
Journal of Applied Mathematics and Physics, 2022, 10, 1362-1374 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2022.104096  Apr. 29, 2022 1362 Journal of Applied Mathematics and Physics 
 

 
 
 

Solving Navier-Stokes with Maclaurin Series 

Gabriele Martino 

Rome, Italy 

 
 
 

Abstract 
In this paper I propose a method for founding solutions of Navier-Stokes eq-
uations. Purpose of the research is to solve equations giving form to relations 
between pressure, velocity and stream. Starting from the fact we do not know 
the form of functions we give a general representation in Maclaurin Series 
and prove that with reasonable values of parameters, representation holds 
and therefore has meaning in continuum. Then we solve the system of equa-
tions with respect to the pressure and match equations relation between pa-
rameters: matches of equations are possible because of the physical dimen-
sions of equations. Then values of Continuity Equation are verified. The re-
sult is a polynomial finite and that coincides with the function in continuum, 
or is anyway one of its representation. The result under hydrostatic condition 
returns Stevino formula. 
 

Keywords 
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1. Introduction 

The most of knowledge can be found in Reference [1] [2] and [3] with the ex-
pression of Navier-Stokes Equations, further are used some well known formulas 
that can be found almost everywhere but they are contained in the article and 
you can find links in others: References [4] (see method to solve differential eq-
uation with power series [5], for turbulence [6], Navier Stokes State [7], incom-
pressible Navier Stokes [8], Multivariable Taylor [9], Cauchy product [10], Fluid 
Dynamics Knowledge [11] [12] [13] [14]). At the end of the article the results of 
the pressure match a well known formula when velocity vanishes. Further an 
Appendix is provided. 

The fluid motion is governed by knowing the velocity vector for most. The 
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velocity vector is one of the parameters of the Navier-Stokes equation. Together 
with continuity equation they constitute a system of differential equations in the 
unknowns ( ), , ,p x y z t  (pressure) and ( ), , ,v x y z t  (velocity) in the variables of 
space ( ), ,x y z  and time t. The system for incompressible fluid can be written like 

0u v w
x y z
∂ ∂ ∂

∇ ⋅ = + + =
∂ ∂ ∂

V            (1. Continuity) 

2D p
Dt

ρ ρ µ⋅ = −∇ + ⋅ + ∇
V g V       (2. Navier-Stokes) 

for a detailed explanation of the system (see the Appendix and References). 

2. Method Overview 

Consider the Navier-Stokes equation 

2D p
Dt

ρ ρ µ⋅ = −∇ + ⋅ + ∇
V g V                (3. NS) 

They are three equations. We give the V vector a form in Maclaurin series, 
then substitute the value of V in the three Navier-Stokes equations and then try 
to resolve each of this equation with respect to pressure with integration of each 
equation in the respective variable. We match the form of the pressure in the 
three equations and try to find a relation of parameters. After a partial compari-
son those parameters result in a relation. Applying Continuity Equation gives 
values. If the expansion for V is finite then the polynomial coincides with func-
tion of V. 

We give an old style to composition but not less correct. 

3. Maclaurin Expansion for Velocity 

We don’t know the form of the function but we know that the function has four 
variables x,y,z,t. If we want to find analytic solution we can represent functions 
u, v, w of V u v w= ⋅ + ⋅ + ⋅i j k  as Taylor Series around point ( )1 2 3 4, , ,a a a a=a  
(see we don’t know this assumption is legal now). Any finite polynomial in Tay-
lor series corresponds to the same polynomial: if we find terms in the polynomi-
al expansion and those identify a finite polynomial we have found the function. 
The form of Taylor function in multidimensional variable is of the kind (we used a 
non compact form another could be compact with Hessian Matrix, see Wikipe-
dia): 

( )
( )

( )
0 !

j

j

j jj

jj

x a fT S a
x

α
α

α
α α≥

 − ∂ =
 ∂ 

∏
∑

∏
  (4. Taylor expansion) 

where jα α= ∑ , 1! ! !nα α α= �  and ( ) ( )1 2 3 4, , , , , ,x x x x x y z t= =x . If the 
function is defined in the derivative point than terms 

