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Abstract 
A symmetrical quartic polynomial, named golden one, can be connected to 
coefficients of the icosahedron equation as well as to the gyromagnetic cor-
rection of the electron and to number 137. This number is not a mystic one, 
but is connected with the inverse of Sommerfeld’s fine-structure constant and 
this way again connected with the electron. From number-theoretical reali-
ties, including the reciprocity relation of the golden ratio as effective pre- 
calculator of nature’s creativeness, a proposed closeness to the icosahedron 
may point towards the structure of the electron, thought off as a single-strand 
compacted helically self-confined charged elemantary particle of less spheri-
cal but assumed blunted icosahedral shape generated from a high energy 
double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 
180˚ twisted double helix strand, where the turning points of 12 generated 
slings were arranged towards the vertices of a regular icosahedron, belonging 
to the non-centrosymmetric rotation group I532. Mathematically put, we 
convert the helical motion of an energy quantum into a stationary motion on 
a Moebius stripe structure. The radius of the ball is about the Compton ra-
dius. This chiral closed circuit Moebius ball motion profile can be tentatively 
thought off as the dominant quantum vortex structure of the electron, and 
the model may be named CEWMB (Charged Electromagnetic Wave Moebius 
Ball). Also the gyromagnetic factor of the electron (ge = 2.002319) can be 
traced back to this special structure. However, nature’s energy infinity prin-
ciple would suggest a superposition with additional less dominant (secondary) 
structures, governed also by the golden mean. A suggestion about the possible 
structure of delocalized hole carriers in the superconducting state is given. 
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1. Introduction 

In this contribution, we dealt with the question, what indeed could be the rela-
tionship between a helical photon and a compacted elementary entity like the 
electron, composed of a burst helical photon, and why is an electron as stable as 
it is? We here apply dominant principles of nature such as symmetry, golden ra-
tio sophistication, reciprocity, calculus, eternal repetition and entanglement. In 
this way, helical twisting is a frequently observed tool in nature’s quiver, applied 
to objects from microscopic to cosmic scale. When we were children, we played 
with twisted twine that, after being folded at half the length, became stable 
double helically curled cords of chosen chirality. As a crystallographer, I ex-
plained chirality using a coil spring that, when rotated about 180˚, maintained 
the sense of curling, but when looked in front of a mirror, the image showed an 
opposite sense of chirality. This may help to understand the new exciting theo-
ries about the structure of the photon and the electron as helically curled wavy 
entities or self-confined elementary particles derived from compacted photons, 
quoting only the most impressive references among many others [1] [2] [3] [4] 
[5]. 

Another extended publication by Markoulakis and Antonidakis [6], published 
at the beginning of this year, is highly recommended. What indeed happens, if a 
high-energy photon of sufficient energy hits matter, forming a pair of particles 
with opposed chirality (pair creation of the electron besides the positron)? Either 
the energy-rich helically twisted photon already consists of strands of opposite 
chirality respectively charge or different chirality is immediately generated when 
it hits matter to form the positron besides the electron. These fundamental par-
ticles may be formed from single strand “circular ribbons” of the photon main-
taining twisting that were glued together like an odd multiply screwed Moebius 
strip. The relationship between geometry and physical properties of a simple 
Moebius strip can be followed by a contribution of Starostin and Van der Heij-
den [7]. However, the proposed Moebius ball is very more complicated to be 
tackled mathematically, but may nevertheless represent an energetically most 
favorable state. 

Noticeably, helical left-handedness and its opposite could be realized, when a 
single cellulosic fiber helix or cucumber tendrils were supported at both ends to 
minimize the twisting energy [8] [9].  

However, what can we say about an elliptically twisted helix structure of the 
photon in contrast to the postulated circular helical structure?  

In all such considerations, the golden ratio should be involved as nature’s ef-
fective-evolutionary pre-calculator, dominating all areas of science, life and 
cosmos. So we begin in Chapter 2 with a short essay of number theory and the 
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reciprocity property of this fundamental number. Doing this, we refer once 
again the extensive work done by Olsen on this subject [10] and recommend the 
contribution of H. Weiss and V. Weiss [11]. In Chapter 3, we deal with the gol-
den ratio geometry of dual platonic solids proposed as envelope of electrons 
quantum vortex structure. Then, we explain in Chapter 4 the symmetrical 
double-well structure of the golden quartic polynomial as fundamental tool to 
understand nature’s secrets, connecting number theory with the possible struc-
ture of elementary particles. Sommerfeld’s fine-structure constant as well as the 
gyromagnetic correction factor of the electron can be tackled with such an ap-
proach. This was done in the Chapters 5 and 6. We can construct a Moebius 
“ball” from a 13 times 180˚ twisted double helix strand, followed by a cut into 
two single strands, where the turning points of its 12 generated slings were ar-
ranged towards the vertices of a regular icosahedron. This closed circuit Moe-
bius ball motion profile can be tentatively thought off as the dominant quantum 
vortex structure of the electron. This is the essential innovative aspect of the pa-
per explained in Chapter 7. In Chapter 8 we try to tackle the secret of the struc-
ture of delocalized hole carrier strands in the superconducting state. Finally, in 
Chapter 9, the challenge for modeling of new inorganic respectively organic 
Moebius ball structures is outlined. 

When dealing with non-orientable surfaces of Moebius structures, one is con-
fronted in a more philosophically meaning with terms such as eternity and in-
finity, which always presuppose a certain system stability. In practice, a twisted 
Moebius conveyer belt makes equal wear amounts possible due to the use of the 
entire surface area of the belt [12]. 

Last but not least and more practical, the golden quartic may also be impor-
tant in the field of life coding [13] and in quantum information science [14]. 

This contribution can be understood as a supplement and continuation of an 
already published work of the present author [13] reviewing also some earlier 
published work. However, he well knows that objective truth is a continually 
evolving matter of science. Human beings are only able to approximate the truth, 
and cherished truths have to be thrown overboard from time to time. The article 
of Nobel laureate Franc Wilczek about the enigmatic electron may bring this 
verity to the point [15]. 

