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Abstract 
Using an alternative representation of the Ricci tensor, we argue that the 
theory of gravitation can be easily developed in such a way that the formal 
description of gravity in the transition from classical Newtonian physics to 
general relativity remains essentially unchanged. That is to say, we show how 
arguments concerning the plausible conceptual compatibility of Newtonian 
and general-relativistic models of gravity can be replaced by a demonstra-
tion of their actual formal identity. More specifically, we find that both the 
classical Newtonian and the general relativistic field equations are equivalent to 
a velocity-field divergence equation of the form ( ) ( )div div , 4 ρπ+ = −  v v v v  

where the term ( )div ,v v  is defined to be the trace of the square of the Jaco-

bian derivative matrix of v  (or of its general-relativistic analogue). 
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1. Introduction 

Those who wish to master the special and general theories of relativity com-
monly have to pass certain milestones in questioning and re-thinking some of 
their most dearly held reality assumption. The first of these, without a doubt, is 
the realization that the apparent constancy and observer-independence of the 
speed of light in Maxwell’s electromagnetic wave equation causes space and time 
in special relativity to lose their familiar, Newtonian absoluteness. Once this vital 
fact has been grasped, the students of relativity can move on to explore in more 
detail the inner workings of special-relativistic dynamics, but they are liable to 
again feel confounded when these dynamics are subsequently integrated into a 
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general-relativistic theory of gravity that ultimately aims to achieve nothing less 
than the rigorous mathematical elucidation of the large-scale geometric struc-
ture of the entire physical universe. 

In facing this latter conceptual challenge, it is important, first and foremost, to 
thoroughly appreciate the fundamental significance of the equivalence of inertial 
and gravitational masses. For it is precisely this equivalence that renders the 
spacetime environment in a constant gravitational field indistinguishable from 
the spacetime environment that is experienced by a gravity-free observer who 
undergoes a steadily accelerated motion. And it is this equivalence as well and in 
consequence, that makes it possible to re-conceive a seeming acceleration under 
the influence of a gravitational force as a force-free uniform motion relative to 
an accelerated observer and that, thereby, also makes it possible to re-conceive 
the universe as a whole as a patchwork of infinitesimal constant-gravity regions that 
are each equal in structure to the spacetime world within a constant-acceleration 
frame of reference. 

However, when it comes to the problem of how such a patchwork ought to be 
organized so as to yield a theory of gravity that is compatible, in the classical 
limit, with Newton’s absolute-spacetime conception of a gravitational force that 
acts at a distance instantaneously, the matter quickly gets confusing. For not on-
ly must those who endeavor to tackle this problem be familiar with the mathe-
matical formalisms of differential geometry, but they also must learn to bridge in 
their minds the seemingly deep divide between these formalisms on the one 
hand and the more elementary mathematical tools employed by Newton on the 
other. And the purpose of the present paper, therefore, is to suggest a derivation 
of the field equations of general relativity that greatly narrows that mathematical 
divide or even closes it completely. 

That said, we must hasten to add that our purpose is not to overrule or discre-
dit common approaches to the bridging of the gap between the theories of grav-
ity of Newton and Einstein but merely to offer an alternative point of view. The 
method of stratification (as explained in Chapter 12 of [1]) and the considera-
tion of weak-field limits (as discussed in Section 8.1 of [2]), for example, are 
perfectly valid and well-known means of establishing the inherent compatibility 
of Newton’s and Einstein’s theories, but they do not demonstrate their actual 
formal identity—as we hope to do in Sections 3 and 4 below. Moreover, for fur-
ther discussions of the relation between Newtonian gravitation and general rela-
tivity the reader is referred to [3] [4] [5] and [6]. 

2. Prerequisites and Result Summary 

Since general relativity cannot be divorced from differential geometry, it be-
hooves us to recall to begin with some pertinent mathematical facts and con-
structions: denoting by TM the tangent space bundle of a C∞ -manifold M, it 
can be shown (see for instance [7], pp. 70-73) that there exists an open set 
V TM⊂  and a differentiable map exp :V M→  with the following properties:  
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1) For all p M∈  and all pT M∈w  the set { }: | pI t R t V T M= ∈ ∈ ∩w w  is 
an open interval containing zero, and :c I M→w w , ( )expt tw�  is a geodesic 
that satisfies the initial conditions ( )0c p=w  and ( )0c′ =w w . Furthermore, 
cw  is maximal and unique in the sense that any geodesic that satisfies the same 
initial conditions is a restriction of cw  to a subinterval of Iw .  

