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Abstract 
To calculate nonlinear transport of space charge dominated beam in 6D 
phase spaces, a computer code package LEADS-v5 (Linear and Electrostatic 
Accelerator Dynamics Simulations) has been developed. The codes calculate 
particle motions in the beam transport systems consisting of electrostatic and 
magnetic focusing lenses, ion analyzers, multipoles and RF accelerating 
structures. The nonlinear forces of external electric/magnetic fields are ana-
lyzed by the Lie algebraic method, and the space charge forces are obtained by 
the particle in cell (PIC) scheme. In the codes, Uniform and Gaussian particle 
distributions can be chosen to generate randomly the particle initial coordi-
nates. The optimization procedures are provided to make the beam optics de-
signs reasonable and fast. Graphically displays of calculated results are pro-
vided. 
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1. Introduction 

Intense beam nonlinear transport is a very complicated problem, because the 
state of particle motion is dominated not only by the applied electromagnetic 
fields, but also by the beam induced electromagnetic fields (self fields). Moreo-
ver, the self fields are related to the beam dimensions and particle distributions. 
So, it is impossible to get the self-consistent solutions of particle motions analyt-
ically. To solve this problem, we use two methods: Lie algebraic method and PIC 
method. 

In 1987 Dr. Dragt first introduced the Lie algebraic theory [1] [2] into accele-
rator physics. Since then the theory has been widely used by accelerator physic-
ists in the research of charged particle nonlinear motions. The PIC method was 
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originally developed for fluid dynamics simulations [3] [4]; however, its greatest 
application is in plasma physics [5] [6]. The method began to be used for particle 
accelerator simulations two decades ago. We combine the Lie algebraic method 
and the PIC method together to simulate intense beam nonlinear transport. 
With the Lie algebraic method we analyze the particle nonlinear trajectories in 
the applied electromagnetic fields, and with the PIC algorithm we calculate the 
effects of space charge forces of the beam. Based on the two methods, we have 
developed a computer program LEADS-v5. 

Optimization plays an important role in the computational design for the par-
ticle accelerators and beam optical lines. It will not only save much computa-
tional time, but also make the design more reasonable. Many accelerator codes 
can perform optimization calculations. For example, program TRANSPORT by 
K. L. Brown [7] has powerful optimization ability. For this reason, we put some 
optimization subroutines in LEADS-5v, by using the Powell nonlinear optimiza-
tion method. 

The calculated results, such as the beam phase areas both in transverse and 
longitudinal directions as well as the beam envelopes can be displayed graphi-
cally on the computer monitor, so that it makes the calculated results simple and 
visual. 

2. Particle Distributions 

The particle distributions can be selected by the user. Two kinds of distributions 
are provided: uniform and Gaussian distributions in the 6D (x, x', y, y', ΔE, Δφ) 
phase spaces as the initial particle coordinates which are generated randomly. 

3. Beam Focusing, Analyzing and Accelerating Elements 

The following focusing, analyzing and accelerating elements are provided by 
LEADS-v5: 

3.1. Electromagnetic Focusing Elements, Multipoles  
(To Fifth Order Approximation) 

• Electrostatic quadrupoles. 
• Solenoid magnets. 
• Magnetic quadrupoles. 
• Sextupole magnets. 
• Octupole magnets. 
• Decapole magnets. 
• Dodecapole magnets. 

3.2. Ion Analyzing Elements (To Fifth Order Approximation) 

• Dipole magnets (including fringe fields). 
• Cylindrical electrostatic analyzers. 
• Spherical electrostatic analyzers. 
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• E × B analyzers. 

3.3. Axisymmetric Electrostatic Lenses  
(To Third Order Approximation) [8] [9] [10] [11] 

• Two-cylinder accelerating gap lenses. 
• Three-cylinder Einzel lenses. 
• Three-aperture Einzel lenses. 
• DC accelerator columns. 

3.4. RF Accelerating Cavities (To First Order Approximation) 

• Quarter wave resonators (QWRs). 
• Split loop resonators (SLRs). 

3.5. Other Elements 

• Element rotation; Every physical element can be rotated about the z-axis in 
arbitrary angle (positive/negative). 