2. Reciprocity, Calculus, and the Golden Ratio Sophistication 

The golden ratio is the most irrational number with the simplest infinite contin-
ued fraction representation at all and a very adaptable number-theoretical cha-
meleon. Special attention is paid to the reciprocity property of the golden ratio 
as effective pre-calculator of natures creativness. We use the definition 

5 1 1 0.6180339887
12 1 11

1

ϕ −
= = =

+
+

+





              (1)    
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However, the golden ratio is frequently used by others as the reciprocal of this 
value 

1 5 11 1.6180339887
2

ϕ ϕ− +
= + = =                  (2) 

Another important number, the fifth power of the golden ratio, should be 
considered in more detail, because it is connected to phase transitions from mi-
croscopic [16] [17] up to cosmic scale [18] [19] 

5 10.0901699
111 111

11

ϕ = =
+

+
+





                 (3) 

There is another nice continued fraction approach to represent 1ϕ−  

1 1 1 1r r= + + + = +                      (4) 

giving the quadratic equation 2 1 0r r− − =  with the solution 
1

1 1.6180339887r ϕ−= =                        (5) 

The infinite series expansion of the functions 1
1 x−

 respectively 1
1 x+

 with  

its simplest geometrical sequences of powers of the variable x delivers further in-
sight into the secret of this number and its fractal nature 

2 3 4
0

1 1 , 1
1

n
n x x x x x x

x
∞

=
= = + + + + + <

− ∑              (6) 

Remembering, the time transformation according to the new IRT theory [18] 

resulted in this simple formula 
0

1
1

t
t β
∆

=
∆ −

, where v
c

β = .  

A special application is given for x ϕ= , where 21 2.6180339887
1

ϕ
ϕ

−= =
−

  

respectively 

1 2 3 41 1
1

ϕ ϕ ϕ ϕ ϕ
ϕ

−− = = + + + +
−

                 (7) 

3 4 5 61 2
1

ϕ ϕ ϕ ϕ ϕ
ϕ
− = = + + + +

−
                 (8)  

Noticeably, the series expansion of the obverse function 1
1 x+

 has been first  

described by none other than Isaak Newton already in 1671 [20] as special case 
of the general binomial series. Replacing in Equation (2) x by −x or specialize the 
binomial series for arbitrary rational values of n  

( ) ( ) ( )( )2 31 1 2
1 1

2! 3!
n n n n n n

x nx x x
− − −

+ = + + + +         (9) 

one gets for n = −1 a series with terms of alternating signs 

2 3 41 1
1

x x x x
x
= − + − + −

+
                  (10) 
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Again one can replace x by φ and get the result, albeit a trivial one (see also 
Equation (4)) 

2 3 41 1
1

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ
= = − + − + − =

+
                 (11) 

It seems as if a snake is biting its tail. The series expansion allows an insight 
into the fractal nature of these relations and its close proximity to Newton’s 
“calculus as an algebraic analogue of arithmetic with infinite decimals”, quoting 
the reflection of Stillwell [21]. On can also state a scientific contiguity to El Na-
schie’s ε-Infinity Theory [19] as well as to the Feynman diagrams in quantum 
electrodynamics, following Feynman’s honestly excellent Nobel lecture [22] [23]. 

Application of such polynomial approximations is utilized by a new relativis-
tic nuclear fusion approach of the present author based on the Information Re-
lativity Theory [18]. Furthermore, the relationship to double-well structures and 
its connection to quantum information research is considered as a fascinating 
scientific field [13] [14].  

3. Beyond Chiral Platonic Solids Showing Golden Ratio  
Geometry 

Two simple dual platonic solids continue to fascinate mathematicians, crystallo-
grasphers, physicists as well as biologist, because nature likes obviously a com-
bination of sixfold with fivefold symmetry. In times of an ongoing viral pan-
demic, we are confronted with the highly effective packaging and transportation 
of genetic information within the envelope (capside) of an icosahedron and its 
unwrapping to produce fatal effects in the human body. The dense packing of 
equal spheres (atom clustering), for instance with Fibonacci numbers 13 and 55, 
has been studied by Mackay, where a central sphere is repeatedly surrounded by 
n layers of icosahedral shells [24]. In the following we want to deals with the 
regular icosahedron besides its dual solid, the regular pentagonal dodecahedron, 
belonging to the five platonic solids. We discard centrosymmetry and focus on 
chiral I532 rotation symmetry of order 60 (Figure 1). 

Left: Regular icosahedron projected about down a threefold axis, composed of 
20 equilateral triangles, 12 vertices and 30 edges. Right: Regular pentagonal do-
decahedron, composed of 12 equilateral pentagons, 20 vertices and 30 edges. 
Coordinates of vertices see Appendix A.1. 

Remarkably, the ratio of the in-sphere volume Vsph to the polyhedron volume 
Vp of the icosahedron shows Fibonacci number 13 as an approximation in the 
relation [25] (see also Appendix A.1) 

4
4

2 1315 3
sph

p

V
V

ϕ ϕ
−

−π
= π⋅ ≈

⋅
                    (12) 

The icosahedron can be represented by algebraic equations that map for in-
stance the positions of its vertices respectively face centers using projective geo-
metry. A stereographic projection of the vertices of an icosahedron with unit  
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Figure 1. Projection of dual platonic solids. 

 
circumradius from the south pole of its circumsphere onto the plane z = 0 deliv-
ers the simplest equation [26] [27] [28] [29] 

( ) ( )10 5,1 11 1 0z z z z= + − =                    (13)  

The projection of the face centers of this solid with unit in-radius onto a com-
plex plane resulted in the equation  

( ) 20 15 10 5,1 228 494 228 1H z z z z z= − + + +            (14) 

In this case the roots accordingly correspond to the locations of the face mid-
points on the Riemann sphere. Interestingly but not surprisingly, the coefficient 
ratio yields 494/228 = 13/6 and contains again the Fibonacci numerator 13. The 
coefficients 228 as well as 494 can be replaced by a golden mean based approxi-
mation besides number 13 

2
44228 13

3 3
228.00022ϕ

ϕ

 
≈ + =  + 

             (15) 

24 1228 13 228.00789
3 13
 ≈ + = 
 

              (16) 

22 1494 13 13 494.01709
9 13

 ≈ ⋅ + = 
 

             (17) 

Based on the preliminary work by Gordon [30], Klein showed the connection 
between the regular icosahedron, one of the five Platonic bodies, and the solu-
tion of the quintic polynomial. Instead of following Klein’s quintic icosahedral 
solution, the substitution of the complex variable 5z x→  formally leads to a 
quartic polynomial 

( ) 4 3 2,1 228 494 228 1H x x x x x= − + + +             (18) 

2
4 24 1 1313 1 1

3 13 6
x x x x   ≈ − + − − +   

   
            (19) 

The four root of this polynomial have been calculated giving 

3 4
2 1

1 1,x x
x x

= − = −                      (20) 
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2
3

42.58365 228 13 2.66666
3

x = ≈ − =              (21) 

2
4

4225.80782 13 225.33333
3

x = ≈ =              (22) 

In addition, it yields   

 4
1 228ii x
=

=∑                        (23) 

The reader is frequently confronted with Fibonacci number 13, which ob-
viously plays an important role besides ϕ  and 5ϕ  when assessing bio-coding 
and related storage and processing of information. In the following we will work 
with another quartic polynomial and with coefficients like number 228 just con-
sidered. 