2) For all p M∈  there exists an open neighborhood pV  of 0  in pV T M∩  
such that the restriction exp : exp

pp V=   is a diffeomorphism from pV  onto an 
open neighborhood pU  of p in M. (Note: w.l.o.g. we may assume that for all 
p M∈  and all pT M∈w  the set { }| pt R t V∈ ∈w  is an open interval.)  

Assuming further that M is equipped with a Lorentz inner product ( ).,.g  
(with the sign convention (+−−−)) and that p is a given point in M, we denote 
by pTL  the set of timelike unit vectors in pT M , i.e., 

( ){ }: | , 1p pTL T M g= ∈ =v v v . 

Moreover, by pML  we denote the set of all points { }\pq U p∈  (with pU  as 
defined above) for which there exists a pTL∈v  and a t I∈ v  such that  

( )exp p t q=v , and by u  we denote the geodesic velocity field that the exponen-
tial map induces on pML , i.e., for ( ) ( )exp p pq t c t ML= = ∈vv  we set  

 ( ) ( ): .q c t′= vu                           (1) 

Since cv  is a geodesic, it follows that  

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ), , 0 , 0 , 1g q q g c t c t g c c g′ ′ ′ ′= = = =v v v vu u v v .  

To complete our setup, we pick an arbitrary Lorentz frame ( ){ }3

0
pµ µ=

e  at p and 
create a frame field { }3

0µ µ=
e  on pU  by parallel shifting the vectors ( )pµe  

along the geodesics that originate at p (and are described by exp p ). This con-
struction readily implies that  

( ) ,q µ∇ =u e 0  

for all pq ML∈  and that  

 µ∇ =we 0                           (2) 

for all pT M∈w  and all { }0,1,2,3µ ∈ . Setting further  
0 1 2 3

0 1 2 3: , : , : , : ,= = − = − = −e e e e e e e e  

a dual basis field on pU  is ( ){ }3

0
.,g µ

µ=
e , and the general-relativistic analogue 

of the Jacobian derivative matrix of u  is  

( )( )3

, 0
: ,D g

µ

ν

µ ν =
= ∇eu u e , 

where ν  is the row index and µ  the column index. 
Using brackets, as usual, to indicate the taking of the directional derivative 

(that is, [ ]f f= ∂uu ), we will show in Sections 3 and 4, that the matrix Du  
satisfies the equation  

 ( ) ( ) ( )2div tr trD D= = −      u u u u u               (3) 
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in the classical Newtonian case, in which particle motion is governed by the 
Laplace equation 0V∆ = , as well as in the free-particle special-relativistic case. 
Furthermore, since the validity of (3) in the classical Newtonian case turns out to 
be equivalent to the validity of the classical vacuum field equation 0V∆ = , it is 
perfectly reasonable to require, in light of these results, that Equation (3) be sa-
tisfied as well in general-relativistic vacuum spacetime. And it is precisely this 
latter requirement that turns out to be equivalent to the validity of the vacuum 
field equation  

0,Rµν =  

or equivalently,  

( )Ric , 0.=v w  

Moreover, in Section 5 we will show that a similar unifying description—analogous 
to (3)—can be given for the classical and general-relativistic matter field equa-
tions as well. That is to say, in using velocity-field divergences, we will be able to 
reveal that the classical Newtonian and general-relativistic theories of gravity are 
formally essentially identical. 

Introducing the natural, generalizing notation  

( ) ( )div , : tr D D=v w v w , 

we summarize our findings in the following table so as to illustrate thereby how 
seemingly disparate classical and relativistic field equations become perfectly 
unified when represented by velocity-field divergence equations:  
 

Equation Standard Description Velocity Field Description 

cl. vac. feq. 0V∆ =  ( ) ( )div div , 0  + = v v v v  

rel. vac. feq. ( )Ric , 0=v w  ( ) ( )div div , 0  + = u u u u  

cl. mat. feq. 4V ρ∆ = π  ( ) ( )div div , 4 ρπ  + = − v v v v  

rel. mat. feq.  
(free part.) 

( )Ric 2 8R g T− = π  
( ) ( )div div , 4 ρπ  + = − w w w w   

for =w u , ⊥u , ( ) 2⊥+u u  

 
As a note of caution, we wish to add that all the results derived in the present 

paper appear to be so elementary in character that it is difficult to imagine that 
they have not been previously established. However, since the present author is 
not aware of any pertinent reference, the results in question are here being of-
fered—with considerable hesitation—as provisional novelties. 

