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Abstract 
Price movement of building materials increases the uncertainty of architec-
tural planning. As a basic building material, commercial concrete is an im-
portant part of various construction costs. It is of great significance to predict 
its price change trend in advance. In this paper, a univariate autoregressive 
series is constructed based on the daily average price of concrete in major ci-
ties in China; then it uses a combined model of Convolutional Neural Net-
work (CNN) and Long Short-Term Memory Network (LSTM) to extract the 
spatial and temporal rules of time series, to achieve accurate prediction of the 
trend of concrete price changes 10 days ago. The prediction accuracy rate of 
the model is 97.13%, and the precision, recall rate, and F1 score are: 97.15%, 
97.27%, and 97.20%, respectively. The prediction result is of great significance 
to various architectural planning. 
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1. Introduction 

Digital empowerment, smart cost, and an increasingly competitive environment 
have brought new challenges to building construction planning. In the construc-
tion cycle of several months, movements in material prices have increased the 
economic risks in construction. Commercial concrete is one of the main mate-
rials for various types of buildings, such as railways, highways, tunnels, bridges, 
buildings, etc., and is an important part of construction costs. Accurately pre-
dicting the price changes of commercial concrete is of great significance to the 
construction planning and economic risk control of buildings. The complex 
market environment makes price forecasting a challenging problem. Scholars at 
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home and abroad have carried out research on the price forecasting of various 
commodities from various perspectives. However, we have not found any re-
search papers related to the price forecasting of commercial concrete. 

References [1] [2] [3] respectively forecast and study the fluctuating electricity 
prices in the electricity markets of Australia, Spain, and the United States. These 
studies all use wavelet transform (WT), which is widely used in the field of elec-
tricity price prediction, as the data preprocessing algorithm. They are very simi-
lar in data preprocessing but differ in model selection and parameter selection. 
References [4] [5] [6] [7] conducted a forecast study on the price fluctuation of 
the energy market. Reference [4] compared the forecasting ability of forecast 
combination and contraction method in predicting oil price fluctuation. Refer-
ence [5] developed an improved oil price prediction model based on the support 
vector machine (SVM) algorithm. Reference [6] demonstrates how the real-time 
forecast accuracy of oil price forecast models changes over time, and a forecast 
combination method is proposed to address this instability. Reference [7] pro-
poses a real-time forecasting procedure that utilizes multiple factors with differ-
ent sampling frequencies to predict weekly carbon prices. Stock and futures 
markets are also the main research fields of price forecasting. References [8] [9] 
[10] studied stock forecasting from different perspectives. In [9], the language 
sentiment in Twitter is added to the deep learning model through natural lan-
guage processing, which enhances the performance of stock price prediction. In 
addition, the price prediction of agricultural products is also a research topic 
that scholars like. Reference [14] considered the impact of seasonal factors on 
vegetable prices and used the seasonal autoregressive integrated moving average 
model (SARIMA) to predict the price of cucumbers. 

To sum up, in the field of price forecasting, the research fields of scholars 
mainly focus on electricity [1] [2] [3], energy [4] [5] [6] [7], stock futures [8] [9] 
[10], cryptocurrency [11] [12] [13], agricultural products [14] and other fields 
that have a direct and important impact on economic life; although the price 
fluctuation of building materials is of great significance to architectural plan-
ning, the relevant price forecasting research is rarely concerned by scholars. In 
addition, researchers mostly focus on predicting the accurate price of commodi-
ties (or quantitative prediction), while predictions about commodity price trends 
are rare [12], and researchers usually use complex feature extraction methods [2] 
[3] [10] [11] [13] feature data to predict prices, which makes the selection of 
features and advanced processing of features, particularly important, and feature 
processing directly affect the performance of the prediction model. 

In a complex market game, it is a difficult and complicated project to select 
characteristic variables that have a direct impact on concrete prices to construct 
appropriate panel data or multivariate time series (MTS), and whether the selec-
tion of feature variables is appropriate or not and the availability of data will di-
rectly affect the performance of the prediction model. Therefore, we took anoth-
er approach to construct a univariate time series (UTS) based on the daily aver-
age price of concrete in major cities in China. The univariate time series is auto-
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regressive. Therefore, we take another approach to construct an autoregressive 
series based on the daily average price of concrete in major cities in China, 
which is a special univariate time series (UTS). The historical price data contains 
the law of price fluctuations, we try to mine these kinds of rules and transform 
the concrete price prediction problem into a time series classification (TSC) 
problem. 