( ) ( ) ( )1
! j

jj

f a c a
x

α

ααα
∂

=
∂∏  
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are constant at least one 0≠ . 
Represent the function with respect to ( )0,0,0,0a =  (Maclaurin Series). We 

must divide and reunion the spatial convergence with time convergence. A product 
of power does not have all same values as exponent. Radius of convergence is possi-
ble if all are convergent. Indeed if we call sx  variable of x  of space then 

space radius of convergence ( )
1

3 3 3
13s kk x r
=

− = <∑x b  where ( )0,0,0=b  for 

Mc Laurin Series and dimension of [ ] [ ] [ ] [ ]x y z m= = =  meters and t p<  

with dimension [ ]t  time, measured according to International System of 
measure that see the convergence of total series S if all series are convergent [or 
all mutually exclusively subset are convergent]. 

Represent 1x x= , 2x y= , 3x z= , 4x t= , with a compact form for summa-
tion, with notation 1 2 3 4 jSα α α α+ + + = . From now on we will call 

1 1 2 3 4; ; ;α α α β α γ α δ= = = =  to be clearer this does not prevent previous con-
sideration. 

( )0 u u u u

u
u

S
u c x y z tα β γ δ

∞

= ⋅ ⋅ ⋅ ⋅∑
 

( )0 v v v v

v
v

S
v c x y z tα β γ δ

∞

= ⋅ ⋅ ⋅ ⋅∑
 

( )0 w w w w

w
w

S
w c x y z tα β γ δ

∞

= ⋅ ⋅ ⋅ ⋅∑  (6—General expression for unknown velocity) 

this assumption can be thought legal if we think the fluid in continuum. See 
Figure 1. 

4. 1st Equation of Navier-Stokes 

Consider the formula of the Navier-Stokes equations 
 

 
Figure 1. Example of velocity field vector. 
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2D p g
Dt

ρ ρ µ⋅ = −∇ + ⋅ + ∇
V V                 (7.NS) 

and his first equation 
2 2 2

2 2 2x
u u u u p u u uu v w g
t x y z x x y z

ρ ρ ρ ρ ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⋅ + ⋅ + ⋅ + ⋅ = − + ⋅ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
     

(1st Equation) 

We have the form of the unknown u but we have not yet pressure. To solve we 
substitute the unknown in the equations of Navier stokes, respectively u, v, w. 
Then we solve the integral of the pressure in the three variables respectively x, y, 
z and confront physical equations (all elements multiplied by ,µ � ), found pa-
rameters values. We express each term separately because of the long expression 
and substitute the values of V(u, v, w) in each term. We put a tag at the end of 
each expression as: 2nd addend right member, that refers at right member the 
second addend in the expression. Substituting the value of V = (u, v, w) in the 
equation we have terms a at left member and b at right member. 

( ) 1
11

0
0 u u u u

u
u u

S

ua c x y z t
t

α β γ δρ ρ δ
∞

−

=

∂
= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

∂ ∑  (1st Addend Left Member—1st 

Equation) 

( ) ( )

12

1

0 0
0 0u u u u u u u u

u u
u u u

S S

ua u
x

c x y z t c x y z tα β γ δ α β γ δ

ρ

ρ α
∞ ∞

−

= =

∂
= ⋅

∂

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑
 

This series must be solved with Cauchy product 

0 0 0 0

k

k k n k n
k k k n

s t s t
∞ ∞ ∞

−
= = = =

⋅ =∑ ∑ ∑∑       (8. Cauchy Product) 

if k k k k kS α β γ δ= + + +  and n n n n nS α β γ δ= + + +  then (2) became 

( ) ( ) ( ) ( ) ( ) 1
12

0 0
0 0

k
k k k k

k n

S

k nu n u k n
S S

a c c x y z tα β γ δρ α α
∞

−
−

= =

= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅∑ ∑  

(2nd Addend Left Member—1st Equation) 

Note that we set ( )u k n k nα α α α−= = −  and if c equals one of , , ,α β γ δ  and 
1,2s  the first and second summatory in Cauchy product then ( )1 1c n c=  and 
( )2 2c k n c− =  we reported anyway this notation to remember which one refers 

to the first summation and which one to second. 
Other terms are then 

( ) ( )

( ) ( ) ( ) ( ) ( )

