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Abstract 
In this paper, we define four new examples of the non-elementary expo-elliptic 
functions. This is an exponential function whose exponent is the product of a 
real number and the upper limit of integration in a non-elementary integral 
that can be arbitrary. We are using Abel’s methods, described by Armitage 
and Eberlein. We will study some of the second-order nonlinear ODEs, espe-
cially those that exhibit limit cycles, and systems of nonlinear ODEs that 
these functions are giving solutions to. 
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1. Introduction 

On page 1 in the book [1] we find the sentences: Very few ordinary differential 
equations have explicit solutions expressible in finite terms. This is not because 
ingenuity fails, but because the repertory of standard functions (polynomials, 
exp, sin and so on) in terms of which solutions may be expressed is too limited 
to accommodate the variety of differential equations encountered in practice. 

This is the main reason for this work. It should be possible to do something 
about this problem. If we don’t have enough tools in our mathematical toolbox, 
we must make the tools first. For this problem we will attempt to define some 
new functions. In this paper I want to share some of these results with you. The 
numbers I have given the ODEs and the integral functions (IF) in the text, are 
the numbers they have in my collection. 
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In the Introduction to [2] we can read: Nonlinear dynamical systems exhibit-
ing limit cycles are found in a large variety of fields including biology, chemistry, 
mechanics and electronics. 

In the phase diagrams in this paper we will see many different limit cycles 
with 3 - 17 equilibrium points. They appear in the study of the second-order 
nonlinear ODEs and systems of nonlinear ODEs that have the expo-elliptic 
functions defined in this paper as solutions. 

Wolfram Math World describes three nonlinear second-order ODEs that have 
the Jacobi elliptic functions ,sn cn  and dn  as solutions. Define a solution 
( ) ( )x t cn t=  and differentiate twice, and you will obtain the ODE: 

( )
2

2 2 3
2

d 2 1 2 , 0 1
d

x k x k x k
t

= − − ≤ <                 (1) 

And if we use the Jacobi amplitude function ( ),am t k  as a solution ( )x t  
and differentiate twice, we will obtain the ODE: 

( ) ( )
2

2
2

d sin cos
d

x k x x
t

= −                      (2) 

This causes us to think that other second-order nonlinear ODEs have func-
tions made by the same methods as Jacobi elliptic functions, as their solutions. It 
should be possible to make more non-elementary functions by changing the 
non-elementary integral. In this paper, we will work in the same way: First define 
some non-elementary functions, and then differentiate them twice in order to see 
what kind of ODEs these functions are giving solutions to. 

We will use the methods described by Armitage and Eberlein [3] in their book 
Elliptic Functions. Especially Section 1.6 and 1.7. They apply what they call the 
Abel’s methods. “Eberlein sought to relate the ideas of Abel to the later work of 
Jacobi.” 

During the last 30 years there have been done a lot of progress in finding solu-
tions to nonlinear ODEs and PDEs. The progress is mostly made by using dif-
ferent methods like the Prelle-Singer method [4], Abel’s equations [5] [6], the 
new Jacobi elliptic functions [7] [8], the old Jacobi elliptic functions [9] [10], a 
new method [11], revised methods [12], Jacobi elliptic function expansion me-
thod [13], expo-elliptic functions [14]. 

With exception of the new Jacobi elliptic functions and the expo-elliptic func-
tions, it seems to me that nobody has tried to make new non-elementary func-
tions that can give solutions to second-order nonlinear ODEs. In this paper we 
will attempt to take a step further. 

Through this paper we will study four new examples of the expo-elliptic func-
tions, give each of them symbols, find their derivatives and investigate which 
second order nonlinear ODEs these functions are giving solutions to by differen-
tiating them twice. In order to discover some of the qualities of the expo-elliptic 
functions we will make some phase diagrams. The behavior of the solution curves 
in the phase diagrams reflects the qualities of the solution functions. The functions 
defined in this paper are new to the literature, at least to my knowledge. 
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2. The Expo-Elliptic Functions 

This is a large group of functions and very useful as both solutions to second-order 
nonlinear ODEs and systems of nonlinear ODEs. In this paper we will study four 
new examples. 