3. The Classical Vacuum Field Equation 

To begin with, we consider the free-particle Newtonian case in which the possi-
ble particle trajectories are straight lines in four-dimensional absolute spacetime. 
Thus, we define the analogue of u  in (1) (with the base point p at the origin 
( )0,0,0,0 ) via the equation  
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( )
1 0

0 1 2 3
2 0

3 0

1

, , , : ,
x x

x x x x
x x
x x

 
 
 =
 
 
 

v  

and observe that  

( )
( )
( )

21 0 0

22 0 0

23 0 0

0 0 0 0

1 0 0
.

0 1 0

0 0 1

x x x
D

x x x

x x x

 
 
 −
 =  −
 
  − 

v  

This yields  

( )
( )

( )
( )

( )
( )

20

20

20

20

2

3div

0 0 0 0

0 1 0 0
tr

0 0 1 0

0 0 0 1

tr

x

x

x

x

D

= −  

 
 
 
 = −  
 
  
 

= −

v v

v

 

and Equation (3) has therefore been shown to be valid. 
To proceed, we assume that a Newtonian test particle of mass m moves in a 

gradient force field  

( ) ( )
1

0 1 2 2 0 1 2 3
2

3

0

, , , , , ,
V x

x x x x m m V x x x x
V x
V x

 
 ∂ ∂ = − = − ∇
 ∂ ∂
 
∂ ∂ 

F  

that satisfies the field equation  

( )
( )

23

2
1

div 0.VV V
xµµ=

∂
∆ = ∇ = =

∂
∑  

Furthermore, setting ( )0 1 2 3: , , ,q x x x x= , we denote by ( ) ( )( )3

0q qc s z sµ

µ=
=  the 

spacetime curve, traced out by the test particle, that satisfies the boundary con-
ditions  

( ) ( ) ( )00 0,0,0,0 andq qc c x q= =  

as well as the time-component condition ( )0
qz s s= . Given this definition, it is 

natural and plausible to assume that there exists a constant 0T >  such that the 
boundary and time-component conditions above determine qc  uniquely for all 

( ) 30,q T R∈ ×  (or perhaps ( )0,T N×  for some large’ set 3N R⊂  that con-
tains ( )0,0,0 ). That is to say, we will in essence assume that  
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( ) ( )
( )
( )
( )
( )

( )
( )
( )

( ) ( )
( ) ( )
( ) ( )

0 0

0
1 0

11
0

22 2 0

33

3 0

1

d d:
d d

q
q

qq
q

qqs x s x q

qq

q

sz s
z xz sz s

q c x
z sz ss s z x
z sz s

z x

= =

 
     ′         ′= = = =  ′               ′ 
 

v  

is a well-defined vector field on a suitable subset of 4R  that contains ( )0,0,0,0 . 
Given this assumption, it follows that  

( )( ) ( )q qc s c s′=v  

for all ( )0,s T∈ , and that, by implication,  

( ) ( )( ) ( ) ( )( ) ( )( ) ( )1 d .
dq q q q q qc sV c s c s c s D c s c s

m s
′′ ′−∇ = = = =F v v  

Hence  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( )( ) ( )

( )( )
00

0

2 03
0

, 0

0 0 03 3
0

, 0 , 0

3 2

1

2

div div

tr

tr ,

qq

q

q
q

q q q
q

c x qc x q

q q

q c x

z x
z x

x x

z x z x z x
z x

x x x x

V D
x x

V D

µ
ν

ν µ
µ ν

µ ν µ
ν

µ ν ν ν
µ ν µ ν

µ µ
µ

=

= =

== =

′=      

′∂′=
∂ ∂

 ′ ′ ′∂ ∂ ∂∂  ′= − ∂ ∂ ∂ ∂ 
 

 ∂ ∂ = − −
 ∂ ∂
 

= −∆ −

∑

∑ ∑

∑

v v v

v

v

 

and, by implication,  

 ( ) ( )div div , .V+ = −∆  v v v v                   (4) 

Consequently, the classical vacuum field equation 0V∆ =  is indeed satisfied if 
and only if  

( ) ( )div div , 0.+ =  v v v v  

4. The Relativistic Vacuum Field Equation 

In order to prove that Equation (3) is satisfied as well in the free-particle special 
relativistic case, we set  

1 0 0 0
0 1 0 0

:
0 0 1 0
0 0 0 1

 
 − =
 −
 

− 

g  

and  
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( ) ( ) ( ) ( )

0

1

22 2 2 20 1 2 3

3

1: .

x
x
xx x x x
x

 
 
 =  

− − −   
 

u  

Given these definitions, we find (by way of a trivial computation) that  

( )

( ) ( ) ( ) ( )
( ) ( )( )2 2 2 20 1 2 3

div
,

3

t
tD

x x x x

−
= = −

− − −

Id u gu u
u Id u gu  

and since  

( ) ( )( )2
,t t− = −Id u gu Id u gu  

it follows (again by way of a trivial computation) that  

( )
( )( ) ( )( ) ( )( )