This paper presents a novel expression of the above autoregressive sequence 
data and folds each time series into a set of highly correlated graph data. These 
graphs show the spatial rules of time series from different perspectives, which 
can be directly trained with a convolutional neural network. In this paper, a 
convolutional neural network is used to extract the spatial rules of time series, 
supplemented by a long short-term memory network to extract the time series 
rules of time series, to achieve an accurate prediction of the concrete price trend 
10 days ago. Experimental results show that the prediction accuracy rate of the 
CNN-LSTM combination model is 97.13%, and the precision, recall rate, and F1 
score are 97.15%, 97.27%, and 97.20%, which can accurately and accurately pre-
dict the price trend of concrete, and is of great significance to all kinds of con-
struction investment planning. 

The main contributions of this paper are as follows: 
1) Accurate prediction of concrete price changes 10 days ago has been achieved, 

which is of great reference significance for all kinds of building construction 
planning. 

2) A combined CNN-LSTM model is constructed, which can be used for ref-
erence by other time series classification tasks. 

The rest of this paper is organized as follows: Section 2 is the related work of 
this research, Section 3 presents the network model architecture, Section 4 is ex-
periments and results, and Section 5 is the conclusion and outlook. 

2. Related Work 

This section mainly introduces three models related to the research: Autoregres-
sive Sequence (ARS), Convolutional Neural Network (CNN), and Long Short-Term 
Memory Network (LSTM). 

2.1. Autoregressive Series 

Suppose 1 2{ , ,..., }NX X X  are time series training samples with number N, 

1 2{ , ,..., }Ny y y  are the class labels corresponding to the training samples and 
0,1, ,iy C∈ … , so time series training set D can be expressed as  

1 1 2 2{( , ), ( , ),..., ( , )}N NX y X y X y . In deep learning, it is often necessary to per-
form one-hot encoding on the category labels 1 2{ , ,..., }Ny y y , at this time, iy  is 
represented as a vector iY , and the encoded time series training set D can be 
represented as 1 1 2 2{( , ), ( , ),..., ( , )}N NX Y X Y X Y . The label iy  or iY  is the result 
label corresponding to the feature vector iX , and the feature vector iX  is the 
panel data at the moment of the label data iy  or iY , so the goal of time series 
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classification (TSC) is to predict label of test instance, which is the process of 
using feature vector X of the test instance to predict the class label y. 

Autoregressive sequence (ARS) is a special kind of time series, as the name 
suggests, it does not use feature data X to predict classification label y, but uses X 
to predict X itself, which is a regression of the variable itself, and the basic logic 
of an autoregressive sequence can be described by the following formula: 

( ) ( )1, , 1, 2,3, .t d t tX f X X d+ −= ∈   

If the data of 1tX −  is used to predict the result of t dX + , it is called a 1st-order 
autoregressive sequence model or ARS(1), at this time ( )1,t d t tX f X X+ −= , so that 
by analogy, ARS(2) model can be described as ( )1,t d t tX f X X+ −= , and the 
ARS(p) model can be described as ( )1 1, , ,t d t t t pX f X X X+ − − +=  . 

To sum up, the autoregressive sequence analyzes the deterministic or uncer-
tain relationship between the past and the future through the observation of 
historical data in the time axis to predict possible future observations. The auto-
regressive analysis is a special kind of time series classification, which provides a 
new path for price trend prediction. 

2.2. Convolutional Neural Network 

Fully connected networks will squash data of various shapes into 1-dimensional 
data input, which makes the shape of the data ignored, for example, typical im-
age data is a 3-dimensional shape of height, width, and channel, this shape con-
tains important spatial information, ignoring this spatial information will greatly 
reduce the recognition probability of the image. 

The convolutional neural network replaces the cyclic structure of the fully 
connected network Affine-RELU with the typical Convolution-RELU-Pooling 
cyclic structure, which makes the convolutional neural network completely re-
tain the spatial characteristics of the data. Today, convolutional neural networks 
are widely used in speech recognition, image recognition, and various classifica-
tion tasks. 