In order to work with functions, we must give them some symbols. I have 
used two letters where the first one is the same for a set of two functions, and the 
second letters are s and d, for example rs and rd, or ks and kd. 

2.1. Definition 

Define an exponential function ( ) eau ϕµ µ= = , ,a Rϕ ∈ , ,a ϕ−∞ < < ∞ , 
( )uϕ ϕ=  is the amplitude or upper limit of integration in a non-elementary 

integral. This connection to the elliptic functions is the reason for this special 
name. They may also be named μ-functions, but that name tells nothing about 
these functions. The integral may also be elementary. Then the solution ( ) eax t ϕ=   

is an elementary solution. When d 1
dt
ϕ
= , is e ea atϕ = . The expo-elliptic function  

is more general than the elementary exponential function. The expo-elliptic 
function is not periodic, and it is continuous and differentiable on the whole R, 
for the limitations of the parameters. 

2.2. Four Subgroups of the Expo-Elliptic Functions 

These subgroups are defined by how the integral functions u are: 

A1: ( )
( )0

d

ea
u u

f

ϕ

θ

θϕ= = ∫       (3) 

The function f can be whatever.                    

A2: ( )
( )0

e d
e

a

a
u u

f

θ
ϕ

θ
ϕ θ= = ∫      (4) 

B1: ( ) ( )0

d
ea

u u
f

ϕ

θ

θϕ= = ∫       (5) 

B2: ( ) ( )0

e d
e

a

a
u u

f

θ
ϕ

θ
ϕ θ= = ∫       (6) 

We find the most interesting functions in the subgroup B2. The examples in 
this paper are chosen from this group. 

2.3. The Derivative of the Expo-Elliptic Function 

( ) ( )d d de
d d d

au a a u
u u u

ϕ ϕ ϕµ µ= =                   (7) 

2.4. Four Examples 

Let us take a look at four examples of expo-elliptic functions, and some second-order 
nonlinear ODEs and systems of nonlinear ODEs that have these functions as 
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solutions. I think that the behavior of the solution curves in a phase diagram re-
flects the qualities of the solution functions. And by studying the behavior of the 
solution curves we can discover some of the qualities of the expo-elliptic func-
tions. 

2.4.1. The Functions rs and rd 
Just like the Jacobi elliptic functions we start with a non-elementary integral. 

Define an integral function u (IF 121): 

( ) ( ) ( )2 20

e d
e cos e e sin e e

a

a a a a a
u u

n f h g p b k c v d

θ
ϕ

θ θ θ θ θ
ϕ θ= =

+ + + + + + +∫  (8) 

, , , , , , , , , ,a b c d f g h k n p v  are parameters defined on R. 
The denominator can become 0. In order to avoid that we can make some re-

strictions to the parameters: 3n > , 1 , , 1f h k− ≤ ≤ , 0a <  

( ) ( )2 2

d e
d e cos e e sin e e

a

a a a a a

u
n f h g p b k c v d

ϕ

ϕ ϕ ϕ ϕ ϕϕ
=

+ + + + + + +
     (9) 

Inverting 
d
d

u
ϕ

: 

( ) ( )( )2 2d e e cos e e sin e e
d

a a a a a an f h g p b k c v d
u

ϕ ϕ ϕ ϕ ϕ ϕϕ −= + + + + + + +   (10) 

Define a set of 2 functions rs and rd, so that 

( ) ears u ϕ=                          (11) 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )(
( ) ( )( ))

2 2

2

2

e e cos e e sin e e

1 cos

sin

a a a a a ard u n f h g p b k c v d

n f rs u h g rs u p rs u b
rs u

k c rs u v rs u d

ϕ ϕ ϕ ϕ ϕ ϕ−= + + + + + + +

= + + + +

+ + +

 (12) 

The connection between the functions rs and rd: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

2

2

cos

sin

rd u rs u f rs u h g rs u p rs u b

k c rs u v rs u d n

− − + +

− + + =
        (13) 

We see that the function ( )rd u  exists for all values of the parameters 
, , , , , , , , ,a b c d f g h n p v  even though the integral IF 121 is not defined for values 

that make the denominator = 0. The functions ( )rs u  and ( )rd u  are conti-
nuous and differentiable on the whole R. 

