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Abstract 
Evolution of the photon gas (PG) in the Planck period is considered as a par-
ticular case of the physical vacuum (PV) hydrodynamics. Nonlocal quantum 
hydrodynamic equations are applied for calculation of the photon gas evolu-
tion. In general case, PG hydrodynamics contains gravitation in the explicit 
form. Exact analytical solutions of PG hydrodynamics are obtained. Solutions 
show the exponential growth of gradient values for internal energy in time 
and space. In comparison with phenomenological General Relativistic Theory, 
Nonlocal quantum hydrodynamics (NQH) does not lead to contradictions in 
all limit cases. Theory of physical vacuum and the theory of photonic gas are 
related theories. These theoretical (analytical!) results confirm the result of 
direct observations (Arno Alan Penzias and Robert Woodrow Wilson, Nobel 
Prize (1978) for their discovery of cosmic microwave background; John C. 
Mather and George F. Smoot. Nobel Prize (2006) for their discovery of the 
blackbody form and anisotropy of the cosmic microwave background radia-
tion). 
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1. Introduction 

By definition, a physical vacuum is a state of a physical system in which there is 
no substance (matter) and all kinds of fields. After the Big Bang background 
radiation contains the traces of the travelling wave’s evolution.  

This radiation is known as cosmic microwave background radiation (CMBR) 
or “relic radiation”. With a traditional optical telescope, the space between stars 
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and galaxies (the background) is completely dark. However, a sufficiently sensi-
tive radio telescope shows a faint background glow, practically isotropic, that is 
not associated with any star, galaxy, or other object. This glow is strongest in the 
microwave region of the radio spectrum. Through the 1970s, the radiation was 
found to be approximately consistent with a black body spectrum in all direc-
tions; this spectrum has been redshifted by the expansion of the universe, and 
today corresponds to approximately 2.725 K.  

In 1989, NASA launched the Cosmic Background Explorer satellite (COBE) 
which made two major advances:  

1) In 1990, high-precision spectrum measurements showed the CMBR fre-
quency spectrum is an almost perfect and measured residual temperature of 
2.726 K (more recent measurements have revised this figure down slightly to 
2.7255 K). 

2) In 1992, further COBE measurements discovered tiny fluctuations (aniso-
tropies) in the CMBR temperature across the sky, at a level of about one part in 
105 [1] [2]. John C. Mather and George Smoot were awarded the 2006 Nobel 
Prize in Physics for their leadership in these results.  

3) During the following decade, CMBR anisotropies were further investigated 
by a large number of ground-based and balloon experiments. In 2000-2001, sev-
eral experiments found the shape of the Universe to be spatially almost flat by 
measuring the typical angular size (the size on the sky) of the anisotropies [3] 
[4].  

In early 2003, the first results of the Wilkinson Microwave Anisotropy Probe 
(WMAP) were released, yielding what were at the time the most accurate values 
for some of the cosmological parameters. The Planck space probe was launched 
in May 2009. Other ground and balloon based cosmic microwave background 
experiments are ongoing. 

Let us look at the measurements realized in the frame of the Planck pro-
gramme. The temperature variations don’t appear to behave the same on large 
scales as they do on small scales, and there are some particularly large features, 
such as a hefty cold spot, that were not predicted by basic inflation models. Re-
ally, look at the Planck space observatory’s map (Figure 1) of the universe’s 
cosmic microwave background. This map is in open Internet access (see for ex-
ample SPACE.com Staff. Date: 21 March 2013 Time: 11:15 AM ET). It was re-
ported that CMBR is a snapshot of the oldest light in our Universe, imprinted on 
the sky when the Universe was just 380,000 years old. It shows tiny temperature 
fluctuations that correspond to regions of slightly different energy densities, 
representing the seeds of all future structure: the stars and galaxies of today.  

The anomaly of the Cold Spot located in the southern hemisphere; size of the 
fluctuations ~10˚, galactic coordinates ( ) ( ), 56 ,209b l = −   . Anomaly is three- 
connected cold spots; the distribution of CMBR in this direction has a deep 
minimum. The map of radio emission at a frequency of 408 Hz has noticeably 
“warm” spot in a cold spot. Initially, the Spanish group drew the attention of re-
searchers in 2005 [5]. This group found that significant deviation from Gaussian  
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Figure 1. Planck space observatory’s map of the universe’s cosmic microwave back-
ground radiation. 
 
statistics in the southern hemisphere is due to the presence of spots with the 
mentioned coordinates and the amplitude is lower ( )4σ−  where 2σ  there is 
a variance of fluctuations in Gaussian dispersion models.  