( )( ) ( )

22
2

2

div trdiv
div

3 9

tr div , ,

t

D

 − 
 = − = −  

= − = −

u Id u guu
u u

u u u

 

as desired. 
In the light of this result and in the light as well of the preceding result con-

cerning classical free particles, it is perfectly reasonable to expect that gener-
al-relativistic vacuum spacetime should be structured in such a way that  

 ( ) ( )div div , 0.+ =  u u u u                     (5) 

In order to show that this equation is indeed equivalent to the vacuum field equ-
ation 0Rµν = , we will now proceed to prove the following theorem:  

Theorem 4.1. For all spacetime vector fields v  and w  it is the case that  

( ) ( ) ( ) ( )Ric , div div div , .= ∇ − −  vv w w v w v w  

Note: the term on the right is indeed a tensor because it is easily seen to be C∞ - 
bilinear.  

Proof. Given a spacetime event p, and given the basis fields µe , defined in 
Section 2, we may employ Einstein’s summation convention in conjunction with 
(4) to infer that  

( ) ( )( )

( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,

Ric , , ,

,

div , ,

,

div div , ,

div div div , ,

p p

p

p p

p

p p

pp

g R

g

p g g

g

p g g

p

µ µ µ

µ µ

µµ

µ ν

µ
µ

µ

µ µ

µ

ν µ

  

∇ −∇

=

= ∇ ∇ −∇ ∇ −∇

 = ∇ − ∇ + ∇ ∇ 

− ∇

= ∇ − − ∇ ∇  

= ∇ − −  

e v

e v v e e v

v e e v

v e

v e e

v

v w e v w e

w w w e

w v w e w e

w e

w v w v e w e

w v w v w
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as desired.                                                       □ 
For later reference and in order to further explore this result, we introduce the 

following definition:  
Definition 4.2. Given a spacetime event q M∈  and given a tangent vector 

qT M∈v , we say that a vector field w  is a geodesic extension of v  if ( )q =w v  
and if the domain of w  contains an open neighborhood U of q such that 

p∇ =w w 0  for all p U∈ .  
Lemma 4.3. Every spacetime tangent vector qT M∈v  admits a geodesic ex-

tension.  
Proof. This fact is essentially well known and hardly requires a proof, but one 

way to establish it is to use a local coordinate system at q to translate the geodes-
ic equation ∇ =w w 0  into a first-order system of differential equations and to 
find a solution of this system that satisfies the condition ( )q =w v . Alternative-
ly, a proof using the exponential map is feasible as well.                   □ 

Corollary 4.4. If w  is a geodesic extension of a vector qT M∈v , then  

( ) ( ) ( ) ( )Ric , div div , .
q

q= − −  v v w w w w  

Proof. This is a trivial consequence of Theorem 4.1 and the fact that ∇ =w w 0  
on an open neighborhood of q.                                      □ 

Since the geodesic velocity field u , defined in (1), satisfies the equation 
∇ =uu 0 , we may apply Theorem 4.1 to infer that  

( )Ric , 0=u u  

if and only if (5) is satisfied. Using polarization in conjunction with the familiar 
symmetry of the Ricci-tensor (as well as the fact that the time-like unit vectors 
u  span qT M  as the base point p in the definition of u  is properly varied), it 
follows that indeed Equation (5) is satisfied if and only if 0Rµν = . 

To conclude our discussion in this section, it is worth noting that both terms 
in Equation (5) are frame-independent. That is to say, if { }3

0µ µ=
f  is some other 

arbitrary frame field, then  

( ) ( ) ( )div , ,g g
µ µ

µ µ= ∇ = ∇e fu u e u f  

and  

( ) ( ) ( ) ( ) ( )div , , , , , .g g g g
µ ν µ ν

ν µ ν µ= ∇ ∇ = ∇ ∇e e f fu u u e u e u f u f  

The first of these two equations is well known, and the second can be derived as 
follows:  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

, ,

, , , , , ,

, , , ,

, , .

g g

g g g g g g

g g g g

g g

µ ν

α γ

α γ

α β

ν µ

α ν γ µ β δ
µ β ν δ

α γ β δ
δ β

β α

∇ ∇

= ∇ ∇

= ∇ ∇

= ∇ ∇

f f

e e

e e

e e

u f u f

f e f e f e f e u e u e

e e e e u e u e

u e u e
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5. The Matter Field Equations 

According to (4), the classical matter field equation  
4V ρ∆ = π  

is equivalent to  

( ) ( )div div , 4 .ρ+ = − π  v v v v                   (6) 