• Arbitrary matrix. If you have known the transfer matrix of an optical ele-
ment, you can put in the matrix to the code input data directly. 

• Phase space plotting. The uses can plot the phase space diagrams of the beam 
in x-, y-, z-directions any where along the beam line. 

• Beam envelope plotting. Beam envelope plotting is provided in the code. 

4. Analysis Calculation Tools and Formulas 
4.1. Lie Algebraic Tools 

In the canonical phase space ( ), , , , ,x y zx p y p z p=ξ , if one doesn’t take the 
space charge effects into count, the Hamiltonian of the particle motion is 

( ) ( ) ( )
1

22 2 22 4 2 2 2
0t x x y y z zH m c c p qA c p qA c p qA qψ = − + − + − + − +  

  (1) 

where x, y and z are the particle coordinates in the real space; px, py and pz are 
the particle canonical momentum components; Ax, Ay and Az are the magnetic 
vector components; ψ is the electric potential; q is the particle charge, m0 is the 
particle rest mass. Now, take ( ), , , , ,x x y y pττ′ ′=ς  as a new canonical phase 
space, where 0t z vτ = −  is the time difference between the arbitrary particle 
and the reference particle, 0

t tp p pτ = − , t tp H= − , 0
tp  is the value of tp  for 

the reference particle. From phase space ξ to phase space ζ, transformation ξ → 
ζ is canonical. In the new phase space ζ, the Hamiltonian is 

( ) ( ) ( )222 0 2 2 2
0

1 2

0

0

x x y y t t

t t
z

H p qA p qA p p q c m c

p p
qA

v

ψ = − − − − − − + + −  
+

+ −
    (2) 

and in the phase space ( ), , , , ,x x y y pττ′ ′=ζ  the solutions of particle trajecto-
ries can be expressed as 
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∑∑∑∑∑ � �

     (3) 

where ζf is the particle final coordinate, ζ the initial coordinate; ,i jM , , ,i j kS , 

, , ,i j k lT , , , , ,i j k l mU  and , , , , ,i j k l m nW  are the first order, second order and to the fifth 
order coefficients of the particle trajectories contributed by the applied electro-
magnetic fields, ∆ζ  is the contributions of the space charge forces to the par-
ticle trajectories. 

As mentioned before, the particle trajectories in the external fields are ana-
lyzed with the Lie algebraic method, and the effects of space charge forces are 
calculated with the PIC scheme. 

Expanding the Hamiltonian H into power series gives 

0 1 2 3 4 5 6H H H H H H H H= + + + + + + +�              (4) 

In the phase space, the final coordinate ζf and the initial coordinate ζ of a par-
ticle are related by a map M: 

M
f
=ς ς                            (5) 

According to the references [1] and [2], M is 

4 3 2M M M M=�                         (6) 

where 

( ) ( ) ( )
( ) ( )

2 2 3 3 4 4

5 5 6 6

M exp : : , M exp : : , M exp : : ,

M exp : : , M exp : : ,

f f f

f f

= = =

= = �
         (7) 

and 

( )2 20
df H z z= −∫

�
                       (8) 

( )int
3 30

df h z z= −∫
�

                       (9) 

( )int
4 40

df h z z= −∫
�

                      (10) 

( ) ( ) ( )

( ) ( ) ( )(
( ) ( ) ( ) )

1

0 0

1 2

0 0 0

int int int
5 5 1 1 1 2 3 2 4 10

int int int
1 2 3 3 3 3 2 3 1

int int int
3 2 3 3 3 1

d d d ,

1 d d d , , ,
3

, ,

z

z z

z z

z z z

f h z z z z h z h z

z z z h z h z h z

h z h z h z

 = − + − − 

  + − − −  

  + − − −  

∫ ∫ ∫

∫ ∫ ∫

� �

�
    (11) 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )((

1

0 0

1

0 0

1 2

0 0 0

int int int
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int int
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 (12) 

where ℓ is the length of the element, and 

( )t
2

in , M nnh z H=ς                       (13) 

To simplify the expressions we define the multiple integrations as follows: 

( ) ( ) ( )int int int, , , , d d d : :: : : :i l
in in in

t t t
i j m i j mt t t

i j m
t t t H t H t H tα β εα β ε

 = − − − ∫ ∫ ∫� � � (14) 