From the position of the developed nonlocal theory [6] [7] [8] [9] Planck’s 
all-sky map contains the regular traces of traveling waves as the alternation of 
the “hot” (red) and “cold” (blue) strips. In Figure 1, the Planck space observa-
tory staff shows the “mysterious” hefty cold spot as the blue small area bounded 
by the white circle. 

From the position of the developed theory, it is the area reflecting the initial 
explosion of PV. In this case, the center domain of the mentioned hefty cold spot 
should contain the smallest hot spot as the origin of the initial burst. These ef-
fects are considered on the level of the simplified models in [8].  

Returning to the model considering above we should constant that homo-
geneity of the early space can be taken only as a first approximation. The men-
tioned fluctuations have small amplitudes but the regular character. 

The first stage of the big Bang corresponds to the Planck époque or to the 
Planck time. The Planck time Pτ  is the unit of time in the system of natural 
units known as Planck units. It is the time required for light to travel, in a va-
cuum, a distance of unit of Planck length, approximately 5.391 × 10−44 second. 
The Planck time is defined as:  

 5
N

P c
γ

τ =


,                        (1.1) 

where 
2
h
π

=  is the reduced Planck constant (sometimes h is used instead of ħ  

in the definition), Nγ -gravitational constant, c is speed of light in vacuum. The 
Planck time is the unique combination of the gravitational constant Nγ , the 
special-relativistic constant c, and the quantum constant ħ, to produce a con-
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stant with units of time. Because the Planck time comes from dimensional anal-
ysis, which ignores constant factors, there is no reason to believe that exactly one 
unit of Planck time has any special physical significance.  

Moreover, the Planck time represents a rough time scale at which gravitation-
al effects ( Nγ ) and special relativistic theory (c) are not applicable to description 
of the physical events. Then the Planck time is only the orientation to the time 
period when no matter ( 0ρ = ) and known fields exist. Obviously in this case 
we should remove all terms in the classical local transport equations transform-
ing these relations into zero identities.  

Before the advent of nonlocal physics (see, for example, [6] [7] [8] [9]), there 
was no theory that adequately described the evolution of the physical vacuum. 
Evolution assumes (in a certain sense) a hydrodynamic description, and we im-
mediately fall into the sphere of interests of continuum mechanics. Needless to 
say, classical (local, in fact) hydrodynamics is powerless in this situation. The in-
troduction of the Einstein cosmological constant into cosmology, and the at-
tempt to express the “density” of the physical vacuum and its evolution through 
the value of this constant, has no physical meaning. 

On the other hand, the lack of an adequate theory leads to paradoxes in the 
physical field of research—the theory of the evolution of photonic gas in general 
and the theory of electromagnetic waves in particular. It turns out that the 
theory of physical vacuum and the theory of photonic gas are related theories. 
The present work is devoted to the study of this problem. 

2. Generalized Hydrodynamic Equations 

The generalized hydrodynamic equations (GHE) can be obtained from the non-
local kinetic equation in the frame of the Enskog procedure, [6] [7] [8] [9]:  

(Continuity equation for species α ) 

( ) ( )

( ) ( )

0 0 0

1
0 0 0I .

t t t

p q
R

m

α
α α α α α α

α α
α α α α α

α
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ρ τ ρ ρ τ ρ

ρ ρ ρ

 ∂ ∂ ∂ ∂  ∂  − + ⋅ + ⋅ −    ∂ ∂ ∂ ∂ ∂   
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(Continuity equation for mixture) 
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(Momentum equation for species α ) 
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(Momentum equation for mixture) 
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(Energy equation for α  species) 
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(Energy equation for mixture) 
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The force dimension, ( )1
2

cm
s

Fα
  =  . Here ( )1

αF  are the forces of the non-magnetic  

origin, B -magnetic induction, I


-unit tensor, qα -charge of the α -component 
particle, pα -static pressure for α -component, αε -internal energy for the par-
ticles of α -component, 0v -hydrodynamic velocity for mixture, ατ -non-local 
parameter.  