The derivatives to these functions are: 

( ) ( ) ( )d
d

rs u a rs u rd u
u

=                    (14) 

( )
( )

( ) ( ) ( )( )(

( ) ( )( )) ( ) ( )(

2
2

22

d  cos
d

sin

ard u n f rs u h g rs u p rs u b
u rs u

ak c rs u v rs u d n f rs u
rs u

= − + + + +

+ + + + +
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( ) ( )( ) ( ) ( )( ))
( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

2 2

2

2

cos sin

sin 2

cos 2

h g rs u p rs u b k c rs u v rs u d

f h g rs u p rs u b g rs u p

k c rs u v rs u d c rs u v

+ + + + + +

× − + + +
+ + + + 

 (15) 

Define a solution  

( ) ( )x t rs t=                          (16) 

( ) ( ) ( ) ( )( )2 2d cos sin
d
x a rs t rd t a n fx h gx px b k cx vx d
t
= = + + + + + + +  (17) 

( ) ( )( )
( )( )

( )( )

2
2 2 2

2

2

2

d cos sin
d

sin 2

cos 2

x a n fx h gx px b k cx vx d
t

f h gx px b gx p

k cx vx d cx v

= + + + + + + +

× − + + +
+ + + + 

    (2880) 

( ) ( )(
( )) ( )( )

( )

2
2 2 2

2

2 2

2

d d cos cos
dd

sin sin 2

2 cos

x xavk cx vx d a n fx h gx px b
tt

k cx vx d f h gx px b gx p

ckx cx vx d

= + + + + + + +

+ + + × − + + +
+ + + 

  (2881) 

The solution curves of the differential Equation (2881) have some very inter-
esting behavior. For some of the values of the parameters, we become equations 
where the solution curves form limit cycles with 3, 5, 7, 9, 11, 13 or even 17 equi-
librium points. They are spiral sources, spiral sinks or saddle points. See the Fig-
ures below. 

In Figure 1 are the parameter-values: 

1 1 1 1 1, 2, 1, 6, , , , , 3, 1, 1
4 10 2 2 2

c v d n f h g p b k a= = = − = = − = − = − = = = =  (18) 

A limit cycle (LC) with 3 equilibrium points: 2 spiral source and one saddle 
point. 

In Figure 2 and Figure 3 are the parameter-values: 

1 1 1 1, 5, 1, 5, , , ,
4 50 2 4
1 2, 5, , 1
2 5

c v d n f h g

p b k a

= = = − = = − = − = −

= = = =
        (19) 

Figure 3 shows a large LC containing 2 smaller stable LC and one unstable 
LC, with 17 equilibrium points: 5 spiral sources, 5 spiral sinks and 7 saddle 
points, as I can see. 

Figure 2 shows only the large LC with one inside initial point and one outside 
initial point. 

The equilibrium points do not need to be on the x-axis. In Figure 4 the equi-
librium points are located on a slope straight line. 

System (3005): 
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Figure 1. LC with 3 equilibrium points. 

 

 
Figure 2. A large irregular LC. 
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Figure 3. A LC with 17 equilibrium points. 