The advantage of CNNs is that they can directly learn the rules of feature data, 
reduce complex feature engineering, and the impact of these feature engineering 
on classification results. As shown in Figure 1, in the time series classification 
task, convolution can be seen as applying a sliding filter on the time series, ap-
plying multiple filters to a time series will produce a multivariate time series with 
the same dimensions as the number of filters. At the same time, CNN has the 
characteristics of weight sharing, which enables it to maintain translation inva-
riance when learning time series, this is a huge improvement over fully con-
nected networks because the timestamps of each time series in fully connected 
networks have their weights, which leads to loss of temporal information [15].  

As shown in Figure 1, a filter with a shape of (3, 3) means that three-time se-
ries is extracted each time, and three feature data of three subsequences are ex-
tracted for each slide with a stride of 1, which is an advanced way of extracting 
time-series features. For the filter jF  (with 0... 1j FN∈ − ), as j becomes larger,  
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Figure 1. Filter features extraction. 
 
the extracted information becomes more and more complex, from the edge, 
texture, and gradually to the internal features of the texture, the extracted feature 
information is more and more advanced, and each step of the slide extracts a 
section feature of the time series, multiple filters obtain multiple information 
mirrors of the time series. 

2.3. LSTM Network 

In traditional neural networks (including CNN), the input and output are inde-
pendent of each other, but the subsequent output of some tasks is related to the 
previous content, and the local information is not enough to enable the subse-
quent tasks to proceed, such as machine translation and sequence processing. 
The emergence of a Recurrent Neural Network (RNN) solves this problem. 
RNNs use the output of the previous moment as part of the input of the next 
moment, which is conducive to the processing of sequence data. 

If the convolutional neural network is good at obtaining spatial features, then 
the recurrent neural network is good at extracting the features of the time di-
mension. The advantage of the recurrent neural network is that it can transmit 
information from the past to the future, however, traditional recurrent neural 
networks may have problems with gradient vanishing and gradient explosion, as 
the network depth increases, subsequent nodes will gradually become weaker in 
their perception of previous nodes, and when the input sequence is too long, it is 
easy to lose the state information of the sequence header. In general, the prob-
lem of gradient explosion can be solved by gradient clipping, but the problem of 
gradient vanishing is not so easy to deal with until the emergence of Long 
Short-Term Memory (LSTM), LSTM calculates the state in the form of accumu-
lation instead of product, and by introducing the concept of the gate, remember 
what should be remembered and forget what should be forgotten, which alle-
viates the problem of gradient dispersion to a certain extent, and then, recurrent 
neural networks and their variants have been further implemented and devel-
oped, and have achieved good results in issues including machine translation, 
QA systems, speech recognition, and text classification. 

As a variant of RNN, LSTM has the native ability to process time series, and 
they can transmit information from the past to the future, which makes LSTM, 
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like CNN, widely used in various spatiotemporal sequence classification and 
prediction tasks [16] [17], in the field of class price prediction, LSTM also has 
many successful applications [3] [10]. 

3. Combined Model of CNN-LSTM 

This section mainly expounds on the network architecture used in the study, in-
cluding three aspects: the graphical representation of time series, the CNN ar-
chitecture, and the LSTM network architecture. 

3.1. Graphical Representation of Time Series 

Univariate time series cannot take advantage of the advantages of convolutional 
neural networks in the field of image processing, to make them directly learned 
by convolutional neural networks, it is often necessary to graphically represent 
the data. Traditional feature map extraction schemes are often complex and sin-
gle in expression, and cannot fully display the spatial rules of time series. We 
present a novel expression of the above autoregressive sequence data, which col-
lapses each time series into a set of highly correlated graphical data, which show 
the spatial rules of time series from different perspectives.  