GHE are extremely important for astrophysics special cases when density 
0ρ →  (the initial stage of evolution of the Universe, the Big Bang; transport 

processes in physical vacuum) and when density ρ →∞  (evolution of the 
black hole). Both limiting cases have no physical or mathematical meaning in 
“classical” hydrodynamics. Thus, we have a unified statistical theory of dissipa-
tive structures, which has a hydrodynamic shape defined by the genesis of GHE. 
Then we obliged to deliver come comments concerning application of special 
(SRT) and general (GRT) relativistic theory in theoretical astrophysics. 

3. Derivation of the Basic Equations 

Step 1. 
Physical vacuum (PV) and photon gas (PG) do not contain matter-density 

( 0, 0qα αρ → → ). From the system (2.1)-(2.6) we find for PV 
(Continuity equation for species α ) 
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(Continuity equation for mixture) 
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(Momentum equation for species α ) 
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Step 2. 
For the one species PV we have 
(Continuity equation) 
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(Momentum equation) 
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Step 3. 
Extremely important that for the case of the PG evolution we can realize the 

following simplifications of the system (3.7)-(3.9). We should take into account: 
1) All photons have the constant velocity c. This speed does not necessarily 

coincide with the speed of light in a vacuum in the presence of matter and grav-
ity. 

2) It means that the thermal velocities are absent including 
2
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and terms containing p. The corresponding definitions can be found in [6] [7] [8] 
[9]. 

As a result we find from Equations (3.7)-(3.9) only energy equation 
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In Equation (3.10) the value nε  is an internal PG energy per the unit volume. 
In the following we use the notation n Eε ↔ . 

Then 
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         (3.11) 

The nonlocal parameter τ  plays in GHE the same role as usual transport coef-
ficient (like viscosity) in classical local hydrodynamics. Let us estimate τ  using 
the Heisenberg principle  

 h hτ υ = ,                         (3.12) 

where υ  is frequency. Then  

 1τ
υ

= .                          (3.13) 

Let us add some additional explanation concerning this choice. The appear-
ance of the nonlocal τ  parameter is consistent with the Heisenberg uncertainty 
relation. But in principle generalized kinetic nonlocal Equation (and therefore 
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generalized hydrodynamic equations (GHE)) needn’t in using of the “time- 
energy” uncertainty relation for estimation of the value of the non-locality pa-
rameter τ . Moreover the “time-energy” uncertainty relation does not produce 
the exact relations and from position of non-local physics is only the simplest es-
timation of the non-local effects.  

Really, let us consider two neighboring physically infinitely small volumes 
PhSV1 and PhSV2 in a non-equilibrium system. Obviously the time τ  should 
tends to diminish with increasing of the velocities u of particles invading in the 
nearest neighboring physically infinitely small volume (PhSV1 or PhSV2): 

 nH uττ = .                         (3.14) 

But the value τ  cannot depend on the velocity direction and naturally to tie τ  
with the particle kinetic energy, then  

 2

H
mu

ττ = ,                          (3.15) 

where Hτ  is a coefficient of proportionality, which reflects the state of physical 
system. In the simplest case Hτ  is equal to Plank constant   and relation 
(3.15) became compatible with the Heisenberg relation. Relation (3.13) leads to  

the absolutely transparent relation 
c
λτ = . It means that the average time of the  

information transmission in the nearest PhSV is equal the wave length divided 
on the light velocity. 

4. Photon Gas in the Non-Stationary 1D System 

For the better understanding of general picture we consider the non-stationary 
1D system. It should underline that ( )1

αF  is acceleration originated by the forces 
of the non-electro magnetic origin. In the following the value ( )1F  is accelera-
tion generally speaking, not related to Newtonian gravity. In the following we 
use notation  

 ( )1 =F g .                           (4.1) 

We find 

 2 0E E E EE c Ec c c Eg
t t x x t

τ τ∂  ∂ ∂  ∂  ∂ ∂    − + + − + − =      ∂ ∂ ∂ ∂ ∂ ∂      r
.     (4.2) 