Thus, we only need to show that an analogous representation is valid as well for 
the matter field equation of general relativity. To this end we will consider to be-
gin with the very simple special case where the curvature of spacetime is induced 
by the gravitational interactions of a swarm of free particles whose rest-frame 
mass density is ρ  and whose unit-length geodesic velocity field is u  (i.e., 
∇ =uu 0  and ( ), 1g =u u ). In other words, we will assume that the stress-energy 
tensor is  

,ρ ⊗u u  

or equivalently, that  

( ) ( ), .gρ=T v v u u  

To proceed, we require that (6) be valid as well in the general-relativistic case in 
which v  is replaced by u . That is to say, we demand that  

( ) ( )div div , 4 .ρ+ = − π  u u u u  

Inspired by this natural requirement, we establish the following general theorem:  
Theorem 5.1. Let q be a fixed spacetime event in the domain of u . Then the 

matter field equation  

 ( ) ( ) ( )( ) ( )( ) ( )Ric , , 8 , , 8 ,
2
R g g q g q Tρ− = π = πx y x y x u u y x y   (7) 

is satisfied for all , qT M∈x y  if and only if  

 ( ) ( ) ( ) ( )div div , 4
q

q qρ+ = − π  w w w w            (8) 

for any geodesic vector field w  (i.e., ∇ =w w 0 ), defined on an open neigh-
borhood of q, that satisfies one of the following conditions:  

a) ( ) ( )q q=w u ,  
b) ( )q ⊥=w u  for some spacelike unit vector qT M⊥ ∈u  that is Lorentz- 

perpendicular to ( )qu , that is, ( )( ), 0g q⊥ =u u  and ( ), 1g ⊥ ⊥ = −u u ,  
c) ( ) ( )( ) 2q q ⊥= +w u u  for some vector ⊥u  as described in (b).  
Proof. Throughout the proof below we will assume that { }3

0µ µ=
e  is a Lorentz 

frame based at q such that ( )0 q=e u . (Note: this latter assumption will be 
needed only in the second part of the proof, not in the first.) 

“⇒ ” If (7) is valid, then the geodesic equation ∇ =w w 0  in conjunction with 
Theorem 4.1 implies that  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )2

div div , Ric ,

, 8 , .
2

q
q q q

R q
g q q q g q qρ

+ = −  

= − − π

w w w w w w

w w w u
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Since (7) also implies that  

( ) ( )
( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( )

Ric ,

, 8 , ,
2

2 8 ,

2 8 ,

R q

R q
g q g q g q

R q q g q q

R q q

µ
µ

µ µ
µ µρ

ρ

ρ

=

= + π

= + π

= + π

e e

e e e u u e

u u
 

it follows that  

( ) ( )8 ,R q qρ= − π  

and therefore,  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )2
div div , 4 , 2 ,

q
q q g q q g q qρ+ = π −  w w w w w w w u . 

Given this equation, it is easy to verify that  

( ) ( ) ( ) ( )div div , 4
q

q qρ+ = − π  w w w w  

whenever one of the conditions (a), (b), or (c) above is satisfied. 
“⇐ ” Since all the tensors in Equation (7) are symmetric, it is sufficient—by 

polarization—to show that  

( ) ( ) ( ) ( )( )2
Ric , , 8 ,

2
R g q g qρ− = πx x x x x u  

for all qT M∈x . To do so, we will show to begin with that  

 ( ) ( )Ric , 4 qµ ν µνρ δ= πe e                      (9) 

for all { }, 0,1, 2,3µ ν ∈ . If µ ν= , then we pick a geodesic extension w  of µe  
(see Lemma 4.3) and apply Corollary 4.4 in conjunction with (8) and either (a) 
or (b) to infer that  

 ( ) ( ) ( ) ( ) ( )Ric , div div , 4 ,
q

q qµ µ ρ= − − = π  e e w w w w        (10) 

as desired. If µ ν≠  and 0µ ν≠ ≠ , then  

( ), 2.g µ ν µ ν+ + = −e e e e  

Consequently, if w  is a geodesic extension of ( ): 2µ ν⊥ = +u e e , then Corol-
lary 4.4 in conjunction with (8), (10), and (b) implies that  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )

4 div div , Ric ,

1 Ric , 2Ric , Ric ,
2
1 8 2Ric , ,
2

q
q q

q

µ µ µ ν ν ν

µ ν

ρ

ρ

⊥ ⊥π = − − =  

= + +

= π +

w w w w u u

e e e e e e

e e

 

and therefore,  

( )Ric , 0,µ ν =e e  

as desired. Finally, if 0µ ν= ≠  and if w  is a geodesic extension of  

( )
,

2 2
q µ ν⊥ ++

=
e eu u

 

https://doi.org/10.4236/jamp.2022.105103


F. Blume 
 

 