As shown in Figure 2, we decompose the time series length T by multiplica-
tive decomposition T H W= × , and this decomposition will have multiple de-
composition methods. We use an enumeration method to obtain a set of all 
folded shapes, this set can be represented as 1 1 2 2{( , ), ( , ),..., ( , )}m mM H W H W H W= . 
where the minimum value of H or M is There is a limit, otherwise the convolu-
tion operation may not be possible. The minimum value of H or M is limited 
here, otherwise the convolution operation may not be possible. In addition, in 
some cases, the number of multiplicative decompositions of T is small, and even  
 

 

Figure 2. Multiple graphical representations of time series. 
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the decomposition operation of T H W= ×  cannot be performed, at this point, 
we can perform a zero-fill operation on the original time series, and fill in several 
zeros at the tail of the time series feature data, so that it can be decomposed in 
various forms, this is a padding-like operation that will not negatively affect the 
classification performance of the data. We use x to represent the padding length, 
at this time T x H W+ = × . 

Algorithm 1 describes the enumeration process of the above-mentioned mul-
tiplicative decomposition of the length of time series. The original data set rawD  
is represented graphically according to the shape in M, and a set of data sets with 
all shapes { }1 2, ,..., mD D D D= , Each dataset in D contains a side of the spatial 
characteristics of the time series, and their combination will give a more com-
prehensive description of the spatial characteristics of the time series, which is 
very beneficial to TSC. This is like taking pictures of a person from different an-
gles, showing her full pose, this scheme is conducive to obtaining the best spatial 
representation of time series data, and is very simple and intuitive 

3.2. Convolutional Neural Network Architecture 

In this paper, a simple convolutional neural network is designed to extract the 
spatial rules of time series, which only contains 2 convolutional layers and 1 
pooling operation. At the end of the network, a fully connected layer is used to 
flatten the data for output. RELU activation function is used for the layer and the 
pooling layer, the convolutional layer, and the fully connected layer, and the 
network structure is shown in Figure 3. RELU activation function is used be-
tween layers, and the network structure is shown in Figure 3.  
 

 
Algorithm 1. Time series folding enumeration process. 
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Figure 3. Convolutional neural network architecture. 
 

The graphically represented time series is used as the input of the convolu-
tional neural network, and the initialization weight θ of the data input obeys a 
Gaussian distribution with mean 0 and variance 2/(in + out) (XAVIER initializa-
tion). 

The first convolutional layer uses 20 filters (FN = 20), the shape of each filter 
is (3, 3), and the stride of the convolution operation is 1. The first convolutional 
layer is followed by a max-pooling of shape (2, 2), which is a non-linear form of 
downsampling performed between two consecutive convolutional layers. The 
output of the pooling layer is directly passed to the second convolutional layer 
with a filter shape of (2, 2) and a stride of 2. This convolution further extracts the 
high-level features of the feature map and passes the output to a full connection 
layer, the fully connected layer will squash the output of the features by the con-
volutional layer to 200. 

3.3. LSTM Network Architecture 

Univariate time series can be directly learned by the LSTM network without any 
preprocessing, and LSTM has the advantage of learning the temporal rules of the 
data, which makes it attract the attention of time series researchers from the be-
ginning. As shown in Figure 4, time-series feature-length T is the input length 
of the LSTM net, the first LSTM layer outputs a feature vector of length 800, 
which is to capture the deep features from the input sequence of T values. The 
output of the first LSTM is passed to the second LSTM layer, and the second 
LSTM performs deep extraction of the input 800 feature data and outputs 400 
high-level features. The output of the second LSTM is passed to a fully con-
nected layer, which flattens the feature data and outputs 100 features, RELU ac-
tivation function is applied between each layer.  

3.4. Net Combination 

As shown in Figure 5, after using a convolutional neural network and long 
short-term memory network to extract the spatial rules and time series rules of 
the time series, the output data of the two are combined to form a new data se-
quence. The new data will be input to a fully connected layer and the final classi-
fication output is made through the SoftMax function. This combined model 
makes full use of the advantages of convolutional neural networks that are good 
at extracting spatial rules of images and LSTM networks that are good at ex-
tracting temporal rules of data. 
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Figure 4. LSTM network architecture. 
 

 

Figure 5. CNN-LSMT combined network. 
 

The input to the combined model is two datasets: the graphically represented 
time series and the original time series, since we represent the time series as a set 
of graphical data, we need to train the model once for each graphical representa-
tion and validate the model with a validation set to obtain the best predictive 
model. 