Then, the Equations (9)-(12) can be rewritten as 

3

1
3

f  
=  
 

                          (15) 

4

1 2 11 ,
4 3 32

f    
= +   
   

                      (16) 

5

1 2 1 3 2 1 2 3 11 1, , , , ,
5 3 4 3 3 3 3 3 33 3

f
          

= + + +          
          

           (17) 

6

1 2 1 2 11, ,
6 3 5 4 42

3 2 1 2 3 1 3 2 1 2 3 11 , , , , 3 , , , ,
4 3 3 4 3 3 3 3 4 3 3 34

3 2 4 1 4 2 3 1 41 , , , , , ,
3 3 3 3 3 3 3 34

f      
= + +     
     

               
+ + + +                               

         
+ + +         

            

3 2 1
, , ,

3 3 3 3

    
          

     (18) 

The first order, second order, and to fifth order terms of the orbit solutions 
( , 1, 2,i i = �ζ ) are expressed as 

1
2f=ς ς                           (19) 

2 1
3f=ς ς                           (20) 

3 2 1
4 3

1: : : :
2

f f = + 
 

ς ς                     (21) 

4 3 1
5 4 3 3

1: : : :: : : :
6

f f f f = + + 
 

ς ς                 (22) 

5 2 2 4 1
6 5 3 4 4 3 3

1 1 1: : : :: : : : : :: : : :
2 2 24

f f f f f f f = + + + + 
 

ς ς      (23) 
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where:*: stands for the Poisson operation. For example, for the given two func-
tions f an g,:f: g = [f, g]. 

4.2. The PIC Algorithms [5] [6] 

The beam self-fields are calculated with the PIC scheme. The initial particle dis-
tributions are generated randomly. 

Generally speaking, to simulate the particle motion in the beam self-field with 
the PIC method, the following steps would be taken: 

 

 
Figure 1. Mesh generation. 

 

 
Figure 2. A mesh cell. 

 
1) Randomly generate the particle initial distributions. 
2) Suppose the beam moves along the straight line (ignoring the curvilinear 

orbit due to the short time step Δt); Divide the beam into cubic mesh cell (see 
Figure 1 and Figure 2); Let hx, hy, and hz be the grid widths in the x, y and z di-
rections respectively; the grid node numbers are Nx, Ny and Nz in the x, y and z 
directions respectively. 

3) Assign the charge q of each macroparticle (MP) in the cell to the cell nodes: 
the charge of every MP is distributed to the eight cell nodes. The portion of q as-
signed to the cell nodes is determined by the position of the MP within the cell 
in accordance with the following relationship: 

, , MP
1

1 1 1
cN

p l p m p n
l m n

p x y z

x x y y z z

h h h
ρ ρ

=

   − − −
   = − − −
   
   

∑       (24) 
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where l = i, i + 1, m = j, j + 1, n = k, k + 1 are integer grid indices; Nc is MP 
number in this cell; p is the sequence number of MP in the cell; (xp, yp, zp) are the 
coordinates in the cell, (xl, ym, zn) are the coordinates of a node; and 

MP
x y z

q
h h h

ρ = .                        (25) 

From Equation (24) we see that the MP is not a point, but has a finite volume 
hx × hy × hz, and ρMP is just the charge density of a MP. 

4) Solve the Poisson equation ( )2
0, ,x y zφ ρ ε∇ = −  (ε0 is the vacuum per-

mittivity): After the charge of all of the MPs has been assigned to the mesh 
nodes, we use the Green’s function to calculate the potentials φi.j,k at the mesh 
nodes. Usually, the beam transverse dimensions are much smaller than the va-
cuum pipe, so we can use the opening boundary conditions, and take 0rφ →∞ = . 