 

 
Figure 4. A LC with 5 equilibrium points on the line y x= . 
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d
d
x sx ly
t
= +

 

( ) ( )

( ) ( )( )
( )( ) ( )

2
2

2
2 2

2 2

d cos
d

cos sin

sin 2 2 cos

y s ax sy vk sx ly cx vx d
t l l

a n fx h gx px b k cx vx d
l
f h gx px b gx p kcx cx vx d

= − − + + + +

+ + + + + + + +

 × − + + + + + +   
The system (3005) has the solutions: 

( ) ( )x t rs t=                          (20) 

( ) ( ) ( ) ( ) ( )( )(
( ) ( )( ))

2

2

cos

sin

s ay t rs t n f rs t h g rs t p rs t b
l l
k c rs t v rs t d

= − + + + + +

+ + +
     (21) 

In Figure 4 are the parameter-values: 

11, 1, 1, , 1, 6, 2,
10
1 1 11, 3, 1, , ,
2 4 2

s l a f p n v

d b k h c g

= − = = = − = = =

= − = = = − = = −
           (22) 

Now we will make a system where the equilibrium points are located on a 
curve line, as we can see in Figure 5. 

The system (3014): 
 

 
Figure 5. A LC with 5 equilibrium points on a curve line. 
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2 3d
d
x sx ux jx ly q
t
= + + + +

 

( )( )

( ) ( )

( ) ( )( )
( )( ) ( )

2 3 2

2 3 2

2
2 2

2 2

d 1 2 3
d

cos

cos sin

sin 2 2 cos

y sx ly ux jx q s ux jx
t l

a vk sx ly ux jx q cx vx d
l
a n fx h gx px b k cx vx d
l
f h gx px b gx p kcx cx vx d

= − + + + + + +

+ + + + + + +

+ + + + + + + +

 × − + + + + + +   
System (3014) has the solutions: 

( ) ( )x t rs t=                         (23) 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )(
( ) ( )( ))

2 3

2

2

1  

cos

sin

y t s rs t u rs t j rs t q
l
a n f rs t h g rs t p rs t b
l
k c rs t v rs t d

= − + + +

+ + + + +

+ + +

        (24) 

The parameter-values are: 

1 11, 1, 2, , 2, 1, , 1,
3 10

1 1 16, 2, 1, 3, 1, , ,
2 4 2

s l u j q a f p

n v d b k h c g

= = − = = − = = = − =

= = = − = = = − = = −
        (25) 

System (3039) as a last example: 

2d
d
x sx ly q
t
= + +

 

( ) ( ) ( )

( ) ( )( )
( )( ) ( )

2 2 2

2
2 2

2 2

d 2 cos
d

cos sin

sin 2 2 cos

y s ax sx ly q vk sx ly q cx vx d
t l l

a n fx h gx px b k cx vx d
l
f h gx px b gx p kcx cx vx d

= − + + + + + + +

+ + + + + + + +

 × − + + + + + +   

System (3039) has the solutions: 

( ) ( )x t rs t=                         (26) 

( ) ( )( ) ( ) ( ) ( )( )(
( ) ( )( ))

2 2

2

1 cos

sin

ay t s rs t q n f rs t h g rs t p rs t b
l l
k c rs t v rs t d

= − + + + + + +

+ + +
  (27) 

The parameter-values are: 

1 1 21, 1, , 1, 5, , ,
4 50 5

1 1 1 1, , 1, 5, , , 5
2 2 4 4

a l s q v f k

h p d b g c n

= − = = − = − = = − =

= − = = − = = − = =
         (28) 

All the second-order nonlinear ODEs and the systems of nonlinear ODEs 
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above have the expo-elliptic function ( )rs t  as solutions. And a lot more is 
possible to make (Figure 6). 

2.4.2. The Functions ks and kd 
And again we start with a non-elementary integral. 

Define a function u (IF 171): 

( ) ( ) ( ) ( )2 2 2 2 2 20

e d
  cos e e sin e

a

a a a
u u

n h s sb k b p pb

θ
ϕ

θ θ θ
ϕ θ= =

+ − + − −∫   (29) 

, , , , , ,a b h k p n s  are parameters defined on R. 
The denominator can become 0. To avoid that we can make some restrictions 

to the parameters: 0a < , 2n > , 1 , 1h k− ≤ ≤ , , ,b p s−∞ < < ∞  

( ) ( ) ( )2 2 2 2 2 2

d e
d   cos e e sin e

a

a a a

u
n h s sb k b p pb

ϕ

ϕ ϕ ϕϕ
=

+ − + − −
      (30) 