4. Golden Quartic Polynomial Approach 

The minimal polynomial of the golden ratio respectively its uneven powers 
(proof was reported by [31]) is given by 

2 1 0x ax− − =                            (24) 

where { }2 1, 4,11,29,na L= =   represents the series of even Lucas numbers 
[32]. The two roots of this polynomial are ( )1

1
nx ϕ− −=  and 1

2
nx ϕ −= − . The Ln 

number series { }2,1,3,4,7,11,18,29,nL =   was named after the French ma-
thematician François Édouard Anatole Lucas (1842-1891) [32]. 

Now we introduce a simple approach to decompose important numbers such 
as number 137 using the following relation, which has been recently applied by 
the present author [13] 

( )21a x x n−+ =                          (25) 

This approach can be recast in the depressed quartic polynomial equation ex-
hibiting a symmetrical double-well structure (see Figure 2) 

4 22 1 0nx x
a

 − − + = 
 

                     (26) 

The roots for the quartic can easily be calculated by the relation 

2

1 1 1
2 2i
n nx
a a

 = ± − ± − − 
 

                (27) 

indicating that 1
3,4 1x x−= ± . Full quartic polynomials can be fortunately solved 

by applying the procedure given recently by Tehrani [33].  
Exemplarily, for n = 5, a = 1 we are confronted with the golden mean as roots 

of the quartic 
1

1,2 3,41.6180339887 0.6180339887,x xϕ ϕ−= ± = ± = ± = ±   

and for n = 9, a = 1 it yields the second power of the golden mean 
2 2

1,2 3,42.6180339887 , 0.38196601x xϕ ϕ−= ± = ± = ± = ±       (28)  
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Figure 2. Quartic double-well polynomial according to equation (26), depicted for n = 5 
(golden), 8 (silver) and 9 (blue). 
 

More generally, the numbers series connected with golden ratio powers can be 
expressed by Lucas numbers { }2 1 3,7,18,47,123,nL + =   according to 

( )2

2 1 2n n
nLϕ ϕ−
++ = +                     (29) 

Because of the intimate connection with the golden ratio the name golden 
quartic polynomial was introduced by the present author. 

Besides this number series, as a trivial result, numbers that are well approx-
imated to an integer can be generated for 2 2n m= + . For instance,  

2 313 2 171 228
4

n = + = =  delivers the solution 1 12.999777x = . Selected solu-

tions are presented in Table 1.  
Therefore, this simple quartic is a very interesting one when we are dealing 

with the prerequisites of life and related matter governed by the golden mean or 
when we discuss possibilities of information processing. In the next chapter we 
apply the golden quartic polynomial to analyze fundamental numbers that are 
connected with the electron. 

Very recently, the present author became aware about contributions by 
McMullin [34] as well as by Totland dealing with quartic polynomials in context 
with the golden ratio [35]. Also Penn demonstrated by an interesting YouTube 
contribution that every quartic polynomial is golden [36]. 

5. Beyond Number 137 

Number 137 is not a mystic one, but is connected with the reciprocal of Som-
merfeld’s fine-structure constant α and this way connected with the electron [37]. 
The fine-structure constant α describes the coupling respectively measure of the 
strength of the electromagnetic force that determines the interaction between 
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Table 1. Selected solutions for the quartic polynomial equation ( )4 22 1 0x n x− − + = . 

n 1
1 1n x x−= +  notation 1x  notation 1

1x−  

4  2 0ϕ  1 0ϕ  1 

5  5  1ϕ−  1.6180339887 ϕ  0.6180339887 

8  2 2⋅  1
sδ
−  2.4142135623 sδ  0.414213562 

9  3 2ϕ−  2.6180339887 2ϕ  0.381966011 

18 42 + 2 3 2⋅   3.9921490369   

20  2 5⋅  3ϕ−  4.2360679774 3ϕ  0.236067977 

27 52 + 2   4.9959919730   

32  4 2⋅   5.4741784358  0.1826758136 

38 62 + 2   5.9976829489   

49  7 4ϕ−  6.8541019662 4ϕ  0.1458980337 

51 72 + 2   6.9985415144   

66 82 + 2   7.9990231393   

83 92 + 2   8.9993139982   

102 102 + 2   9.9994999374   

123 112 + 2   10.999624310   

125  5 5⋅  5ϕ−  11.090169943 5ϕ  0.090169943 

146 122 + 2   11.999710630   

171 132 + 2   12.999772406   

ϕ  golden mean, sδ  silver mean. 

 
electrically charged elementary particles (electron) and photons (light). This 
coupling is given by the relation 

2

0

1
4

e
ch

α = ⋅
π

                           (30) 

where e is the elementary charge of the electron, 0  is the permittivity of the 
vacuum, h  is the reduced Planck constant, and c is the speed of light. The pre-
cisely determined CODATA value is [38] 

( ) 37.2973525693 11 10α −= ×                    (31) 

Its reciprocal gets 

( )1 137.035999084 21α− =                    (32) 

The stability of a chemical element with atomic number Z is governed by the 
factor ( )21 Zα−  in the energy expression. Therefore, Z = 137 should be the 
limit for the periodic table of elements [22] [39]. At the moment, the man-made 
heaviest element in terms of the atomic weight is 118Og (oganesson), recovered 
by Y. T. Oganessian in 2002 [40]. 
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Recently, Sherbon presented a highly recommendable contribution about the 
golden ratio geometry and the fine-structure constant based on the solution of a 
general quartic polynomial with integer coefficients [41] 

4 3 2137 10 697 365 0x x x x− − + − =                  (33) 

The solution 1 137.035999168x =  would approximate the value of 1α−  very 
precisely. Again we recommend the new approach of Tehrani to solve such a 
quartic [33].  