The solutions of the Poisson equation are expressed as: 

( ) ( ) ( )0 0 0 0 0 0 0 0 0
0

1, , , , , , , , , d d d
4

x y z G x x y y z z x y z x y zφ ρ
ε

= −
π ∫     (26) 

here ( ), ,x y z  is field point, ( )0 0 0, ,x y z  is source point, and the Green’s func-
tion is 

( )
( ) ( ) ( )

0 0 0 2 2 2
0 0 0

1, , , , ,G x x y y z z
x x y y z z

=
− + − + −

       (27) 

Rewrite Equation (27) to discrete form, we get the potentials at the mesh nodes: 

( ) ( ) ( )
1 1 10

, , , , , ,
4

yx zNN N
x y z

i j k i i j j k k i j k
i j k

h h h
x y z G x x y y z z x y zφ ρ

ε ′ ′ ′ ′ ′ ′
′ ′ ′= = =π

= − − − −∑∑∑  (28) 

5) The electric fields at the mesh nodes are calculated with the central inter-
polation method:  

1, , 1, ,

2
i j k i j k

x
x

E
h

φ φ+ −−
= − , , 1, , 1,

2
i j k i j k

y
y

E
h

φ φ+ −−
= − , , , 1 ,, , 1

2
i j k i j k

z
z

E
h

φ φ+ −−
= − .  (29) 

The electric fields at all MP positions are calculated by interpolating from the 
electric field at the mesh nodes using the same weighting scheme as what for the 
charge assignment. 

6) From the Newton’s law, the contributions of the self-fields to the particle 
trajectories are: 

21
2 xx qE t m∆ = ∆ , 21

2 yy qE t m∆ = ∆ , 21
2 zz qE t m∆ = ∆ .      (30) 

where m is the particle mass, Δt = Δz/v0, Δz is the step length along the reference 
orbit, v0 is the velocity of the reference particle. The particle velocity changes are 

x xv qE t m∆ = ∆ , y yv qE t m∆ = ∆ , z zv qE t m∆ = ∆ .        (31) 

Combining the results obtained both from the PIC scheme and the Lie alge-
braic method, we get the particle trajectories in the optical elements. 
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4.3. RF Gap Formulas 
4.3.1. Single RF Gap 
The code provides the beam transport calculations for the RF accelerating 
structures consisting of QWR or SLR cavities, see Figure 3 and Figure 4. 

 

 
Figure 3. Quarter wave resonator. 

 

 

Figure 4. Split loop resonator. 
 

For each RF gap of QWR or SLR the transfer matrix is 

( ), , , 1,6M M i j i j= =                     (32) 

where 

( )( )
( )( )

( )( )
( )( )

3
11

3
12

3
21

2 2
22

1 2 cos

2 sin

2 sin

1 1 cos

k

kk

M T k T

M T k

M kT

M T

α γ γ ϕ

α γ ϕ

α γ ϕ

α γ γ β ϕ

= − +

= −

= −

= − +
 

( )

33 11 34 12

43 21 44 22

3
55

65

66

,
,

1 cos

sin
1

k

M M M M
M M M M

M kT

M QTV
M

α γ ϕ

ϕ

= =

= =

= +

= −

=

                       (33) 
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The matrix entries not listed above are all zero, and Q is the number of par-
ticle charge state, Vm is the voltage amplitude across the RF gap, α = QV/(2E), E 
the energy of reference particle, k = ω/v, ω is the frequency of the RF field, v is 
the velocity of the reference particle, T, Tk and Tkk are the time transit factor and 
its first and second deviations to k, γ is the relativistic factor. 

4.3.2. Quarter Wave Resonators 
To calculate the transfer matrix at each gap the energy of reference particle 
should be known first. For the QWRs, let φs be the phase angle of the reference 
particle at the middle way of a QWR, the energy gain of reference particle at the 
first gap is: 

( )1cos 2m tf sE Q V T vφ ω φ∆ = ⋅ ⋅ −π⋅ + +�              (34) 

where T = sin(ωg/2v)/(ωg/2v) is the time transit factor; 2ℓ is the length between 
the two centers of the two gaps; φ1is the initial phase angle of the reference par-
ticle when arriving at the first gap. In the above equation the particle energy de-
pends on its phase angle, and the phase angle is related to the energy (in other 
word, the velocity v). So, (34) is a transcendental equation and can be solved ite-
ratively. From the gap 1 to gap 2 the particle drift distance 2ℓ, the energy keeps 
unchanged, but the phase angle increases by 2ℓω/v. The energy gain of reference 
particle in gap 2 is 

( )2cos 2m tf sE Q V T vϕ ω ϕ∆ = ⋅ ⋅ +π⋅ − +�              (35) 

where φ2 is the phase angle of reference particle at gap 2. At this time the velocity 
v is a constant, it is not necessary to calculate the energy gain iteratively. 