Inverting 
d
d

u
ϕ

: 

( ) ( ) ( )( )2 2 2 2 2 2d e cos e e sin e
d

a a a an h s sb k b p pb
u

ϕ ϕ ϕ ϕϕ −= + − + − −    (31) 

Define a set of 2 functions: ks and kd, so that  

( ) eaks u ϕ= ,                         (32) 

 

 

Figure 6. Two LC on the line 21 1
4

y x= + . 
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( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )( )( )

2 2 2 2 2 2

2 2 2 2 2 2

e cos e e sin e

1 cos sin

a a a akd u n h s sb k b p pb

n h s ks u sb k ks u b p ks u pb
ks u

ϕ ϕ ϕ ϕ−= + − + − −

= + − + − −
 (33) 

The connection between the functions ks and kd is: 

( ) ( ) ( )( )
( )( ) ( )( )

2 2

2 2 2 2

 cos

sin

kd u ks u h s ks u sb

k ks u b p ks u pb n

− −

− − − =
             (34) 

We see that the functions ( )ks u  and ( )kd u  exist for all values of the para-
meters , , , , , ,a b h k n p s  even though the integral IF 171 is not defined for values 
that make the denominator = 0. The functions ( )ks u  and ( )kd u  are conti-
nuous and differentiable on the whole R. 

The derivatives to these functions are: 

( ) ( ) ( )d de
d d

aks u a a ks u kd u
u u

ϕ ϕ
= =                (35) 

( )
( )

( )( )( ( )( )

( )( )) ( )( )(
( )( ) ( )( )) ( )

( )( ) ( )( ) ( )( )

2 2 2 2
2

22 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

d cos
d

sin 2 cos

sin sin

sin cos

akd u n h s ks u sb k ks u b
u ks u

p ks u pb a n h s ks u sb

k ks u b p ks u pb hs s ks sb

k p ks u pb pk ks u b p ks u pb

= − + − + −

× − + + −

+ − − − −
+ − + − − 

 (36) 

Define a solution ( ) ( )x t ks t=  

( ) ( ) ( )( )2 2 2 2 2 2d cos sin
d
x a n h sx sb k x b px pb
t
= + − + − −        (37) 

( ) ( )(
( ) ( )) ( )
( ) ( )

2
2 2 2 2 2

2

2 2 2 2 2 2

2 2 2 2

d d2 sin 2 cos
dd

sin sin

cos

x xahsx sx sb a kx n h sx sb
tt

k x b px pb px pb

p x b px pb

= − − + + −

+ − − −
+ − −   

( )0,0  and ( ),0b±  are equilibrium points. Define 2 functions f and g, so that 
( ),f x y y=  and  

( ) ( ) ( )(
( ) ( )) ( )
( ) ( )

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

, 2 sin 2 cos

sin sin

cos

g x y ahsxy sx sb a kx n h sx sb

k x b px pb px pb

p x b px pb

= − − + + −

+ − − −
+ − − 

     (38) 

Jacobian matrix: 

( ) ( )

( ) ( )

( )( ) ( )

0 0 0 0

0 0 0 0

2 2

, ,

, ,

0 1
det ,0 det

8 0

f fx y x y
x y

J
g gx y x y
x y

J b I
a b kp n h

λ
λ

λ

∂ ∂ 
 ∂ ∂ =
∂ ∂ 
 ∂ ∂ 

− 
± − =  + − 

          (39) 
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( ) ( )2 2 28 0a b kp n hλ− − + =  

( )2 2ab kp n hλ = ± +                      (40) 

Complex eigenvalues with zero real part when ( ) 0.kp n h+ <  
( ),0b±  is center when ( ) 0kp n h+ <  and saddle when ( ) 0.kp n h+ >  
In Figure 7 is (−3, 0) a stable center, and has an area around it with stable 

closed curves. We can also see a limit cycle to the left. The parameter-values are: 