Interesting to notice, that using local hydrodynamics we find from Equation 
(4.2) 

 0E Ec
t x

∂ ∂
+ =

∂ ∂
.                        (4.3) 

General solution of (4.3) is the general wave solution 

 ( )E ct x= Φ − .                        (4.4) 

As you see classical hydrodynamics does not contain the gravitation influence in 
principle. Let us transform (4.2) 
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 ( ) 0E E E E E Ec c c c Eg
t t t t x x x t x x

τ τ τ τ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂  ∂     − − + − + + =      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
(4.5) 

If const=τ  we have 

 ( )
2

2 0E E E E E Ec c c c Eg
t t x x x t x xt

τ τ τ τ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − − + − + + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  
   (4.6) 

or 

 ( )
2 2

2
2 2 2E E E E Ec c c Eg

t t x x xt x
τ τ τ τ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ = − + +
∂ ∂ ∂ ∂ ∂∂ ∂

        (4.7) 

or 

 ( )
2 2

2
2 2

1 2E E E E c Ec c Eg
t t x x xt x τ τ

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂∂ ∂
.         (4.8) 

Write down the dimensionless form of Equation (4.8) using the scales 

 tt
τ

= , xx
cτ

= .                        (4.9) 

We find 

 ( )
2 2

2 2 2 2 2 2 2

1 1 1 12E E E E E Eg
t t x x c xt x ττ τ τ τ τ

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂∂ ∂

    



 

  

      (4.10) 

or 

 ( )
2 2

2 2 2E E E E E Eg
t t x x c xt x

τ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂∂ ∂

    



 

  

.           (4.11) 

Let us introduce the dimensionless “gravitational” acceleration 

 gg
cυ

= .                          (4.12) 

Then 

 ( )
2 2

2 2 2E E E E E Eg
t t x x xt x

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂∂ ∂

    





 

  

.            (4.13) 

Equation (4.13) is elliptic equation with the right hand side which is not equal to 
zero. 

 ( )
2 2

2 2

E E w E
t x

∂ ∂
+ =

∂ ∂

 







,                     (4.14) 

where 

 ( ) ( )2E E Ew E Eg
t t x x x

∂ ∂ ∂ ∂ ∂
= − + +
∂ ∂ ∂ ∂ ∂

  

 



 

  

.              (4.15) 

5. Some Important Particular Cases 

1) Effect of “tired light”. 
If ( )w E  is small value and can be omitted we obtain elliptic equation 

 
2 2

2 2 0E E
t x

∂ ∂
+ =

∂ ∂

 





.                       (5.1) 
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from (4.13). Solution of this equation valid for the case is 

 ( )e costE x±= 



                           (5.2) 

or in the dimension form 

 0e cos
t xE E

c
τ

τ
±  =  

 
                       (5.3) 

or 

 0e cost xE E υ

λ
±  =  

 
,                       (5.4) 

where λ  is the wave length and υ  is frequency. 

 cλ
υ

= .                            (5.5) 

Really 

 ( )
2

2 e costE x
t

±∂
=

∂








, ( )
2

2 e costE x
x

±∂
= −

∂








.                (5.6) 

In this particular case we discover the wave regimes of attenuation and explosion. 
Then effect of tired light can exist without interaction with the gravitational 
field. 

2) About the connection with local hydrodynamics. 
Let us transform the basic Equation (4.13). We have 

 ( )
2 2

2 2 2 1E E EE E g
t x xt x
 ∂ ∂ ∂ ∂ ∂  + = − + +   ∂ ∂ ∂∂ ∂  

  

 





 

             (5.7) 

or 

 ( )1 0E E E EE E g
t t x x x t
   ∂ ∂ ∂ ∂ ∂ ∂

− + + − + + =   ∂ ∂ ∂ ∂ ∂ ∂   

   

 



  

  

,          (5.8) 

or 

 ( )1 0E E E EE E g
t x t x x t
      ∂ ∂ ∂ ∂ ∂ ∂

− + + + − + =      ∂ ∂ ∂ ∂ ∂ ∂      

   

 



  

  

        (5.9) 

It means that the wave relation ( )E ct x= Φ −  of local hydrodynamics takes 
place if the following relation for the dimensionless internal PG energy is satis-
fied 