However, the actual sequence of matching decimals may not be requested due 
to the ongoing correction of the physical theory of the electron. Instead, we use a 
less precise golden mean corrected approximation of the form [42] 

52137 137.0360679
5
ϕ+ =                     (34) 

Also the fractal part of π can be well approximated with the aid of the reci-
procal of Sommerfeld’s fine structure constant [42] 

163 0.14159265 0.14159292
137 24

π− = ≈ =
−

            (35) 

Vice versa, 137 can simply be approximated by π combined with small Fibo-
nacci numbers [42] 

2137 8 3 137.0002129
3

 ≈ ⋅ + = π − 
                (36) 

Interestingly, for number n = 137 and a = 1, the roots of the golden quartic 
polynomial (Equation (21)) resulted in 1,2 11.61863x = ±  near 11 ϕ+  and  

1
3,4 1,2 0.086068x x−= ± = ± . If one uses the exact value of 11 ϕ+ , then one gets 

2
111 136.9861 137

11
ϕ

ϕ
 

+ + = ≈ + 
               (37) 

However, if one tentatively chooses 137.0360n =  (inverse fine-structure 
constant), the result for the roots is 

1
1,2 3,4 111.620186 , 0.086057x x x−= ± = ± = ±          (38) 

Interestingly, adding to the value of 11 ϕ+  the value of the gyromagnetic 
correction factor of the electron, 0.00231878eg∆ =  (see Chapter 6), we get 
almost the inverse fine-structure constant 

2
111 137.040002

11e
e

g
g

ϕ
ϕ

 
+ + ∆ + = + + ∆ 

           (39) 

In a previously given contribution [13] we have examined the coefficients of 
the icosahedron equation in a similar way as given above. Using the coefficient 
228 we found 

( )214 228
3

x x−+ =                       (40) 

https://doi.org/10.4236/jamp.2022.105124


H. H. Otto 
 

 

DOI: 10.4236/jamp.2022.105124 1795 Journal of Applied Mathematics and Physics 
 

which can be recast into the quadric polynomial equation 

( )24 2 4169 1 13 1 0x x x x− + = − + =                 (41) 

with solutions 1,2 12.99977241 13x = ± ≈ ±  and 1
3,4 1 0.076924423x x−= ± = ± . 

Furthermore, one can couple number 228 with α−1 respectively number 137 by 
the relation 

33 228 136.8 0.236067976 137.0360
5

ϕ+ = + =           (42)  

because it yields (compare Equation (3)) 

3 52 1
5 5

ϕ ϕ= +                        (43) 

One obtains a slightly larger value using the integer number 13 
2

3 34 113 136.8047 137.0407
5 13

ϕ ϕ + + = + = 
 

            (44) 

The other coefficient of the icosahedron equation is number 494. When 
working with this number, we obtain again 

36 3 494 136.8 137.0360
13 5

ϕ⋅ ⋅ = + =                  (45) 

Finally, from the Kummer surface approach, applied to the DNA genetic code 
algebraic interpretation [44] [45], we extract the number 1368 and find again 

31 3 1368 136.8 137.0360
6 5

ϕ⋅ ⋅ = + =                (46) 

In this way, coefficients of the icosahedron equation or numbers connected 
with the Kummer surface can traced back to the number 137 respectively the 
inverse fine-structure constant. All numerical findings point towards an intimate 
connection of electron’s quantum vortex structure near an icosahedron shape.  

A puzzle points to the importance of geometrical relations. Bowen and Mul-
kern [4] reported about a relation between the Compton radius of the electron rc , 
the Bohr radius of the first electron orbit in the hydrogen atom rB, and the 
fine-structure constant α, possibly caused by electron’s photon absorption ability 

13

11

3.86159246 10 0.0072973522
5.2917721092 10

c

B

r
r

α
−

−

×
= = =

×
         (47) 

6. The Gyromagnetic Correction Factor of the Electron 

Now we turn to the gyromagnetic correction factor of the electron. The ge factor 
of the electron, conceived as a classical charged particle, is determined by the re-
lation 

,
2e B B

S eg
mh

µ µ µ= =


                     (48) 

where µ  is the observable magnetic moment, Bµ  is the Bohr magneton, and 
S


 is the spin of the electron, e respectively m are charge respectively mass of 
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the electron, and h  is the reduced Planck constant. 
However, the spin as half-integer quantum number of the electron was intro-

duced without any physical justification [46]. Recently, a first attempt has been 
undertaken by He et al. [47] to connect the golden mean with the ad hoc 
spin-1/2 construct. Such golden mean approach may be the result of dark halo 
movement around the stretched electron in the sense of the Information Relativ-
ity theory. 

Remembering that the “anomalous part” of the gyromagnetic factor ∆ge was 
recently given by a simple golden mean representation with sufficient accuracy 
[48] 

6

ln 1 0.002319312
24eg ϕ 

∆ = + = 
 

                 (49) 

while a series expansion yields a value more accurate up to the tenth decimal 
place 

2 36 6 61 1 0.002319304
24 2 24 4 24eg ϕ ϕ ϕ   

∆ = − − =   
   

           (50) 

In this previous publication the present author did not connect the result with 
any icosahedral structure of the electron, but number 24 in the denominator was 
a strong indicator of what is being deduced in the following chapters. 

The result may be compared to the high accuracy of the best known experi-
mental value for ge determined as one-electron cyclotron transition for an elec-
tron trapped in an electrostatic quadrupol potential (Penning trap) [49] [50] 

( )2.00231930436182 52eg =                     (51) 

In a seminal idea of He et al. [47] the spin quantum number s in the spin  

momentum term ( )1S s
h

s= +


 was replaced by a quantized golden mean ϕ  

giving 

( )1
2

eg
ϕ ϕ= +                          (52) 

A special infinitely continued fraction based on the golden mean was some 
years ago introduced by the present author with a ϕ  sibling of the golden 
mean [42] [51] 

1

1
1

5 1 1
12 1 11

1

δϕ
δ

δ
δ

+ −
= =

− +
− +

− +





            (53) 

The calculation with 
5

1
10.00374774

266. 4!6
ϕδ δ ϕ= ≈ ≈ ≈  yielded  

0.619071099ϕ = . One may speak of a nested golden mean based continued 
fraction. The value ϕ  represents the quantized golden mean in our theory of 
the gyromagnetic factor of the electron without using the half-spin theory 
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( )2 1 2.00231878eg ϕ ϕ= ⋅ ⋅ + =                 (54) 

The number 266.6  is very interesting. The division by integers frequently 
delivers numbers with repeating decimals, exemplified by 266. 246 11.1=  [42]. 