11, 1, 1, 5, 1, , 3
9

a k h n s p b= − = − = = = = =             (41) 

( )( )

( ) ( )( ) ( ) ( )( )2 2 2 2 2 2 2

det 0,0

0 1
det

2 sin cos cos sin 0

J I

a k pb pb pb n h sb kb pb

λ

λ

λ

−

− 
 =
− + + + −  

(42) 

( ) ( )( ) ( ) ( )( )2 2 2 2 2 22 sin cos cos sina k pb pb pb n h sb kb pbλ = ± − + + +   (43) 

Complex eigenvalues with zero real part when  

( ) ( )( ) ( ) ( )( )2 2 2 2 2 22 sin cos cos sin 0k pb pb pb n sb kb pb− + + + < . Then is ( )0,0  
center. 

It is possible to make phase diagrams where three of the equilibrium points 
are stable centers, while the others are saddles, spiral sinks and spiral sources  

 

 
Figure 7. One stable center and one stable LC. 
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and some limit cycles, as we can see in Figure 8. 
In Figure 8 is the parameter 6b = , the other values are the same as in Figure 7. 
We can see a big area with stable closed curves with no attraction behavior 

surrounding ( )0,0 , and 4 limit cycles. 
In Figures 7-9 we see these equilibrium points: center, saddle point, spiral 

sink and spiral source. And we also see some limit cycles (LC). 
The behavior of the solution curves in the phase diagrams reflects the qualities 

of the functions ks and kd. 

2.4.3. The functions fs and fd. 
Define an integral function u (IF 153): 

( ) ( ) ( ) ( )0

e d
cos e sin e e sin e

a

a a a a
u u

n h s f v k p

θ
ϕ

θ θ θ θ
ϕ θ= =

+ + +∫     (44) 

, , , , , , ,a h f k n s v p  are parameters defined on R. 
The denominator can become 0. In order to avoid that we can make some re-

strictions to the parameters: 0a < , 3n > , 1 , , 1h f k− ≤ ≤ , , ,s v p−∞ < < ∞  

( ) ( ) ( )
d e
d cos e sin e e sin e

a

a a a a

u
n h s f v k p

ϕ

ϕ ϕ ϕ ϕϕ
=

+ + +
         (45) 

Inverting: 

( ) ( ) ( )( )d e cos e sin e e sin e
d

a a a a an h s f v k p
u

ϕ ϕ ϕ ϕ ϕϕ −= + + +        (46) 

 

 
Figure 8. Three stable centers and four stable LC. 
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Figure 9. A close-up of Figure 8. 

 
Define a set of 2 functions fs and fd, so that 

( ) eafs u ϕ=                          (47) 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( )( )

e cos e sin e e sin e

1 cos sin sin

a a a a afd u n h s f v k p

n h s fs u f v fs u k fs u p fs u
fs u

ϕ ϕ ϕ ϕ ϕ−= + + +

= + + +
 (48) 

The connection between the functions fs and fd is: 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )cos sin sinfd u fs u h s fs u f v fs u k fs u p fs u n− − − =    (49) 

Notice that the function ( )fd u  exist for all values of the parameters 
, , , , , , ,a h f k s v n p , even thought the integral IF153 don’t exist for values that 

make the denominator = 0. The functions ( )fs u  and ( )fd u  are continues 
and differentiable on the whole R. 