 E EE
x t

∂ ∂
+

∂ ∂

 









,                      (5.10) 

and 

 1g  .                         (5.11) 

3) About the self similar solutions. 
Let be  

 A) x tξ = −



 .                        (5.12) 
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From (5.9) one obtains 

 ( )1 0E E E EE E g
ξ ξ ξ ξ ξ ξ
      ∂ ∂ ∂ ∂ ∂ ∂

− − − + + − − =      
∂ ∂ ∂ ∂ ∂ ∂      

   

 



     

     (5.13) 

or 

 ( )1 0E E g
ξ ξ
∂ ∂  − + + = ∂ ∂







 

                  (5.14) 

or 

 0Eg
ξ
∂   = ∂







                        (5.15) 

or 

 Eg const=

 .                        (5.16) 

or 

 constE
g

=


.                        (5.17) 

Let be  

B) x tξ = +



                         (5.18) 

From (5.9) one obtains 

 ( )1 0E E E EE E g
ξ ξ ξ ξ ξ ξ
      ∂ ∂ ∂ ∂ ∂ ∂

− + + + − + =      
∂ ∂ ∂ ∂ ∂ ∂      

   

 



     

      (5.19) 

( )2 1 2 0E EE E g
ξ ξ ξ ξ
   ∂ ∂ ∂ ∂

− + + − =   ∂ ∂ ∂ ∂   

 

 



   

 

or 

 
2

24 2 0E E Eg
ξ ξ ξ
∂ ∂ ∂  − + + = ∂ ∂ ∂

 





  

                 (5.20) 

or 

 1 1
2 4

E E g
ξ
∂  = + ∂  









                      (5.21) 

or 

 ln 1 1
2 4

E g
ξ

∂
= +

∂







                       (5.22) 

or  

 ln 0.5 0.25 dE g constξ ξ= + +∫ 

                  (5.23) 

or 

 ( )0 exp 0.5 0.25 dE E gξ ξ= + ∫  

 .                 (5.24) 

4) Exact analytical solution of the basic Equation (4.13) ( 0g = ). 
Let us write down Equation (5.9)  
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( )1 0E E E EE E g
t x t x x t
      ∂ ∂ ∂ ∂ ∂ ∂

− + + + − + =      ∂ ∂ ∂ ∂ ∂ ∂      

   

 



  

  

       (5.25) 

in the form 

 ( )1 0E Z E g Z
t x
∂ ∂   − + + − =   ∂ ∂

   







                (5.26) 

using a new variable  

 
E EZ
x t

∂ ∂
= +
∂ ∂

 







.                          (5.27) 

Using (5.27) we find from (5.26) 

 0Z Z gEZ
t x x

∂ ∂ ∂
− − + =
∂ ∂ ∂

  







 

.                     (5.28) 

If the last term in the left hand side of Equation (5.28) is small we have 

 
Z Z Z
t x

∂ ∂
+ =

∂ ∂

 







                         (5.29) 

or 

 
ln ln 1Z Z

t x
∂ ∂

+ =
∂ ∂

 





.                      (5.30) 

Using new variable lnW Z=   we obtain for Equation (5.31) 

 1W W
t x

∂ ∂
+ =

∂ ∂

 





                        (5.31) 

two possible solutions. 
The first possible solution 

 ( )1W x x t= +Φ − 



  ,                      (5.32) 

Really 

( )
1W

t x t
∂ ∂Φ

= −
∂ ∂ −




 



, 
( )

1 1
W
x x t

∂ ∂Φ
= +

∂ ∂ −






 

,             (5.33) 

and as a result we reach identity  

 
( ) ( )

1 1
x t x t
∂Φ ∂Φ

+ − =
∂ − ∂ −

 

 

 

.                  (5.34) 

The second possible solution is 

 ( )2W t x t= +Φ − 

 

 .                      (5.35) 

Really 

 
( )

2 1
W
t x t

∂ ∂Φ
= −

∂ ∂ −




 



, 
( )

2W
x x t

∂ ∂Φ
=

∂ ∂ −






 

,             (5.36) 

and 

 
( ) ( )

1 1
x t x t
∂Φ ∂Φ

− + =
∂ − ∂ −

 

 