31

1

0 0

1

0 0

0 0

0 0

v v v v u u u u

v u

k
k k k k

k n

v u u
S S

S

k nv n u k n
S S

ua v
y

c x y z t c x y z t

c c x y z t

α β γ δ α β γ δ

α β γ δ

ρ

ρ β

ρ β β

∞ ∞
−

= =

∞
−

−
= =

∂
= ⋅

∂

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅

∑ ∑

∑ ∑

 

(3rd Addend Left Member—1st Equation) 
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( ) ( )

( ) ( ) ( ) ( ) ( )

41

1

0 0

1

0 0

0 0

0 0

w w w w u u u u

w u

k
k k k k

k n

w u u
S S

S

k nw n u k n
S S

ua w
z

c x y z t c x y z t

c c x y z t

α β γ δ α β γ δ

α β γ δ

ρ

ρ γ

ρ γ γ

∞ ∞
−

= =

∞
−

−
= =

∂
= ⋅

∂

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅

∑ ∑

∑ ∑
 

(4th Addend Left Member—1st Equation) 

then right member 

11
pb
x
∂

= −
∂

 (1st Addend Right Member—1st Equation) 

21 xb gρ= ⋅  (2nd Addend Right Member—1st Equation) 

( ) ( )
2

2
31 2

0
0 1 u u u u

u
u u u

S

ub c x y z t
x

α β γ δµ µ α α
∞

−

=

∂
= = ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

∂ ∑  

(3rdt Addend Right Member—1st Equation) 

( ) ( )
2

2
14 2

0
0 1u u u u

u
u u u

S

ub c x y z t
y

α β γ δµ µ β β
∞

−

=

∂
= = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

∂ ∑  

(4th Addend Right Member—1st Equation) 

( )
2

2
15 2

0
0 ( 1)u u u u

u
u u u

S

ub c x y z t
z

α β γ δµ µ γ γ
∞

−

=

∂
= = ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅

∂ ∑
 

(5th Addend Right Member—1st Equation) 

Then solve respect to p (1st Right Member) according to d da x b x⋅ = ⋅∑ ∑∫ ∫  

(that’s possible for continuity hypothesis and for Taylor hypothesis, indeed see 
Reference [4] continuity imply uniform convergence that consent swapping) 
multiply the equation for dx and integrating without confuse dx with the δ  
parameter of u, v, w) adding a constant term in variables ( )1 , ,h y z t C+  and for 
sake of simplicity we consider the pressure 0p  in the point at the origin 

( ) ( )0 0 0, , 0,0,0x y z = . Further consider that if df x < ∞∫  and f < ∞∑  then 

we can swap d df x f x=∑ ∑∫ ∫ . If we integrate respect one variable the other 

are taken as constant. We also denote indirectly na  from d .a x a→∫  

1st Equation after ∫  

( )

[ ] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1

0

if 0
0 0

1
1

0 0

1

0 0

0
1

0 0

0 (0)
1

0 0
1

u
u u u

u

kk
k k k

k
k n

kk
k k k

k n

kk
k k

k n

u
S u

S

k nu n u k n
S S k

S

k nv n u k n
S S k

S

k nw n u k n
S S k

xc y z t

xc c y z t

xc c y z t

xc c y z

α
β γ δ

α
β γ δ

α

α
β γ δ

α
β γ

ρ δ
α

ρ α α
α

ρ β β
α

ρ γ γ
α

+∞
−

=

∞

−≠
= =

+∞
−

−
= =

+∞

−
= =

⋅ ⋅ ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ ⋅ −
+

∑

∑ ∑

∑ ∑

∑ ∑ 1 ktδ− ⋅
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( ) ( )

( ) ( )

( ) ( ) ( )

1
0

0

1
2

0

1
2

1
0

0

0 1
1

0 1 , ,
1

u u u u

u

u
u u u

u

u
u u u

u

x u u
S

u u u
S u

u u u
S u

p p g x c x y z t

xc y z t

xc y z t h y z t C

α β γ δ

α
β γ δ

α
β γ δ

ρ µ α

µ β β
α

µ γ γ
α

∞
−

=

+∞
−

=

+∞
−

=

= − + ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + +
+

∑

∑

∑

 

(1st Equation after ∫ ) 