The derivatives to these functions are: 

( ) ( ) ( )d
d

fs u a fs u fd u
u

=                    (50) 

( )
( )

( )( )( ( )( )

( ) ( )( )) ( ) ( )( )(

2

2

d cos sin
d

sin cos

afd u n h s fs u f v fs u
u fs u

ak fs u p fs u n h s fs u
fs u

= − + +

+ + +
 

https://doi.org/10.4236/jamp.2022.104092


M. Stensland 
 

 

DOI: 10.4236/jamp.2022.104092 1318 Journal of Applied Mathematics and Physics 
 

( )( ) ( ) ( )( )) ( )( )
( )( ) ( )( ) ( ) ( )( )

sin sin sin

cos sin cos

f v fs u k fs u p fs u hs s fs u

fv v fs u k p fs u kp fs u p fs u

+ + −
+ + +   

 (51) 

Define a solution ( ) ( )x t fs t=  

( ) ( ) ( )( )d cos sin sin
d
x a n h sx f vx kx px
t
= + + +            (52) 

( ) ( )

( ) ( )

2

2

d d dsin cos
d dd

d dsin cos
d d

x x xahs sx afv vx
t tt

x xak px akpx px
t t

= − +

+ +
             (53) 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

2
2

2

d d cos cos sin sin
dd

sin sin cos

x xafv vx a n h sx f vx kx px
tt

hs sx k px kpx px

= − + + +

× − −  

  (3291) 

Equation (3291) is one of at least 5 second-order nonlinear ODEs that is 
possible to make from (53) that have the function ( )fs t  as solution. 

In Figure 10 the parameter-values are: 

1, 4, 1, 1, 1, 1, 4, 1a v s f k p n h= − = = = = − = = = −          (54) 

The 5 equilibrium points in Figure 10 are 3 spiral sink and 2 saddle points. 
There are also 2 unstable limit cycles (LC). 

In Figure 11 are the parameter-values: 
 

 
Figure 10. One large LC with five equilibrium points. 

https://doi.org/10.4236/jamp.2022.104092


M. Stensland 
 

 

DOI: 10.4236/jamp.2022.104092 1319 Journal of Applied Mathematics and Physics 
 

 
Figure 11. Two large LC surrounding three small LC. 

 
1, 6, 1, 1, 1, 1, 15, 1a v s f k p n h= − = = = = − = = = −          (55) 

In Figure 11 we see the same 5 equilibrium points as in Figure 10, but they 
have changed to 2 spiral source, 1 spiral sink and 2 saddle points. 2 large LC are 
surrounding 3 small LC. One large unstable LC between the 2 large stable LC. 
There are also 3 unstable LC. 

2.4.4. The Functions ts and td 
This is a set of functions that are giving solutions to some dynamical systems 
with a funny behavior that reminds a bit of the Lorenz’ equations. 

Define an integral function u (IF 143): 

( ) ( )0

e d
e e sin e

a

a a a
u u

n f k p

θ
ϕ

θ θ θ
ϕ θ= =

+ +∫             (56) 

, , , ,a f k n p  are parameters defined on R. 
In order to avoid the denominator to become zero we can make some restric-

tions to the parameters: 2n > , 0a < , 1 , , 1f k− ≤ ≤ , p−∞ < < ∞  

( )
d e
d e e sin e

a

a a a

u
n f k p

ϕ

ϕ ϕ ϕϕ
=

+ +
                 (57) 

Inverting: 

( )( )d e e e sin e
d

a a a an f k p
u

ϕ ϕ ϕ ϕϕ −= + +               (58) 
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Define a set of 2 functions ts and td, so that 

( ) eats u ϕ=  

( ) ( )( )

( ) ( ) ( ) ( )( )( )

e e e sin e

1 sin

a a a atd u n f k p

n f ts u k ts u p ts u
ts u

ϕ ϕ ϕ ϕ−= + +

= + +
          (59) 

The connection between the functions ts and td: 

( ) ( ) ( ) ( ) ( )( )sintd u ts u f ts u k ts u p ts u n− − =            (60) 

We see that the function ( )td u  exists for all values of the parameters 
, , , ,a f k n p , even though the integral IF 143 doesn’t exist for values that make 

the denominator = 0. The functions ( )ts u  and ( )td u  are continuous and 
differentiable on the whole R. 