4. Experiment 

We use the network architecture described in the third part of the article to 
conduct an empirical study on concrete price forecasting, with prediction accu-
racy as the main metric, precision, recall, and F1 score are used as secondary 
metrics to comprehensively evaluate the prediction of three types of data sam-
ples. 

The CNN-LSTM combined model is used to run the training dataset for 20 
rounds; after each round of training, the model is used to predict the label of the 
test dataset to observe the prediction performance of the model; experimental 
results are shown in Table 1. 

https://doi.org/10.4236/jamp.2022.105127


Q. Liu et al. 
 

 

DOI: 10.4236/jamp.2022.105127 1868 Journal of Applied Mathematics and Physics 
 

Table 1. Predicted results of 20 epochs training. 

nEpochs Accuracy Precision Recall F1 Score 

1 0.4877049 0.5140877 0.4634291 0.5742972 

2 0.5532787 0.5958559 0.5600603 0.5280951 

3 0.6147541 0.6898585 0.6214168 0.6017285 

4 0.7786885 0.7777344 0.7792497 0.7774454 

5 0.8401639 0.8480348 0.8441942 0.8405346 

6 0.9098361 0.9121541 0.9089332 0.9099650 

7 0.7868852 0.8542175 0.7838634 0.7912077 

8 0.8155738 0.8610672 0.8117310 0.8168633. 

9 0.8975410 0.9032191 0.8951889 0.8976688 

10 0.9344262 0.9348024 0.9356402 0.9347699 

11 0.9467213 0.9465214 0.9492020 0.9469480 

12 0.9549180 0.9552030 0.9569539 0.9547717 

13 0.9590164. 0.9585008 0.9609667 0.9592337 

14 0.9631148 0.9630292 0.9648883 0.9637704 

15 0.9713115 0.9714511. 0.9726858 0.9719628 

16 0.9713115 0.9714511 0.9726858 0.9719628 

17 0.9713115 0.9714511 0.9726858 0.9719628 

18 0.9713115 0.9714511 0.9726858 0.9719628 

19 0.9713115 0.9714511 0.9726858 0.9719628 

20 0.9713115 0.9714511 0.9726858 0.9719628 

 
The experimental results show that after 15 rounds of training, the prediction 

performance of the model tends to be stable, and the prediction accuracy rate of 
the concrete price change trend is 97.13%, which is an excellent prediction re-
sult, and the prediction results of various label samples are very uniform. Figure 
6 shows the change curve of the prediction accuracy in 20 rounds of training.  

Figure 7 shows the prediction confusion matrix after 15 rounds of training, 
from which we can see more detailed prediction results. The total number of test 
samples is 244, and there are 237 samples whose predicted labels are consistent 
with the real labels, accounting for 97.13% of the total number of samples, of 
which of the 86 samples with unchanged prices, 3 were mispredicted, 85 samples 
with rising prices, 4 were mispredicted, and all samples with falling prices were 
correctly predicted. 

The experimental results show that the prediction of concrete price movement 
based on autoregression and deep learning is feasible, and the price changes of 
concrete can be accurately predicted for a long time, which is of great signific-
ance to various architectural planning. 
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Figure 6. Variation curve of accuracy. 
 

 

Figure 7. Confusion matrix of price change trend prediction. 

5. Conclusion and Outlook 

In this paper, we construct univariate time series using concrete price data be-
tween 2013-10-23 and 2021-01-20 and represent the data as a set of graphical 
data through multiple forms of folding. We use convolutional neural networks 
(CNN) to extract the spatial rules of the graphical data, supplemented by LSTM 
networks to extract the temporal rules of the time series, and achieve an accurate 
prediction of the trend of concrete price movements 10 days ahead through the 
combined CNN-LSTM model. The prediction accuracy reaches 97.13%, which is 
an excellent result for price trend prediction based on autoregressive sequences 
at present. It can accurately predict the market trend, which is important for all 
kinds of construction planning. 

At present, there are still some problems with this study. We have achieved an 
accurate prediction of price trends, but we have not given the magnitude of price 
changes, which will cause certain difficulties for decision-makers in construction 
planning. In addition, the use of autoregressive series for price prediction avoids 
the trouble of various market factors but also ignores the impact of various 
market factors on price factors. We will consider these issues in future research.  
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