In the following chapter, we develop an idea about the vortex structure of the 
electron and consequences for its anomalous g-factor as indicator for such 
structure. 

7. Proposed Quantum Vortex Structure of the Electron 

The photon may be considered as being composed of two partial waves, where a 
normal part is accompanied by a “dark” pilot wave of opposite chirality. The 
photon model of Gauthier [2] supposes that such dipole entity intrinsically 
formed from two helical strands of opposite chirality and charge is stable. When 
the oppositely charged strands are separated, both simultaneously formed par-
ticles move away from each other quickly due to their magnetic repulsion, even 
excessing their enormous electrostatic attraction. The magnetic force and elec-
trostatic force would balance each other out at a distance of r0 (see Appendix 
A.2) 

13
0

3 3.344237 10 m
2 cr r −= = ×                   (55) 

Therefore, electron and positron already suffer a strong mutual repulsion at a 
distance of the Compton radius 133.8615926 10 mcr

−= × , the smallest physically 
plausible distance. So they can exist long time as quite stable fermionic entities, 
because perturbation would require additional energies as high as the added up 
matter-energy of both sister particles (pair destruction).  

Using the before worked out results we present new ideas about the possible 
structure of the electron assuming an energetic surface or quantum vortex struc-
ture inscribed in a regular icosahedron or its dual polyhedron (regular penta-
gonal dodecahedron), combining our presented results of number theory with 
the idea of a parent photon exhibiting a double-helical structure composed of 
two charged single-strand half-photons similar to Gauthier’s approach [2]. Al-
though his idea is physically well substantiated, one should not exclude alterna-
tive approaches. A nested double helix can be a dipole keeping opposite charges 
at its strand ends. This is the picture of the DNA structure. 

However, one can construct also a “double” helix of nested strands with op-
posite chirality, when both energy trajectories are displaced against each other 
by a small amount in the moving direction. The diameter of this composite 
would be the diameter of the helix. An elliptical twisting of the strands could 
possibly provide a further reduction of unwanted energetic interaction. The pa-
rametric equations for a golden elliptical helix are given in Appendix. When a 
strand of double helices with 13 half-turns (uneven Fibonacci number) is joined 
together at both ends forming a multiply screwed Moebius strand, and the double 
helix is then cut into two single strands (it requires starting from a helix struc-
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ture that can be cut lengthwise), which may be again energetically favorable, it 
remains a vortex structure that can be arranged in such a way that the 12 turning 
points of the slings are placed towards the vertices of a regular icosahedron 
forming a Moebius ball (see Figure 1). The slings taper towards the center  

of the icosahedron. There is a dihedral angle of 
5180 arccos 138.1897

3
 

− =  
 

 

degrees between successive slings. The radius of this construct may be the 
in-sphere radius of an icosahedron.  

However, what can we deduce from group theory? If one jumps from a vertex 
to the next one via a chord, arranged perpendicular to each of the 30 edges and 
corresponding to the edges of the dual solid, one can’t reach all 12 vertices in a 
single turn. Decomposing the order 60 of the group I532 into  
5 12 vertices 3 20 faces 2 30 edges× = × = ×  tells us that we need at least 5 turns 
reaching the starting vertex point in a “helical” sequence. So electron’s vortex 
structure is indeed a labyrinth, from which escape is hardly possible unless by an 
external high energy impact, like the forever bound ferryman in a German fairy 
tale.  

The motion profile can better be understood, if the icosahedron is unfolded 
onto a plane like a paper model, following the “spiraling” pattern on the formed 
hexagonal net of triangles. 

The mirrored structures of the sister particles will certainly influence each 
other at the very beginning of formation, inscribing the opposed chiral revolving. 
We can learn more about a possible double helix unzipping mechanism from 
our knowledge about the DNA replication process. 

Furthermore, when combining Sommerfeld’s fine-structure constant α with 
the golden mean φ, one can approximate number 13 once more 

2 13.01482999ϕ α =                       (56) 

Using this result, one can relate the electric charge Q of Gauthier’s double he-
lix photon dipole model in relation to the elementary charge e of the electron 

13.01483 13Q e eϕ⋅ = ± ⋅ ≈ ± ⋅                  (57) 

Surprisingly, considering Q spread over 13 half-turns, on gets per half-turn a 
charge of 

13
Q

e
ϕ⋅
≈ ±                          (58) 

Interestingly, in the proton structure the down quark has a charge of −13e. 
The length l0 of a single turn of a helix having height z0 and radius r0 can be 

calculated by unrolling the helix to a plane and then applying the Pythagorean 
theorem  

2 2 2
0 0 04l z r= + π                        (59) 

This step was obviously not considered in the theory of Bowen [4] [5]. 
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If we identify z0 with the Compton wavelength c
e

h
m c

λ =  and r0 with λc/4π 

according to [2], we get for l0  

2 2
0

1 15
4 2 2

c
c c cl

λ
λ λ ϕ λ = + = = + 

 
              (60) 

The term 5  indicates for the first time that the golden ratio is involved. 
Now, the entire length of 013 l⋅  must be compacted into a 12-sling Moebius ball 
to find its radius. The length of a single sling yields 

13 65 1.21120
24 5sling c c cl λ λ λ= ⋅ = ⋅ ≈ ⋅              (61) 

and the radius of a sling, representing the radius of the Moebius ball, would be 

2 3
2
sling

sling c

l
r r= ⋅ ≈

π
                     (62) 

The factor ( )sin 138.1897 2 3=  takes into account the dihedral angle rela-

tion between two consecutive slings. Interestingly, the factor 1.011180106c

sling

r
r

=   

can be compared with the integrated charge relation on a Moebius strip with 
unit stripe width and charge density (see Appendix A.5). 

Remarkably, by using the in-sphere radius of an icosahedron (see also Ap-
pendix A.1), the edge length of the icosahedral cage then gives 

2
213 5 2 3 2 3 1.308539

24 2icos c c ca r r rϕϕ
−

= ⋅ ⋅ ⋅ ⋅ = ⋅ ≈ ⋅          (63) 

In this way, a self-confined chiral ball structure with about the Compton ra-
dius 133.86 10 mcr

−≈ ×  is generated that did not forgot where it was originating 
from. It remains to be shown, whether all the properties of the fundamental par-
ticle named electron can be confirmed as a self-stabilizing dynamic system that 
does not radiate. Once again it may be noticed that the icosahedron picture 
couples the structure with the golden ratio in harmony with what nature would 
expect.  