 

.                   (5.37) 
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Using the first solution one obtains 

 ( )1ln Z x x t= +Φ − 



                        (5.38) 

or 

 ( )
1 1e

x x tZ E +Φ −=




 

                          (5.39) 

or 

 ( )
1e

x x tE E E
x t

+Φ −∂ ∂
+ =

∂ ∂




 

 







.                     (5.40) 

Analogically we find for the second possible solution 

 ( )
0et x tE E E

x t
+Φ −∂ ∂

+ =
∂ ∂



 



 







.                     (5.41) 

The both solutions lead to the exponential (but wave) growth of the internal 
energy on the Planck scale. 

5) Exact analytical solution of the basic Equation (4.13) ( 0g ≠ ). 
Let us return to Equation (5.9) written as 

 0Z Z gEZ
t x x

∂ ∂ ∂
− − + =
∂ ∂ ∂

  







 

                     (5.42) 

using a variable  

 
E EZ
x t

∂ ∂
= +
∂ ∂

 







,                          (5.43) 

The aim is to take into account the gravitation after appearance a matter. We 
have from (5.42)  

 
Z Z gEZ
t x x

∂ ∂ ∂
+ = +

∂ ∂ ∂

  







 

                       (5.44) 

or 

 ln ln 1

gE
Z Z x

t x E E
x t

∂
∂ ∂ ∂+ = +
∂ ∂ ∂ ∂

+
∂ ∂





 



 









                  (5.45) 

or 

 ln ln 1

E gg EZ Z x x
t x E E

x t

∂ ∂
+∂ ∂ ∂ ∂+ = +

∂ ∂ ∂ ∂
+

∂ ∂









 

 

 









                (5.46) 

or 

 
ln ln 1

1

x gg EZ Z xE
t x x E

tE

∂ ∂
+∂ ∂ ∂∂+ = +

∂ ∂ ∂ ∂
+

∂∂

 





 









 





                (5.47) 

or 
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 ln ln 1
1

gg EZ Z E
t x V

∂
+∂ ∂ ∂+ = +

∂ ∂ +







 







                 (5.48) 

or 

 ln ln ln1
1

ggZ Z E
t x V

∂
+∂ ∂ ∂+ = +

∂ ∂ +





 









                 (5.49) 

Dimensionless velocity V  is the speed of the spreading front. If the dimen-
sionless velocity V  (corresponding the Planck scale) satisfies a relation 1V   
(V c ), we can write (5.49) as 

 
ln ln 1Z Z

t x
∂ ∂

+ =
∂ ∂

 





,                      (5.50) 

see also (5.30).  
In the initial period of the explosion corresponding to the Planck scale, there 

are no restrictions on the speed of expansion (such as the speed of light с ap-
peared in special relativism). As we see gravitation is not significant in the be-
ginning of explosion on the Planck scale. 

The case 1V   corresponds relations 

 1x
t
∂
∂






, 1x
c t
∂
∂
                       (5.51) 

or in the dimension form 

 V c .                          (5.52) 

Then in the case we have 

 ( )ln ln 1 1
ln

Z Z gg V
t x E

∂ ∂ ∂
+ = + + −

∂ ∂ ∂

 













              (5.53) 

If 

 1
ln
g

E
∂

∂






                        (5.54) 

we reach (introducing the variable ln Z W=  ) the relation 

 1W W g
t x

∂ ∂
+ = +

∂ ∂

 







.                    (5.55) 

Equation (5.55) has the first possible solution 

 ( ) ( )1 1W x g x t= + +Φ − 



   ,                 (5.56) 

Really 

 
( )

1W
t x t

∂ ∂Φ
= −

∂ ∂ −




 



,                     (5.57) 

 ( ) ( )
1 1

W gg x
x x x t

∂ ∂ ∂Φ
= + + +

∂ ∂ ∂ −










  

,               (5.58) 

or 
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 ( ) ( )
1 1

ln
W gg
x x x t

∂ ∂ ∂Φ
= + + +

∂ ∂ ∂ −










  

.                (5.59) 

If  

 1
ln
g

x
∂
∂






                        (5.60) 

(see also (5.54)), as a result we find identity  

 
( ) ( )