DOI: 10.4236/jamp.2022.105103 1471 Journal of Applied Mathematics and Physics 
 

then Corollary 4.4 in conjunction with (8), (10), and (c) implies that  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )( )

4 div div ,

Ric ,
2 2

1 8 2Ric , ,
2

q
q q

q q

q µ ν

ρ

ρ

⊥ ⊥

π = − −  

+ + 
=  

 

= π +

w w w w

u u u u

e e

 

and again we find that  

( )Ric , 0,µ ν =e e  

as desired. Having thus established Equation (9), it follows that  

( ) ( ) ( ) ( ) ( ) ( )
3 2

0
Ric , , , Ric , 4 ,g g q gµ ν µ

µ ν
µ

ρ
=

= = π ∑x x x e x e e e x e  

and  

( ) ( ) ( ) ( ) ( )Ric , 4 12 8 .R q q q qµ
µ ρ ρ ρ= = π − π = − πe e  

Hence  

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( )

3 2

0

2

Ric , ,
2

4 , 4 , ,

8 , ,

R g

q g q g g

q g q

µ µ
µ

µ
ρ ρ

ρ

=

−

= π + π

= π

∑

x x x x

x e x e x e

x u

 

as desired.                                                       □ 
Concerning the conditions (a), (b), and (c) in Theorem 5.1, we wish to remark 

that the validity of (6) in the Newtonian case naturally suggests that Equation (8) 
ought to be valid if (a) and (b) are satisfied because ( )qρ  is the rest-frame 
density and ( )qu  and ⊥u  are timelike and spacelike rest-frame vectors, re-
spectively. Moreover, regarding the validity of (8) in the remaining case, where 
w  satisfies (c), it is helpful to notice that Newtonian gravity can be regarded as 
a classical limit that emerges from general relativity as the speed of light diverges 
to infinity. For in adopting this point of view, the Newtonian spatial rest frame at 
q merges with the relativistic lightcone at q, and the lightlike vector ( )q ⊥+u u , 
multiplied with the Euclidean scaling factor 1 2 , may therefore be considered 
to be a spatial rest-frame vector in the Newtonian limit. However, regardless of 
whether we consider this latter interpretation to be convincing or not, Theorem 
5.1 remains perfectly valid as a mathematical fact. So ultimately (c) is simply a 
condition that needs to be added in order to guarantee that (7) and (8) are ma-
thematically equivalent and that, by implication, Newtonian gravity and general 
relativity may justifiably be viewed to be formally identical. 

Furthermore, the somewhat unsatisfactory restriction to a swarm of particles 
moving on geodesics can easily be lifted by considering an entire family of 
swarms in dependence on the geodesic unit vector fields u —that is, by consider-
ing a perfect fluid in which particles of common rest mass m move along geo-
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desics so that at each point q the mass density of particles moving with velocity  

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3

2

cos sin sin sin cos
, ,

1
q

q

v v v
v

v

θ φ θ φ φ
θ φ

+ + +
=

−

e e e e
u  

is equal to ( )q vρ  (in the particles’ rest frames) for all spherical coordinate 
triples ( ) [ ) [ ) [ ), , 0,1 0,2 0,v θ φ ∈ × π × π . (Note: the suggested dependence of qρ  
on v alone—rather than on v, θ , and φ —is due to the fact that in a perfect 
fluid the distribution of particle velocities may be assumed to be isotropic rela-
tive to the fluid’s rest frame ( ){ }3

0
qµ µ=

e .) Given this setup, it follows that the mass 
density corresponding to ( )q vρ  relative to the fluid’s rest frame ( ){ }3

0
qµ µ=

e  is  

 
( ) ( )

22 2 11 1
q qv v

vv v

ρ ρ
=

−− −
                   (11) 

where the first factor 21 1 v−  is due to relativistic length contraction (in the 
direction of motion) and the second accounts for the relativistic increase in mass. 
Furthermore, the stress energy tensor , , ,q vT θ φ  corresponding to ( ), ,q v θ φu  is 
given by the equation  

( ) ( ) ( )( ) ( ), , , , , , , , ,q v q q qT v g v vθ φ ρ θ φ θ φ=x x u u  

and the matrix representing , , ,q vT θ φ  at q with respect to the frame ( ){ }3