However, for the electron instead of an icosahedron also the regular dodeca-
hedron as its dual polyhedron can be chosen as confining cage. Then, these slings 
would hit the 12 face midpoints. If one operates with the next higher uneven Fi-
bonacci number 21, the procedure given above would deliver 20 slings, which 
would be directed towards the face midpoints of the regular icosahedron, or to 
the vertices of the dodecahedron. We notice that the vortex structure of the elec-
tron and the parametric equations of a Horn torus given by Gauthier are also 
quite similar to these of a Moebius curve (see Appendix A.4) [2]. Nevertheless, 
his elegantly worked out physical interpretation can be transferred with few 
changes to our vortex construct. 

With respect to the gyromagnetic correction factor of the electron ∆ge, also an 
icosahedron based numerical interpretation can be found, combining the Equa-
tion (44) with terms from the icosahedron Equation (14) respectively the golden 
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quartic polynomial (see last line of Table 1), and the circumsphere radius rcirc of 
an icosahedron with unit triangle edge length [13] [25] 

6

2

35 5 0.0023174
24 3 9 22818 13

13

circ
e

r
g

ϕϕ +
∆ ≈ ≈ ⋅ ≈ ⋅ =

 ⋅ + 
 

          (64) 

where 
3
2circr
ϕ+

=  (see Appendix A.1). However, when using a power of the  

ratio of 12 slings to 13 half-turns, another numerical relation for the anomalous 
part of the electron can by derived (see Appendix A.5) 

3 2

2

12 1 0.0023193
13 15 13

13

eg  ∆ ≈ ⋅ = 
   ⋅ + 

 


            (65) 

Alternatively, turning back to Schwinger’s classical and simple QED approxi-
mation for the anomalous part of the g-factor as α/π [52], we can apply a mod-
ified π > π  as result of the Moebius stripe charge calculation according to Eq-
uation (108) (see Appendix A.5), but modified for the more complex Moebius 
ball structure. We can possibly verify a value of 3.146644586π =   
( 2 6.293289178π = ). Thereby we would be able to confirm the experimental ∆ge 
that has been reduced by IRT mass correction giving [18] [42] 

0.00231909eg α π∆ = =                      (66) 

It would provide a plausible physical understanding of such purely geometric 
icosahedron-based relationships, beyond Feynman’s approach [53], connecting 
the anomalous g-factor little larger than 2 to the chaotic vortex motion of the 
electron. If the charge would reside on the surface of the ball, a g-factor of only 
5/3 results [5]. However, if the electron charge is spread along the striped inner 
structure of the chiral Moebius ball, we should be able to prove by fortune the 
true anomalous g-factor in full glory from its chiral asymmetry at one fell swoop. 
The next task is to find an analytical expression for the chaotic motion along 
multiple Moebius stripes with forced icosahedral symmetry and proceed ac-
cording to the total charge approach given in Appendix A.5. The exorbitantly 
accurate determined experimental value ∆ge will make it easier to choose a very 
reliable structural electron model. Then we can unravel structurally the spin-orbital 
separation of the electron in quasi 1D Mott-insulators, too [54]. When the time 
is ripe, we will have learnt whether the structure of the electron is a fundamental 
one and that the “anomalous” g-factor may be more simply as thought and un-
equivocally a universal constant. Also the electron spin construct [46] becomes a 
new meaning without losing its practical importance. The mathematics behind a 
Horn torus [2] [4] [6] [55] in relation to the Moebius ball can help to judge dif-
ferently proposed electron structures. A dynamic visualization is in progress. 

8. Superconducting Strands 

There are indications that both conventional as well as unconventional super-
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conductivity is basically governed by hole-carriers, which are guided without re-
sistance in a reversible way through the lattice [56] [57] [58]. When asking, what 
the structure of delocalized hole-carriers in the superconducting state would be, 
as all-convincing test case of our approach, the assumed chiral Moebius stripe 
governed property of the single electron could be relevant. 

A delocalized electron hole may also be portrayed by a helical strand able to 
transport positive charge. During the unfolding of involved delocalizing Moe-
bius electron balls a nested double-helical wavy entity of equal strand chirality 
(DNA case) could be formed, which can easily be unzipped just above the su-
perconducting transition temperature Tc and compacted again into two sepa-
rated “particles”. In this way the equi-chiral wavy entity is different to the pho-
ton, composed of two half-photons of opposed chirality and charge. The ma-
thematical and experimental verification should be a worthwhile task for future 
cooperation. 

In addition, the reader may study a seminal contribution by Schiller about 
tangled strands, elementary particles and the fine-structure constant [59]. 

Remembering, the present author suggested linking the optimum hole doping 
σ0 of high-Tc superconductors with the golden mean in the form of Hardy’s 
maximum quantum probability of two particles [17] [56] and presented the 
connection with number 13 

5
0

8 30.2293
13

σ ϕ≈ = ≈
π

                      (67) 

Obviously, this optimum is near a quantum critical point in the phase dia-
gram. In addition, the relation of the Fermi speed vF to the Klitzing speed vK 
comes out as 

52 30.0571
4 13

F

K

v
v

ϕ≈ = ≈
π ×

                   (68) 

Both relations document the fractal nature of the electronic response in su-
perconductors. It was suggested recently that the same is true for conventional 
superconductors [56]. Also Prester had reported before about evidence of a 
fractal dissipative regime in high-Tc superconductors [60]. 

9. Challenge for Modeling of Inorganic or Organic Moebius  
Ball Structures 

We pose the question whether it could be possible to synthesize an inorganic or 
organic compound having the structure of the proposed Moebius ball. In 2003, 
niobium selenide NbSe3 could be designed with the morphology of a Moebius 
stripe by combining chemical transport reactions with template technique [61]. 
Very recently, Moebius stripes of chiral block copolymers were synthesized via a 
fast self-assembly of block copolymer polystyrene-block-poly(D-lactide acid) 
(PS-b-PDLA) in tetrahydrofuran – water mixed solvents [62]. The spontaneous 
formation of such chiral structures and possibly that of Moebius ball structures 
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would also support the picture of a stable vortex structure of an electron in form 
of a Moebius ball of icosahedral symmetry. Organic self-assembled nanotoroids 
have been already synthesized with controlled helicity [63]. Some years ago, the 
present author reported about the possibility to synthesize a cubic antiferro-
magnetic cuprate super-cage composed of corner-sharing cuprate stripes [64]. 
We still hope for the creativeness of nanotechnology researchers and new expe-
rimental methods. Tubulin-like structures or Moebius-ball-like ones, simulating 
nature’s beautiful and effective creations, are recommended for quantum infor-
mation purposes including the development of quantum computers. 