5. 2nd Equation of Navier Stokes 

Now consider the second equation of Navier-Stokes 
2 2 2

2 2 2y
v v v v p v v vu v w g
t x y z y x y z

ρ ρ ρ ρ ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⋅ + ⋅ + ⋅ + ⋅ = − + ⋅ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(2nd Equation) 

In the same way values of V are substitute and integration is done with respect 
dy. Terms are integrated with respect to y gives  

2nd Equation after ∫  

( ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1

0

1
1

0 0

if 0
0 0

1

0 0

(0)
1

0 0
1

0 0

(0) 0
1

v
v v v

v

kk
k k k

k n

kk
k k k

k
k n

kk
k

k n

v v
S v

S

k nu n v k n
S S k

S

k nv n v k n
S S k

S

k nw n v k n
S S k

yc x z t

yc c x z t

yc c x z t

yc c x

β
α γ δ

β
α γ δ

β
α γ δ

β

β
α

ρ δ
β

ρ α α
β

ρ β β
β

ρ γ γ
β

+∞
−

=

+∞
−

−
= =

∞

−≠
= =

+∞

−
= =

⋅ ⋅ ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ ⋅ −
+

∑

∑ ∑

∑ ∑

∑ ∑ 1k kz tγ δ− ⋅
 

( ) ( )

( )

( ) ( ) ( )

1
2

0
0

1

0

1
2

2
0

0 1
1

0

0 1 , ,
1

v
v v v

v

v v v v

v

v
v v v

v

y v v v
S v

v v
S

v v v
S v

yp p g y c x z t

c x y z t

yc x z t h x z t C

β
α γ δ

α β γ δ

β
α γ δ

ρ µ α α
β

µ β

µ γ γ
β

+∞
−

=

∞
−

=

+∞
−

=

= − + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ − ⋅ + +
+

∑

∑

∑
 

(2nd Equation after ∫ ) 

6. 3rd Equation of Navier Stokes 

Now consider the third equation of Navier-Stokes 
2 2 2

2 2 2z
w w w w p w w wu v w g
t x y z z x y z

ρ ρ ρ ρ ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⋅ + ⋅ + ⋅ + ⋅ = − + ⋅ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

(3rd Equation) 

analogously gives terms. 
Left Member—3rd Equation after ∫  
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( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) ( ) ( ) ( )

1
1

0

1
1

0 0

1
1

0 0

if 0
0 0

0
1

0 0
1

0 0
1

0 0

w
w w w

w

kk
k k k

k n

kk
k k k

k n

kk
k k

k
k n

w w
S w

S

k nu n w k n
S S k

S

k nv n w k n
S S k

S

k nw n w k n
S S

zc x y t

zc c x y t

zc c x y t

zc c x y

γ
α β δ

γ
α β δ

γ
α β δ

γ
α β

γ

ρ δ
γ

ρ α α
γ

ρ β β
γ

ρ γ γ
γ

+∞
−

=

+∞
−

−
= =

+∞
−

−
= =

∞

−≠
= =

⋅ ⋅ ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ ⋅ −

∑

∑ ∑

∑ ∑

∑ ∑ k

k

tδ⋅
 

( ) ( )

( ) ( )

( ) ( )

1
2

0
0

1
2

0

1
3

0

0 1
1

0 1
1

0 , ,

w
w w w

w

w
w w w

w

w w w w

w

z w w w
S w

w w w
S w

w w
S

zp p g z c x y t

zc x y t

c x y z t h x y t C

γ
α β δ

γ
α β δ

α β γ δ

ρ µ α α
γ

µ β β
γ

µ γ

+∞
−

=

+∞
−

=

∞
−

=

= − + ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ + +

∑

∑

∑
 

(3rd Equation after ∫ ) 

7. Equations Comparison 

Now we can make a comparison of three equation’s terms to find  

, , , , , , , ,, , ,u v w u v w u v w u v wα β γ δ . Consider the equality of p in the three equations: we 
match elements because they multiply for a specific physical element (see Interna-
tional System of Measure) like density ρ , viscosity µ  or gravity g with dimen-
sion [ ] [ ]ρ µ≠  so we can match equation in those three groups separately. Ele-
ments grouped under µ  should give the same result and terms grouped under 
ρ  should give the same result respectively with the inclusion of 6th Right Member. 