The derivatives to the functions ( )ts u  and ( )td u : 

( ) ( ) ( )d
d

ts u a ts u td u
u

=                     (61) 

( )
( )

( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

( )( ) ( ) ( )( )

2

2

d sin
d

sin

sin cos

atd u n f ts u k ts u p ts u
u ts u

a n f ts u k ts u p ts u
ts u

f k p ts u kp ts u p ts u

= − + +

+ + +

 × + + 

       (62) 

Define a solution ( ) ( ) ( )( )d  sin
d
xx t ts t a n fx kx px
t

= = + +       (63) 

( )( ) ( ) ( )( )
2

2
2

d d sin cos sin
dd

x xa f k px a kpx px n fx kx px
tt

= + + + +   (3366) 

We can make a 3D system of this equation by defining a bit of it as the solu-
tion ( ) ( ) cosz t ax px= . 

Then we become the system (3367): 

d
d
x y
t
=

 

( )( ) ( )( )d sin sin
d
y ay f k px akpz n fx kx px
t
= + + + +

 

( ) ( ) ( )( )2d sin cos sin
d
z apxy px a px n fx kx px
t
= − + + +

 

This system has the solutions: 

( ) ( )x t ts t=  

( ) ( ) ( ) ( )( )( ) siny t a n f ts t k ts t p ts t= + +              (64) 

( ) ( ) ( )( )cosz t a ts t p ts t=
 

In Figures 12-16 are the parameter-values: 
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Figure 12. Initial point (−17, 6, −10), t = 0...20. 

 

 
Figure 13. Initial point (−17, 6, −10), t = 0...80. 

 
1 11, 3, , 1,
2 7

a n k p f= − = = − = =                 (65) 

This system has a variation in behavior that depends on the initial values. For 
some values, the curves approach a spiral sink, for other values the solution 
curve will go to infinity, and for other initial values will the solution curve have a 
chaotic behavior. In this case the solution curve is behaving like a restless man 
finding peace nowhere. 

The solution curves are very sensitive to the initial conditions, to the initial  

https://doi.org/10.4236/jamp.2022.104092


M. Stensland 
 

 

DOI: 10.4236/jamp.2022.104092 1322 Journal of Applied Mathematics and Physics 
 

 
Figure 14. Initial point (−21, −6, 0), t = 0...18. 

 

 
Figure 15. Initial point (−21, −6, 0), t = 0...48. 

 
values 0 0,x y  and 0z . Sometimes a change in initial value of 0.002 is enough to 
make a big change in the long-term behavior, and at other times a change in 0.1 
will bring a change in the long-term behavior. The paths exhibit sensitive de-
pendence to initial conditions [1]. 

Figure 16 shows both solution curves with the initial points (−17, 6, −10) and 
(−21, −6, 0). Both solution curves sometimes circulate along the same spiral in 
the middle of the picture. This is so far my math-program can work. 
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Figure 16. Two initial points (−17, 6, −10), (−21, −6, 0), t = 0...100. 

3. Conclusions 

My purpose with all these pictures is to show you some of the variations in be-
havior and qualities of the expo-elliptic functions. I don’t know any other func-
tions that have these qualities. If the behavior of the solution curves in the phase 
diagrams reflects the qualities of the solution functions, then we can see some of 
these qualities in the pictures in this paper. 

What is new in this paper are the four sets of non-elementary functions rs and 
rd, ks and kd, fs and fd, ts and td. They are useful as both solutions to 
second-order nonlinear ODEs and systems of nonlinear ODEs. Some of them 
are exhibiting limit cycles with a few or many equilibrium points, or have limit 
cycles inside each other with different sizes and shapes. It is amazing to see what 
properties some of the expo-elliptic functions have. 

It is possible to make a lot of non-elementary functions using the Abel’s me-
thods described by Armitage and Eberlein, by how they define the Jacobi elliptic 
functions. In the same way as Jacobi’s functions sn, cn, dn and am give solutions 
to a few ODEs, the expo-elliptic functions described in this paper and a lot more, 
give solutions to many other different kinds of ODEs. I don’t see any limit for 
this subject. The only limit is our imagination. 
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