By the way, what could we expect from an experiment where electric current 
flows through an icosahedral wiring of Moebius loops that exemplifies a fanned 
coil? Perhaps it could be prepared in miniature by 3D printing technique. 

10. Conclusion 

This contribution may once more promote understanding of the relationship 
between number theory, topology and physical properties with the focus on the 
ever-present golden ratio to decipher the fractal nature of such relations. Also 
Fibonacci number 13 is a constant companion in our discussion. Starting from a 
golden quartic polynomial, first ever we deduce the possible structure of the 
elementary particle electron as a vortex construct in form of an icosahedral- 
shaped chiral Moebius ball with a radius little more than the Compton radius rc. 
It is a beautiful geometric structure composed of 12 single-strand slings in chao-
tic motion, even when it would not be connected to an elementary particle. The 
Moebius ball vortex structure is a self-confined non-radiating charged compac-
tion of helical structures proposed for the photon, and may be in this way a vari-
ation of the photon-electron theory of Gauthier with the changed supposition 
that the starting photon consists of two oppositely charged double helix strands 
in contrast to his single helix half-photon approach. Electron’s icosahedron go-  

verned structure is manifested by the Fibonacci number quotient ( )3 137
5 228

ϕ≈ ≈ .  

The anomalous g-factor of the electron is certainly a direct consequence of its 
5-turn confined-helical Moebius stripe twist motion. Furthermore, we posed the 
question: what the structure of delocalized hole-carriers could be, which may be 
understood as the marriage of wavy nested entities escaping in the dark near a 
superconducting transition? Our proposal should open the horizon to verify 
such structures of the hole/electron by sophisticated new physical experiments. 
In a mathematical as well as philosophical sense, the geometry of folded Moebius 
strands including the Moebius ball mediates between eternity and symmetry re-
spectively chiral asymmetry. Even in Escher’s fine art work, combining mathe-
matics with art, such Moebius icosahedron drawing could not be found. How-
ever, it is one of the most beautiful chiral motion profiles connecting icosahedral 
symmetry with analytical realities given by Moebius stripes and its quantitative 
solution a demanding task of differential geometry. 
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Appendix 
A.1. Geometric Relations for Relevant Platonic Bodies [25] 

The polyhedron notation is given by the symbol iF
ip   , where p is the polygon 

multiplicity and F is the number of faces. Vp polyhedron volume, Vsph in-sphere 
volume, Ap polyhedron surface area, Asph in-sphere area, rcirc circumsphere ra-
dius, ri in-sphere radius, a polygon edge length (Table A1). 
 
Table A1. Coordinates of vertices. (Solids are centered at the origin and suitably scaled 
for sake of simplicity) 

Edge length: a = 2φ 

Regular icosahedron Regular pentagonal dodecahedron 

x y z x y z 

0 ±φ ±1 ±1 ±1 ±1 

±φ ±1 0 0 ±φ−1 ±φ 

±1 0 ±φ ±φ−1 ±φ 0 

 
Regular Icosahedron [320]  

2 35
6pV aϕ−=                            (69) 

1 43 615
2 2circ

ar a
ϕ+  = ≈ ⋅ − π 

                   (70)  

2

2 3ir aϕ−

=                            (71) 

6
3

18 3sphV aϕ−

= π⋅                         (72) 

4
40.263814507 0.8287977

2 1315 3
sph

p

V
V

ϕ ϕ
−

−π
= π⋅ = π⋅ = ≈

⋅
      (73) 

25 3pA a= ⋅                          (74) 
4

2

3sphA aϕ−

= π                         (75) 

4
4

2 1315 3
sph

p

A
A

ϕ ϕ
−

−π
= π⋅ ≈

⋅
                   (76)  

Regular Pentagonal Dodecahedron [512]: 

( )
3 3 3

4 3 2

5 5 7.6631188998
2 2 1pV a a a
ϕ ϕ ϕ

= = =
+

         (77) 

2 25

1 1 1.113516364
2 12 5

ir a a a
ϕ ϕϕ

= = =
⋅ +

         (78) 

3 34 1.840893008
3sph iV r a= π = π⋅                (79) 
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0.240227643 0.754697398sph

p

V
V

= ⋅π =                (80) 

( ) 2 2 2

2

153 5 5 2 5 20.64572881
1

pA a a a
ϕ ϕ

= ⋅ + ⋅ = =
+

       (81) 

2 2 2
5

14 4.9596747
5sph iA r a a
ϕ

= π = π = π⋅             (82) 

0.240227643 0.754697398sph

p

A
A

= ⋅π =                (83) 

A.2. Balance of Magnetic and Electrostatic Forces 

Solving the balance equation between magnetic force mf  and electrostatic force 

ef  leads to the separation r0 between electron and positron, beyond both will 
quickly move away from each other. Following textbooks of physics we have to 
solve the relation (see also [4]) 

0 1 2 1 2
4 2

0

3 1 0
4 4m e r r
ε

ε
   − = − =   π π   

m m q qf f              (84) 

or for short         

4 2 0a b
r r

− =                           (85) 

The solution is simply      

0
ar
b

=                            (86) 

Replacing the actual quantities yields 

0
3 3

4 2 c
e

hr r
m c

= =
π

                      (87) 

where h is Planck’s constant, me is the mass of the electron, rc is the Compton 
radius and 2

0 0 1c ε µ =  (Maxwell relation), connecting the speed of light c with 
the permittivity 0ε  respectively the permeability 0µ  of free space. 

A.3. Parametric Equations of a Golden-Elliptical Helix 

We want to construct a golden-elliptical helix by using different radii a and b 
that meet the condition a bϕ= ⋅ . The equation and coordinates are given by 

2 2

2 2 1r z
a b

+ =                           (88) 

( ) ( )
2 2

2 2 2
21 cos cosc tx a t b c t t

b
ϕ= − = −              (89) 

( ) ( )
2 2

2 2 2
21 sin sinc ty a t b c t t

b
ϕ= − = −              (90) 

z c t= ⋅                            (91) 
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A.4. Parametrization of a Single Moebius Strip Centered at the  
Origin 

( ) ( ), 1 cos cos
2
ux u t t u  = + ⋅  

  
                   (92) 

( ) ( ), 1 cos sin
2
uy u t t u  = + ⋅  

  
                   (93) 

( ), sin
2
uz u t t  = ⋅  

 
                        (94) 

with 0 2u≤ < π ; l t l− ≤ ≤ .  