First consider the right member of the three group equations elements 
grouped by µ . Consider parameters of a given 0t t=  (where the other remain 
to determine x, y, z are fixed) is immediately see that equality hold if 

u v wδ δ δ δ= = = . Under this case equations reduce to 
1st Equation after ∫  

( )

[ ] ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

if 0
0 0

1
1

0 0

1
1

0 0

0
1

(0) 0

(0) (0)
1

(0) 0
1

u
u u

u

kk
k k

k
k n

kk
k k

k n

kk
k k

k n

u
S u

S

k nu n u k n
S S k

S

k nv n u k n
S S k

S

k nw n u k n
S S k

xc y z

xc c y z t

xc c y z t

xc c y z t

α
β γ

α
β γ

α

α
β γ

α
β γ

ρ
α

ρ α α
α

ρ β β
α

ρ γ γ
α

+∞

=

∞

−≠
= =

+∞
−

−
= =

+∞
−

−
= =

⋅ ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅
+

=

∑

∑ ∑

∑ ∑

∑ ∑

( )

( ) ( )

1
0

0

1
2

0

( ) 0

0 1
1

u u u

u

u
u u

u

x u u
S

u u u
S u

p p g x c x y z t

xc y z t

α β γ

α
β γ

ρ µ α

µ β β
α

∞
−

=

+∞
−

=

− + ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
+

∑

∑
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( ) ( ) ( )
1

2
1

0
0 1 , ,

1

u
u u

u
u u u

S u

xc y z t h y z t C
α

β γµ γ γ
α

+∞
−

=

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + +
+∑  

(1st Equation after ∫ ) 

( )

( ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

0

1
1

0 0

if 0
0 0

1
1

0 0

0
1

0 0
1

0 0

0 0
1

v
v v

v

kk
k k

k n

kk
k k

k
k n

kk
k k

k n

v
S v

S

k nu n v k n
S S k

S

k nv n v k n
S S k

S

k nw n v k n
S S k

yc x z

yc c x z t

yc c x z t

yc c x z t

β
α γ

β
α γ

β
α γ

β

β
α γ

ρ
β

ρ α α
β

ρ β β
β

ρ γ γ
β

+∞

=

+∞
−

−
= =

∞

−≠
= =

+∞
−

−
= =

⋅ ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅
+

∑

∑ ∑

∑ ∑

∑ ∑
 

( ) ( )

( )

( ) ( ) ( )

1
2

0
0

1

0

1
2

2
0

0 1
1

0

0 1 , ,
1

v
v v

v

v v v

v

v
v v

v

y v v v
S v

v v
S

v v v
S v

yp p g y c x z t

c x y z t

yc x z t h x z t C

β
α γ

α β γ

β
α γ

ρ µ α α
β

µ β

µ γ γ
β

+∞
−

=

∞
−

=

+∞
−

=

= − + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ − ⋅ + +
+

∑

∑

∑
 

(2nd Equation after ∫ ) 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) ( ) ( ) ( )

1

0

1
1

0 0

1
1

0 0

if 0
0 0

0
1

0 0
1

0 0
1

0 0

w
w w

w

kk
k k

k n

kk
k k

k n

kk
k k

k
k n

w
S w

S

k nu n w k n
S S k

S

k nv n w k n
S S k

S

k nw n w k n
S S k

zc x y

zc c x y t

zc c x y t

zc c x y t

γ
α β

γ
α β

γ
α β

γ
α β

γ

ρ
γ

ρ α α
γ

ρ β β
γ

ρ γ γ
γ

+∞

=

+∞
−

−
= =

+∞
−

−
= =

∞

−≠
= =

⋅ ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅

∑

∑ ∑

∑ ∑

∑ ∑
 

( ) ( )

( ) ( )

( ) ( )