4.3.3. Split Loop Resonator 
For the SLR element, at the first gap the phase angle and energy gain of the ref-
erence particle can be calculated iteratively according to Equation (34). At the 
second gap the phase angle is φs, the energy gain is 

cosm tf sE Q V T ϕ∆ = ⋅ ⋅ ⋅                     (36) 

When the particle arrives at the third gap, its phase angle and energy gain can 
be obtained from Equation (35) directly. 

5. Optimization Procedure [12] 

We have developed the optimization subroutines which automatically determine 
the optimal parameters of the optical elements to match a beam from a given in-
itial state to a prescribed final state. 

Several optical conditions can be prescribed, such as forming an image, mak-
ing a beam waist, chromaticity, etc. If the transfer matrix of an element or a part 
of the beam line is M (i, j), i, j = 1, 6, the beam matrix is σ(i, j), i, j = 1, 6, the fol-
lowing optical conditions could be inserted into the input data file: 

image in x-plane: M(1, 2) = 0; 
image in y-plane: M(3, 4) = 0; 
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chromaticity: M(1, 6) = 0, or M(2, 6) = 0; 
Parallel—Focusing image: M(1, 1) = 0; 
Focusing—Parallel image: M(2, 2) = 0; 
Parallel—Parallel image (telescope system): M(2, 1) = 0; 
form a waist in x-plane: σ(1, 2) = 0; 
beam size limit in x-plane: σ(1, 1) = given value; 
form a waist in y-plane: σ(3, 4) = 0; 
beam size limit in y-plane: σ(3, 3) = given value; 
beam waist in the longitudinal direction: σ(5, 6) = 0. 
Powell nonlinear optimization subroutines [4] have been incorporated in the 

codes. The goal of the optimization calculations is to find out the minimum val-
ues of the following object function 

( )( ) 2

1 2
1

, , , min
n

i m i
i

F f x x x ε
=

 = = ∑ �               (37) 

where ( )1,2, ,if i n= �  are the required optical conditions; fin are the given 
value for this conditions; ( )1,2, ,jx j m= �  are the variable parameters, such as 
magnetic field, voltage, element length and so on; εi is the tolerance for each 
condition (weight factor). 

6. Periodical Structure Calculation [8] 

In the linear particle accelerators consisting of QWRs or SLRs, or in some pe-
riodically arranged beam lines, the particle beams will pass through these peri-
odic structures. In order to keep the particle motion stable, the program auto-
matically adjusts the magnetic quadrupole fields to fit the following stability 
condition: 

( )cos 0.5Tr 1µ = ≤M ,                   (38) 

where μ is the phase shift per period, M  is the Twiss matrix shown as the fol-
lows: 

cos sin sin
sin cos sin

µ α µ β µ
γ µ µ α µ
+ 

=  − − 
M .             (39) 

The periodic structures could be combined with the magnetic quadrupoles, 
drift spaces, as well as QWRs and SLRs. 

7. Simulation Examples 

In this section we present four example applications of the code. The first exam-
ple is a low energy beam transport system (LEBT) of the RFQ accelerator. By this 
example we just want to illustrate the space charge effects to the beam transport. 
The second one is the optical system of the 400 keV high voltage accelerator. 
Most of elements of the accelerator are Axisymmetric electrostatic lenses. The 
third one is a particle distribution uniformization system, which exhibits the ap-
plications of multipoles. The last one is an RF linear accelerator system com-
bined with QWRs and quadrupoles. 
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7.1. The LEBT System of an RFQ Accelerator 

With the code, we calculated the LEBT system which delivers the D + beam to the 
RFQ accelerating cavity (see Figure 5). 

 

 
Figure 5. Layout of the LEBT. 

 
The LEBT system consists of two solenoid lenses and some drift spaces. The 

radius of the solenoids are 50 mm, the lengths of them are all 200 mm, the lon-
gitudinal magnetic fields in the two solenoids are all 4.77 kG. 