A.5. Total Charge on a Moebius Stripe 

Following Pauschenwein’s electrodynamics considerations about the Moebius 
strip [65], one can relate the charge Q of an area A as the integral over the area 
charge density σ by 

( ) 2

0
d d d

l

l
Q l O t uσ σ

π

−
= =∫ ∫ ∫ n                   (95) 

where n  is the normal vector on every point of the strip. Applying the para-
metrization of a single Moebius strip, it yields for this vector n  as vector 
product of the derivations um  and tm  

u t= ×n m m                          (96) 

( ) ( ) ( )cos 1 sin sin cos 2
2 2u
u um x t u t u    = − ⋅ + ⋅ − ⋅    

    
      (97) 

( ) ( ) ( )cos 1 cos sin sin 2
2 2u
u um y t u t u    = ⋅ + ⋅ − ⋅    

    
       (98) 

( ) 1 cos
2 2u

um z t  = ⋅  
 

                    (99) 

( ) ( )cos cos
2t
um x u =  

 
                 (100) 

( ) ( )cos sin
2t
um y u =  

 
                 (101) 

( ) sin
2t
um z  =  

 
                    (102) 

( ) ( )

( )2

sin cos cos 1 sin sin
2 2 2 2

cos sin
2 2

x
u u t un u t u

t u u

       = ⋅ + −       
       

 −  
 

    (103) 

( ) ( )

( )2

sin sin cos 1 sin cos
2 2 2 2

cos cos
2 2

y
u u t un u t u

t u u

       = ⋅ + +       
       

 +  
 

    (104) 
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cos cos 1
2 2z
u un t    = ⋅ −    

    
                  (105) 

( )( )
2

1 3 2 cos 2 cos
4 2
t uu t  = + + ⋅ + ⋅  

 
n             (106) 

Equation (95) then becomes 

( ) ( )( )
22

0
1 3 2 cos 2 cos d d

4 2
l

l

t uQ L u t t uσ
π

−

 = + + ⋅ + ⋅  
 ∫ ∫       (107) 

The inner integral could be exactly solved, followed by an appropriate numerical 
integration of the outer integral. Using linked terms 

( )1 3 cosa u= +                        (108) 

1
8 cos

2
ub

L
 = ⋅  
 

                       (109) 

2
1 1

1 1 1 1 12 2
1 1

16 161 2 1 2
16

b bLc a b a b
a aL L

    
= + + + + − − +         

      (110) 

1 1
2 1 1 1 1 13 2 2

1

4 16ln 2
a bc a b L a a b

a L

  −
= ⋅ + + + +      

         (111) 

1 1
3 1 1 1 1 13 2 2

1

4 16ln 2
a bc a b L a a b

a L

  −
= ⋅ − + − + +      

        (112) 

we finally get for the outer integral 

( ) ( )2
1 2 30

dQ L c c c uσ
π

= + +∫                   (113) 

The calculation can be performed using a short QBasic program code given be-
low. The numerical integration for L = 1 yields 

( ) 121 6.353271398 2 1.01115454786 2 6 5
13

Q σ σ σ= ⋅ = π ⋅ ≈ π ⋅    (114) 

with such an approximation we are faced again with Fibonacci number 13. Inte-

restingly, the factor 1.011180106c

sling

r
r

=  in Equation (62) approximates quite  

well the term 1.01115454786 within Equation (114). Combining both equations 
with the golden quartic polynomial result one finds again another numerical 
connection to the anomalous factor ∆ge as 

3 212 1 0.0023194
13 5 171
  ⋅ =  ⋅ 

                 (115) 

Consequences and the connection with the golden mean will be discussed in a 
following comprehensive contribution. Remarkable is also the approximate rela-
tion between number 13 and the circle constant π by solving the quadric equa-
tion 

2 13 0x x+ − =                        (116) 

giving                
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1 3.140054945x =                       (117) 

when using the term 13.01119705 instead of the integer 13, the solution of the 
quadratic equation (116) delivers exactly the circle constant 3.13159265π = …  
With the aid of equation (114) one can decompose the term 13.01119705 into 

12 613.01119705 12 12 1.011180106
13 5

≈ + = +          (118) 

A.6. QBasic Program Code for Charge Calculation of a Moebius  
Strip (Width L = 1) 

OPEN "O", #2, "moestrip.txt" 
PI# = 3.14159265358979 
BO# = PI# / 180 
L = 1.1 
SUM# = 0 
FOR I = 1 TO 3600 
    A# = COS(I * BO# / 10) 
    B# = COS(I * BO# / 20) 
    A1# = 2 * A# + 3 
    B1# = 8 * B#/L  
    TERM1# = (A1# + B1#) * SQR(A1# + 2 * B1# + 16/(L*L)) + (A1# - B1#) * 
SQR(A1# - 2 * B1# + 16/(L*L) 
    TERM2# = (A1# - 4*B#*B#) * (LOG(L*SQR(A1#) * SQR(A1# + 2 * B1# + 
16/(L*L)) + A1# + B1#) - LOG(L*SQR(A1#) * SQR(A1# - 2 * B1# + 16/(L*L)) - 
A1# +B1#)) 
    TERM1# = TERM1# * L * L /(16*A1#) 
    TERM2# = TERM2# / (A1#)^(3/2) 
    TERM# = TERM1# + TERM2# 
    SUM# = SUM# + TERM# 
NEXT I 
SUM# = SUM# / 3600 
SUM1# = SUM# *2 * PI# 
PRINT #2, " Charge on a Moebius Stripe (L = 1)" 
PRINT #2, 
PRINT #2, USING " Q            ###.##############"; SUM1# 
PRINT #2, USING " Q/(2*pi)  ###.##############"; SUM# 
CLOSE #2 
END 
 
You may simply extend the code for arbitrary width L 
 
Result: 
 

Charge on a Moebius Stripe (L = 1) 
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Q           6.35327139844997 
Q/(2*pi)    1.01115454786767 
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