0
qµ µ=

e  
is  

( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )33

, 0 , 0
, , , , , , , , , .q q qT q v v g v q g v qν ν

µ µµ ν µ ν
θ φ ρ θ φ θ φ

= =
= u e u e  

That said, we now are justified in asserting that Equation (8) plausibly sug-
gests—by way of its proven equivalence to Equation (7)—that the spacetime en-
vironment of an ideal gas or perfect fluid is described by the equation  

( ) ( ) ( )Ric , , 8 , ,
2
R g T− = πx y x y x y  

where the matrix representing ( )T x  (as defined by the equation  
( ) ( )( ), ,T g T=x y x y ) is  

( )( ) ( )( ) ( )
3 32 1 2

0 0 0, 0 , 0
, , , sin d d dT q T q v v vν ν

µ µµ ν µ ν
θ φ φ φ θ

π π

= =
= ∫ ∫ ∫ . 

Since the definition of ( ), ,q v θ φu  readily implies (by way of elementary inte-
gration) that  

( ) ( )2 1 2
0 0 0

, , , sin d d d 0T q v v vν
µ θ φ φ φ θ

π π
=∫ ∫ ∫  

whenever µ ν≠ , it follows that ( )( )3

, 0
T qν
µ µ ν =

 is a diagonal matrix with di-
agonal elements 

( ) ( ) ( ) ( ) ( )2 2
2 1 10

0 2 20 0 0 0

sin
: d d d 4 d

1 1
q qv v v v

q T q v v
v v

ρ φ ρ
ρ φ θ

π π
= = = π

− −∫ ∫ ∫ ∫  

and  

( ) ( ) ( ) ( ) ( )2 3 4 4
2 1 11

1 2 20 0 0 0

cos sin 4d d d d ,
31 1

q qv v v v
T q v v

v v
ρ θ φ ρ

φ θ
π π π

= − = −
− −∫ ∫ ∫ ∫  
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( ) ( ) ( ) ( ) ( )2 3 4 4
2 1 12

2 2 20 0 0 0

sin sin 4d d d d ,
31 1

q qv v v v
T q v v

v v
ρ θ φ ρ

φ θ
π π π

= − = −
− −∫ ∫ ∫ ∫  

( ) ( ) ( ) ( ) ( )2 4 4
2 1 13

3 2 20 0 0 0

cos sin 4d d d d .
31 1

q qv v v v
T q v v

v v
ρ φ φ ρ

φ θ
π π π

= − = −
− −∫ ∫ ∫ ∫  

Setting ( ) ( ) ( ) ( )1 2 3
1 2 3:P q T q T q T q= − = − = − , we may infer that the matrix 

representing T at q with reference to the frame ( ){ }3

0
qµ µ=

e  is  

( )
( )

( )
( )

0 0 0
0 0 0
0 0 0
0 0 0

q
P q

P q
P q

ρ 
 − 
 −
  − 

 

and that, by implication,  

( ) ( ) ( )( ) ( ) ( ) ( )0 0 .T q q P q q q P q gρ= + ⊗ −e e  

Thus we have arrived at the well-known representation of the stress-energy ten-
sor of a perfect fluid (with the metric sign convention (+−−−)) because, accord-
ing to (11), ( )qρ  is the total mass density as measured in ( ){ }3

0
qµ µ=

e , and 
( )P q  is easily seen to be and also well-known to be the fluid’s pressure. 
Finally, to round up our discussion of the relativistic matter field equation, we 

wish to point out that the equation  

( ) ( ) ( )Ric , div div ,= − −  w w w w w w  

always allows us to compute all the components of the stress-energy tensor T by 
properly choosing w  in the term on the right-hand side of this equation, but 
recovering the components of T from a single equation of the form  

( ) ( )div div , 4 ρ− = − π  w w w w  

is not always possible. There are special cases in which it is possible because the 
components of T are all equal to a constant factor multiplied by the energy den-
sity ρ , but in general, of course, the components of T may contain a wide va-
riety of quantities other than ρ . Two prominent special cases in which ρ  
completely characterizes T are encountered when the curvature-generating gra-
vitational energy is produced by an electric field E  or by a plane electromag-
netic wave. For in the former case, the electromagnetic field tensor ( )F x  is 
represented by the matrix  

( )3

, 0

0 0 0
0 0 0

0 0 0 0
0 0 0 0

Fν
µ µ ν =

 
 
 =  
  
 

E
E

 

(relative to the basis { }0 2 3, , ,e E E e e ), and the electromagnetic stress-energy 
tensor  

( )2 21 1 tr
4 4

T F F g = − π  
                      (12) 
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is easily seen to be represented by the matrix  

( )