The D + beam energy is 50 keV, the average bunched beam current is 5 mA, 
the initial parameters of the beam in the phase space are 1 × 40 mm-mrad both 
in the x- and y-directions. The pulse repetition is 9 MHz, and the initial longitu-
dinal phase space (δE × δφ) is 1 keV × 60˚. The calculated beam envelopes of the 
system are shown in Figure 6. 

We can see from Figure 6 that the beam envelopes of 0 mA beam current are 
much different from the envelopes of 5 mA beam current. 

 

 
Figure 6. Beam envelopes in the LEBT system. (a) Beam envelopes with 0 mA current; (b) Beam envelopes with 5 mA current. 

7.2. The 400 keV High Voltage Accelerator 

The second example is an optical system of the 400 keV high voltage accelerator 
(Figure 7). The initial proton beam parameters are: x = y = ±1 mm, x′ = y′ = ±40 
mrad, δE = ±150 eV, δφ = ±60˚. The Einzel lens 1 focuses the beam to the center 
of the gap lens 2 which matches the beam to the high voltage accelerating col-
umns. Usually, the beam emerging from the accelerating columns is divergent, 
so a quadrupole doublet 4 focuses the beam again to the target. Figure 8 shows 
the beam envelopes in the optical system. 

https://doi.org/10.4236/jamp.2022.104089


J. Q. Lü 
 

 

DOI: 10.4236/jamp.2022.104089 1277 Journal of Applied Mathematics and Physics 
 

 
Figure 7. Layout of the 400 keV high voltage accelerator. 

 

 
Figure 8. Beam envelopes in the 400 keV high voltage accelerator. 

7.3. Particle Uniform Distribution System 

The third example of the applications of the code is a particle uniform distribu-
tion system. It is made up of two quadrupole triplets, one quadrupole doublet 
and two octupoles as shown in Figure 9. The first octupole locates at a beam 
waist in x-plane; another octupole locates at the beam peak. 

 

 
Figure 9. Particle distribution uniformization system. 

 
The initial proton beam energy is 400 KeV. The initial particle distribution in 

the x-y transverse plane is Gaussian. The initial beam parameters in the 6D 
phase space are (x, x′) = (±1 mm, ±20 mrad), (y, y′) = (±1 mm, ±20 mrad), (δE, 
δφ) = (±150 eV, ±60˚). The beam envelopes are shown in Figure 10, the initial 
and final transverse distributions are shown in Figure 11. 

7.4. The RF Linear Accelerator 

The fourth example is a proton RF linear accelerator consisting of some QWRs. 
The accelerator consists of an array of 24 QWRs distributed in 6 cryostat mod-
ules (Figure 12). Each module contains 4 QWRs of the same structure and same 
physical parameters. The designed β of the linac is 0.1945, synchrotron phase  
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Figure 10. Beam envelopes in the uniform distribution system. 

 

 
Figure 11. Particle distributions in transverse plane (x, y). (a) Initial, Gaussian distribution; (b) Final, approximately uniform and 
square. 
 

 
1, 2, 3, 4: QWRs, 5: Quadrupole doublet 

Figure 12. Structure of a module. 
 

angle −26.0˚. The accelerating electric field of each QWR is 3.0 MV/m, working 
frequency 150 MHz. Figure 13 is the layout of the linac. 

 

 
1, 8: Quadrupole triplets; 2, 3, 4, 5, 6, 7: Modules 

Figure 13. Layout of the linac. 
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The initial proton beam energy is 18.13 MeV. The initial beam parameters in 
the 6D phase space are (x, x′) = (±1 mm, ±5 mrad), (y, y′) = (±1 mm, ±5 mrad), 
(δE, δφ) = (±300 eV, ±60˚). The beam envelopes in the linac are shown in Fig-
ure 14. 

 

 
Figure 14. Beam envelopes in the QWR linac. 

8. Conclusion 

A code package LEADS-v5 for nonlinear beam transport study with space 
charge effects has been developed. The code calculates high voltage accelerators 
which consist of axisymmetric electrostatic lenses and accelerating columns. 
Beam transport lines and RF linacs of QWR/SLR structures can be simulated al-
so. The code provides multipole magnets which allow the user to study the par-
ticle distribution uniformization systems. The optimization procedures provide 
the possibility to obtain the prescribed optical condition automatically. Many 
calculated examples show that the code is reliable. 
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