1 1g g
x t x t
∂Φ ∂Φ

− + + + = +
∂ − ∂ −

 

 

 

 

.              (5.61) 

The second possible solution is 

 ( ) ( )2 1W t g x t= + +Φ − 

 

  .                  (5.62) 

Really 

 
( )

2 1
W g
t x t

∂ ∂Φ
= + −

∂ ∂ −






 



, 
( )

2W
x x t

∂ ∂Φ
=

∂ ∂ −






 

,           (5.63) 

and if 1
ln
g

t
∂ 

 ∂ 







 we find identity  

 
( ) ( )

1 1g g
x t x t
∂Φ ∂Φ

+ − + = +
∂ − ∂ −

 

 

 

 

.             (5.64) 

Using the first solution one obtains 

 ( ) ( )1ln 1Z x g x t= + +Φ − 



                    (5.65) 

or 

 ( ) ( )1
1 1e

x g x tZ E + +Φ −=




  

                       (5.66) 

or for the first possible solution 

 ( ) ( )1
1e

x g x tE E E
x t

+ +Φ −∂ ∂
+ =

∂ ∂




  

 







.                  (5.67) 

Analogically, we find for the second possible solution 

 ( ) ( )1
2e

t g x tE E E
x t

+ +Φ −∂ ∂
+ =

∂ ∂


 

 

 







.                  (5.68) 

As we see relations (5.63) and (5.64) reflect even the existence large-scale energy 
fluctuations of the cosmic microwave background. These theoretical results con-
firm the result of direct observations, (Arno Alan Penzias and Robert Woodrow 
Wilson, Nobel Prize (1978) for their discovery of cosmic microwave background; 
John C. Mather and George F. Smoot. Nobel Prize (2006) for their discovery of 
the blackbody form and anisotropy of the cosmic microwave background radia-
tion). 

In the dimension form we have for the first solution (using the scales tt
τ

= , 

xx
cτ

= , gg
c

τ= ) 
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 1
1 1 1exp 1E E xc E g x t

x t c c c
τ

τ τ τ
 ∂ ∂     + = + +Φ −     ∂ ∂      

.       (5.69) 

Analogically we find for the second possible solution 

 2
1 1 1exp 1E E tc E g x t

x t c c
τ

τ τ τ
 ∂ ∂     + = + +Φ −     ∂ ∂      

        (5.70) 

Relations (5.69) and (5.70) can be written as follows (first solution) 

 1
1exp 1E Ec E x g x t

x t c c c
υ τυ υ
 ∂ ∂     + = + +Φ −     ∂ ∂      

.       (5.71) 

Analogically we find for the second possible solution 

 2
1 1exp 1E Ec E t g x t

x t c c
υ υ υ

υ
 ∂ ∂     + = + +Φ −     ∂ ∂      

       (5.72) 

For the small dimensionless frequencies ( 1υ  ) we find the known “classical” 
solution 

 0E Ec
x t

∂ ∂
+ =

∂ ∂
.                        (5.73) 

In Equation (5.71), we use 0 0x ct=  then 

 ( )0 0
0 0

1exp ex t Q const
c

υ Φ   Φ − = = =      
.            (5.74) 

As we see if 

 0 0
1 1 0x t n x t
c c

 − = − = 
 

                    (5.75) 

for a value n, then 

 ( )0 01exp ex t Q const
c

υ Φ   Φ − = = =      
.             (5.76) 

We reach the quantization of the photon field and appearance of the separate 
objects which can be considered as pseudo particles. 

6. Conclusions 

1) Nonlocal quantum hydrodynamics (NQH) proposed by me obtained from 
the first principles of physics. NQH allows describing the PV evolution includ-
ing the Planck time.  

2) Evolution of the photon gas (PG) in the Planck period is a particular case of 
the PV hydrodynamics. 

3) In general case, PG hydrodynamics contains gravitation in the explicit form. 
4) The exact analytical solutions of PG hydrodynamics are obtained. Solutions 

show the exponential growth of gradient values for internal energy in time and 
space. The theory reflects even the existence large-scale energy fluctuations of 
the cosmic microwave background (see also Figure 1).  

5) In comparison with phenomenological General Relativistic Theory, the 
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NQH does not lead to contradictions in all limit cases. 
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