2

2
3

2, 0

2

2 0 0 0

0 2 0 01
4 0 0 2 0

0 0 0 2

0 0 0
0 0 0

;
0 0 0
0 0 0

Fν
µ µ ν

ρ
ρ

ρ
ρ

=

 
 
 

=  
π  −
  − 

 
 
 =
 −
 

− 

E

E

E

E         (13) 

and in the latter case, of a plane wave, the electromagnetic field tensor is 
represented by the matrix  

( )3

, 0

0 0 0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0

Fν
µ µ ν =

   
   − −   = =   
      
   

E E
E B E E

B E

 

(relative to the basis { }0 , , , × ×e E E B B E B E B  because for a plane 
electromagnetic wave it is the case that ⊥E B  and =E B ) and the matrix 
representing the corresponding stress-energy tensor turns out to be  

 ( )

2 2

3

, 0

2 2

0 0 0 0
0 0 0 0 0 0 0 01
0 0 0 0 0 0 0 04

0 00 0

Fν
µ µ ν

ρ ρ

ρ ρ

=

 − −       = =   π      −−   

E E

E E

      (14) 

(because ( ) ( ) ( )2 2 28 4ρ = + π = πE B E ). So in either case, the compo-
nents of the matrix representing T are either 0 or ρ± , and theorems analogous 
to Theorem 5.1 can therefore be formulated. 

In order to see this more clearly, we may want to take another look at Theorem 
5.1: the central step in proving this theorem was to demonstrate that the equation  

( ) ( ) ( )Ric , div div ,= − −  w w w w w w  

in conjunction with the assumed validity of the equation  

( ) ( )div div , 4 ρ+ = − π  w w w w  

for all geodesic vector fields w , as specified in (a), (b), and (c), completely cha-
racterizes the Ricci tensor, that is, it implies that for all tangent vectors xµ

µ=x e  
it is the case that  

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

2

3 22
0

0

Ric , , 8 , 4 , 2 ,
2

4 , 2 , 4 .

R T

xµ

µ

ρ

ρ ρ
=

= + π = − π −

= − π − = π ∑

x x g x x x x g x x g x u

g x x g x e
 

In essence, therefore, the statement of Theorem 5.1 is a somewhat stronger ver-
sion of the assertion that the equation  
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( ) ( ) ( )( )2
0Ric , 4 , 2 ,ρ= − π −x x g x x g x e  

must be satisfied for all x  if the equation  

 ( )Ric , 4 ρ= πx x                         (15) 

is valid for all vectors xµ
µ=x e  for which  

 ( )
3 2

0
1.xµ

µ=
=∑                           (16) 

(Note: Equation (16) is easily seen to be satisfied for all vectors specified in (a), 
(b), and (c), and therefore, the assertion above is slightly weaker than the state-
ment of Theorem 5.1 because the vectors specified in (a), (b), and (c) form a 
strict subset of the vectors that satisfy (16)). 

That said, we will now proceed to consider the electromagnetic stress-energy 
tensors given in (13) and (14): for the former of these we readily find that  

( ) ( ) ( ) ( ) ( )( )2 2 2 20 1 2 3,T x x x xρ= − + +x x  

and for the latter, we find that  

( ) ( ) ( )( )2 20 0 3 3, 2 .T x x x xρ= − +x x  

Consequently, since (12) implies that the trace of T is equal to zero and that 
therefore R is equal to zero as well, the assertion above, concerning the suffi-
ciency of Equations (15) and (16) for the generation of the Ricci tensor, leads us 
to assert, by analogy, that  

( ) ( )Ric , 8 ,T= πx x x x  

for all x  if the equation  

( )Ric , 4 ρ= πx x  

is valid for all vectors xµ
µ=x e  for which either  

( ) ( ) ( ) ( )2 2 2 20 1 2 3 1
2

x x x x− + + =  

(in the case where T is given as in (13)) or  

( ) ( )2 20 0 3 3 12
2

x x x x− + =  

(in the case where T is given as in (13)). Not surprisingly, both of these respec-
tive assertions can be readily established by using essentially the same methods 
as in the proof of Theorem 5.1. But since the pertinent details would add little 
value to the results derived in this paper, we will not attempt to include them.  

6. Conclusion 

In reinterpreting the classical and relativistic gravitational field equations as ve-
locity-field divergence equations, we were able to show that classical and relati-
vistic descriptions of gravitation may be considered to be formally strictly ana-
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logous. This observation in itself does not elucidate many of the deeper structur-
al questions that limit-like transitions from general relativity to Newtonian grav-
ity are commonly thought to raise, but it does appear to bring to light a surpri-
singly simple and straightforward mathematical kinship—and hence it does ap-
pear to be worth mentioning.  
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