1
2

0
0

1
2

0

1
3

0

0 1
1

0 1
1

0 , ,

w
w w

w

w
w w

w

w w w

w

z w w w
S w

w w w
S w

w w
S

zp p g z c x y t

zc x y t

c x y z t h x y t C

γ
α β

γ
α β

α β γ

ρ µ α α
γ

µ β β
γ

µ γ

+∞
−

=

+∞
−

=

∞
−

=

= − + ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
+

+ ⋅ ⋅ ⋅ ⋅ + +

∑

∑

∑
 

(3rd Equation after ∫ ) 
Consider parameters of a given 0z z= , in this group (where the other remain 

to determine x, y are fixed), the three elements match in the first equation and 
the second equation if u vγ γ γ= =  (because of the power of z) whereas for a 
given 0y y=  in the first equation and third equation if u wβ β β= =  (because 
of the power of y), whereas for a given 0x x=  in the second equation and the 
third equation if v wα α α= =  (because of the power of x). Now confronting the 
elements with higher exponent of z of the first and second equation they match 
if u vα β=  and if 1 1u vα α+ = =  and 1 1u vβ β= + =  (because of power of z is 
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chosen): but in this way match the all two equations for this group. Then 

u vc c= . Analogous result can be obtained comparing the first equation with the 
third (starting from lower exponent y and because of power of y) u wβ β= , 

w uγ α= , 1w uα α= + , 1u wγ γ= + , u wc c= . The second equation with the third 
gives can be done as check of the other. 

Satisfy Continuity Equation 

Now consider the velocities with substitution of parameter found above. 

( ) 10 u

u
u

S
u c x y z tδα β γ

∞
−= ⋅ ⋅ ⋅ ⋅∑

 

( ) 10 v

v
v

S
v c x y z tδα β γ

∞
−= ⋅ ⋅ ⋅ ⋅∑

 

( ) 10 w

w
w

S
w c x y z tδα β γ

∞
−= ⋅ ⋅ ⋅ ⋅∑

 
From continuity equation result 

( ) ( ) ( ) ( )

( ) ( )

2 2

2

0 1 0 1

0 1 0

u v

u v

w

w

u v
S S

w
S

c x y z t c x y z t

c x y z t

δ δα β γ α β γ

δα β γ

α β

γ

∞ ∞
− −

∞
−

⋅ − ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ − ⋅ =

∑ ∑

∑
 

This equation result satisfied for all ( )0 0 0 0, , ,x y z t  if 1α β γ= = = . 
 

Parameters 

0uα =  1vα =  1wα =  
1uβ =  0vβ =  1wβ =  
1uγ =  1vγ =  0wγ =  

uc c=  vc c=  wc c=  
 

Further note that parameter ( ) ( )0,1,1,, , ,u u u
c c δα β γ δ =  gives u expression 

( )0,1,1,u c y z tδδ= ⋅ ⋅ ⋅
 

and substituting the value of u in (A.1) with those parameters 

( ) ( ) ( )
1

0,1,1,0c c tδα δ δ −= ⋅ ⋅
 

This term in point ( )0,0,0,0a =  is constant different from zero if and only 
if 1δ =  

 
Parameters 

1uδ =  1vδ =  1wδ =  
 

Group under ρ 
With this choice of parameter all first elements of the three groups under ρ  

became the same. For other elements they have an element in each group that goes 
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to zero: that is the element ( )k n uα α α− =  and ( )k n vβ β β− = , ( )k n wγ γ γ− =  
respectively. Then the other two elements in each of the three group take two 
possible values from three values 1 2 3, ,a a a  but not the same couple for two dif-
ferent groups: ( ) ( ) ( )1 2 1 3 2 3, , , , ,a a a a a a  with 

2 2 2
2

1 0 2
x y ta cρ= ⋅ ⋅

 
2 2 2

2
2 0 2

x z ta cρ= ⋅ ⋅
 

2 2 2
2

3 0 2
y z ta cρ= ⋅ ⋅

 
The values are then matched because of 6th Right Member  
( ) ( ) ( )1 2 3, , , , , , , ,h y z t h x z t h x y t  
Group under μ 
All , , 1α β γ ≤  and 0u v wα β γ= = =  therefore those terms are all zero. 
Group under g 
The second right member if we substitute ( )0,0, g= −g  gives the element 

only for the component of z versor: g zρ− ⋅ ⋅  which can be matched in the 6th 
Right Member of the 1st and 2nd equation ( )1 , ,h y z t  and ( )2 , ,h x z t . 

