(4.14)

el

SN 2 N
”;Z[ép],—;+ﬁ72[ T
1n( l W,", wn gu + B||R"|+Ch** 1J2

% (( )( 1), B 5laT-aT),,

2

1 2
n ( k+1 +Chk+1j

%ZN;[((nq))ﬂ ))j | (4.15)

j,

n

which is

2 W

W gl <=
- ?

n

Rn

N

Multiply both sides of the formula by 2W',
2 n-1 2
) S(Z(W&l ) +Ch"”]
k=1

N \2 \2
cpow 3 (() | () V|
= -k
According to a®+b’ <

< (a+b)2 , we can get

(wr

n

¢

RI‘I
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n-1
e < 2wt -wi e+ R |+ cnt
k=1
N Ry 2 (4.16)
e Jpowe (o 4 () )] |
j=1 1‘*5
From Lemma 3.1, it can be known that ||R"|<C (At)2 ,and
B =0(At)=C(At) are defined for simplicity.
Assume that the following estimates hold
1 k+E
Sl Cn[(At)z +h“* +(At)2 h 2]. (4.17)
We also prove it by mathematical induction. When n=1, the following in-
equality holds,
ket
W < ¢ (at)® +Chk*l+1/C(At)(Ch +2],
therefore
2 1 k+l
Cil<Cl(At)" +h“ 4 (At)2h 2 |, (4.18)

Then assume that

Z)

1 k+£
i 2 k+l 2 2 i = e N—
5 SC]((AI) +h* +(At)zh J i=12,---,n-1. (4.19)
According to (4.16) and (4.18), we can get

WI‘I

n

1ot
- SWnn(n—l)C[(At)z+hk+1+(At)2 h' ZJ

1 +-
+C (At)2 +Ch* +C(At)2 h' 2,

SO

¢

1 k+1
< Cn((At)z +h“* +(At)2h Zj' (4.20)
Since jAt<nAt=T,

g

1t
< CnAt[At+(At)l h**+(At) 2 h' Zj
1.t
=CT (At (A (AL 2 h ZJ (4.21)

1t
sC(At+(At)lhk*l+(At)2 h' 2].

Combining the triangle inequality and the projection property (2.4), it can be
seen that the Theorem 4.2 holds.

5. Numerical Experiment

In this section, discussing the effectiveness of the above scheme for solving KdV
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equations, we consider the following numerical example with initial values and

periodic boundary conditions

D “Mu((x,t)+du,, (x,t)+Ag(u), = f(xt), (xt)e(0,1)x(0,1], 51)
u(x,0)=sin(2nx), xe[0,1],

where 0=2,1=09, g(u):%uz,

f(x,t)=exp [t](l— exp {_—Dsin (2nx)—16m” exp[t]cos(2nx)

a(t)

+6mexp[2t]sin(4nx).
Now we can check that the exact solution is
u(x,t)=e'sin(2nx).

In the following numerical calculations, we will provide the results of the above
examples under different a(t) conditions using piecewise P* polynomials to
validate our method. The detailed results for the time and space directions are

listed below, with h=1/N, At=1/M for time step and space step, respectively.
In order to reflect the spatial accuracy of the scheme, Figure 1 and Figure 2

adopt a fixed small time step At = 1020 and the variable space step

N =5,10,20,40 . Selecting different a(t) , the accuracy of > norm and L”
norm of piecewise P* polynomial can reach the optimal order. Table 1 ex-

amines the convergence rate in the time direction of the LDG method, we

choose a sufficiently small space step h= and a variable time step

1000
At =5,10,20,40. It can be seen from Table 1 that it has first-order convergence

in time, which is also consistent with the theoretical results.

Table 1. For different order a(t) when N =1000, T =1, use the piecewise 7 poly-

nomial to test the time accuracy.

M I*-error order L~-error order
5 2.342556643646625e—02 -  3.844443535521065e—02 -

ZCOS(t) 10 1.287283762777858e—02 0.86 1.784166238464656e—02 1.01

20 6.828570270036006e—-03 0.91 9.105420610539252e-03 0.97

40 3.497426279254679e-03 0.97 4.694853168636008e—03 0.96

5 4.662548602534104e-02 -  6.552106547740656e—02 -

10 2.479318097735330e-02 0.91 3.451685864768518e—02 0.92

20 1.270402131562550e—-02 0.96 1.726411528972149¢-02 0.99

40 6.405110600169740e-03 0.99 8.833848912488482¢-03 0.97
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Figure 1. I? errors and L~ errors VS A, order for a(t)= — M =1000, piecewise 7 and 7 polynomial.
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Figure 2. I* errors and L~ errors VS A, order for a(t) = 4— , M =1000, piecewise P and 7 polynomial.

I

6. Conclusion

This paper discusses the solution of a class of time-fractional KdV equations by
the LDG method under the Caputo-Fabrizio fractional derivative. We derive the
stability and error estimates of the proposed scheme. Numerical results dem-
onstrate the effectiveness and good numerical performance of the method. In
the future, we will consider generalizing this scheme to two-dimensional or

high-dimensional cases.
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