Consideration 
Exist infinite groups of parameters and function that solve Navier-Stokes in 

continuum. There is at least one because of Parameters choice, whereas they are 
infinite for terms ( )1 , ,h y z t  and ( )2 , ,h x z t  and ( )3 , ,h x y t . 

8. Result 

Substituting the parameter in the V equations we obtain:  

o

o

o

V u v w
u c y z t
v c x z t
w c x y t

= ⋅ + ⋅ + ⋅
= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

i j k

             (9. Velocities) 

where we stated oc  the coefficient respect the origin O of space and time with 
[ ] 1 2

0 m sc − − = ⋅  : 0c  can be named wave constant. When elements are on the 
surface 0z =  only 0w ≠  and motion is towards upward if 0c >  and 
downwards if 0c < . If we think a point as origin 0z =  and 0 , , 0x y x y≤ ∨ ≤  
we see a movement upward and downward respect the four quarters (x, y) that 
should be wave motion (Cartesian plane on sea surface). Velocity can be norma-
lized to give stream 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2 2

s

s

s

y zu
xy xz yz

x zv
xy xz yz

x yw
xy xz yz

⋅
=

+ +

⋅
=

+ +

⋅
=

+ +

            (10. Stream) 
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x, y, z became the shift between two different streams and convergence is 
possible because quantities are limited. Time is periodic, water that periodically 
drops into sea. The continuity equation became 

0u v w
x y z
∂ ∂ ∂

∇ ⋅ = + + =
∂ ∂ ∂

V           (11.Continuity) 

Elements in one equation from comparison section became 
2 2 2

2 2 2 2 2 2 2 2 2

0

2 2 2o o o o
y x xc x y z c z t c z t c y t

p p g z

ρ ρ ρ ρ

ρ

⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

= − − ⋅ ⋅  
So the pressure is 

2 2
2 2 2 2 2 2

0

2
2 2 2

2 2

2

o o o

o

y xp p c x y z c z t c z t

xc y t g z

ρ ρ ρ

ρ ρ

= − ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
 

If we set to 0 t
wc x y w
t

∂
⋅ ⋅ = =

∂
 acceleration along z axis 

( )
2

0 2 tp p z w gρ
 
 = + ⋅ − ⋅ +
  

V
         (12. Pressure) 

with 0p  pressure at origin an p pressure at point (x, y, z) in time t, module Ve-
locity ( ) ( ) ( )2 2 2V c t xy xz yz= ⋅ + +  and dimension in [ ] 1 2kg m sp − − = ⋅ ⋅  , 
[ ] 3kg mρ − = ⋅   where t is periodic. Pressure increases proportionally to the 
square of velocity and decrease proportionally to gravity and z-axis acceleration. 

Observation 

Further consider that in hydrostatic case when 0=V  then 0tw =  and 

0p p g zρ= − ⋅ ⋅  that is well known Stevino formula 0p gz pρ= − +  where the 
negative sign multiplies negative z. 

9. Conclusion 

Pressure with Velocity Module and Stream is completing where every physical 
quantity is finite with respect to convergence. 
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Appendix 
Some Previous Law 

Consider the following system in form: 

0u v w
x y z
∂ ∂ ∂

∇ ⋅ = + + =
∂ ∂ ∂

V
 

2D p
Dt

ρ ρ µ⋅ = −∇ + ⋅ + ∇
V g V

 
where C is the continuity equation, whereas NS are the Navier-Stokes equation 
for incompressible fluid. Unknown are V,p whereas g is the gravity and µ  is 
the viscosity constant. 

D u v w
Dt t x y z

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂  

with 
d d d; ;
d d d
x y zu v w
t t t

= = =  and x y zg g g= + +g i j k  usually g= −g k  and 

u v w= + +V i j k  where , ,i j k  are the unit vector in the axis direction. 

, ,
x y z

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂   

is the gradient and 
2 2 2

2
2 2 2x y z

 ∂ ∂ ∂
∇ = + + 

∂ ∂ ∂   
is the Laplacian operator. 

For example respect to u Navier Stokes first equation became 
2 2 2

2 2 2x
u u u u p u u uu v w g
t x y z x x y z

ρ ρ ρ ρ ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⋅ + + + = − + ⋅ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(1st Navier Stokes) 
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