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Abstract 
Nowadays, distributed optimization algorithms are widely used in various 
complex networks. In order to expand the theory of distributed optimization 
algorithms in the direction of directed graph, the distributed convex optimi-
zation problem with time-varying delays and switching topologies in the case 
of directed graph topology is studied. The event-triggered communication 
mechanism is adopted, that is, the communication between agents is deter-
mined by the trigger conditions, and the information exchange is carried out 
only when the conditions are met. Compared with continuous communica-
tion, this greatly saves network resources and reduces communication cost. 
Using Lyapunov-Krasovskii function method and inequality analysis, a new 
sufficient condition is proposed to ensure that the agent state finally reaches 
the optimal state. The upper bound of the maximum allowable delay is given. 
In addition, Zeno behavior will be proved not to exist during the operation of 
the algorithm. Finally, a simulation example is given to illustrate the correct-
ness of the results in this paper. 
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1. Introduction 

In today’s network information age, due to the rapid development of communi-
cation and sensing technology, the original point-to-point control system has 
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been reorganized, and a new network control system composed of a large num-
ber of interrelated subsystems came into being. Networked control system is di-
vided into centralized and distributed structures. In order to deal with more and 
more complex practical problems, distributed systems have attracted more and 
more attention, and also derived hot topics such as distributed synchronization 
[1] and distributed optimization [2]. Among them, DCOP, that is, distributed 
convex optimization problem, plays an important role in networked control sys-
tem, so scholars pay great attention to it. The core of this problem is to discuss 
the following optimization objective in a network with N nodes: 

( )*

1
arg min ,

n

N

i
ix

x f x
=∈

∈ ∑


                      (1) 

where : n
if →   is a local cost function and is assumed to be strongly con-

vex; * nx ∈  is the optimal value of ( )1
N

ii f x
=∑ . Optimization problem (1) has 

a wide range of application scenarios such as sensor scheduling [3] [4], source 
localization [5], distributed active power optimal control in power systems [6], 
parallel and distributed computation [7], distributed parameter estimation [8], 
distributed optimal resource allocation over networks [9], spectrum sensing for 
cognitive radio networks [10], distributed statistics and machine learning [11], 
emulation of swarms in biological networks [12], and distributed Lasso [13]. 

At present, there have been many research results on DCOP. Among them, li-
terature [14] [15] [16] [17] give some consensus-based distributed optimization 
algorithms to solve the problem (1). However, this kind of algorithm has an ob-
vious defect that its step size is attenuation step, which will lead to slow conver-
gence speed. For this reason, researchers have proposed distributed optimization 
algorithms based on auxiliary-variables method [18] [19] [20] [21]. These algo-
rithms adopt fixed step size, which improves the convergence speed and accuracy of 
the algorithm. But this also increases the cost of computing and communication. 

In order to overcome the problems caused by attenuation step size and aux-
iliary-variables at the same time, Lu and Tang proposed a new algorithm called 
zero gradient sum algorithm (ZGS) in [22]. The main feature of the algorithm is 
that the initial state of each agent is its own optimal value, and in the subsequent 
process, the sum of the gradients of all local objective functions is always equal 
to 0. The advantage of ZGS algorithm is that it has fast convergence speed under 
the condition of ensuring asymptotic convergence or even exponential conver-
gence. Therefore, researchers had done a lot of work to promote this result [23] 
[24] [25] [26]. In [23], the authors studied the distributed ZGS consensus prob-
lem with time-varying delay and the time delay is a factor that must be consi-
dered in practical application. In [24], Liu et al. studied the distributed ZGS 
consensus problem with time-varying topologies. And the finite-time conver-
gence with ZGS algorithms was studied in [25] and [26]. 

The event-triggered mechanism can greatly reduce the communication cost, 
so the ZGS algorithm based on event-triggered has also been widely studied [27] 
[28] [29]. Sampled-data based distributed convex optimization problem with 
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event-triggered communication was studied in [27]. In [28], the authors studied 
the event-triggered ZGS distributed optimization problem with time-varying 
topologies. In [29], Liu and Xie prove the convergence of ZGS algorithm with 
time-varying delay based on event-triggered mechanism. 

All the above studies assume that the topological graph is undirected. In fact, 
due to the complexity of the real situation, it is also meaningful to study ZGS in 
the case of directed graph. At present, there have been some researches on ZGS 
algorithm in the case of directed graph [30] [31] [32], among which in [30], Guo 
and Chen gave sufficient conditions for the convergence of ZGS algorithm with 
time-varying delay and switching topology, which has been a great expansion of 
ZGS algorithm. In [31] and [32], the authors studied the directed graph ZGS al-
gorithm without and with time delays, respectively. However, compared with the 
case of undirected graph, the research based on directed graph is still relatively 
few. As far as we know, no one makes the work on event-triggered ZGS optimi-
zation algorithm with time-varying delay and switching directed topologies. 
Considering that time delays always exist and the network topology has the pos-
sibility of switching in reality, combined with the need to reduce network com-
munication cost, this research is of significance. 

Therefore, to generalize the continuous-time ZGS optimization consensus al-
gorithm, we discuss the convergence of ZGS algorithm with time-varying delay 
and switching topologies based on event-triggered mechanism under directed 
networks. Compared with the above related literature, the main contributions of 
this paper can be summarized as follows: 

1) Different from the previous ZGS optimization algorithm results [22]-[32], 
this paper takes the first step to study the ZGS optimization algorithm with 
time-varying delay and switching topologies based on event-triggered mechan-
ism under directed networks, which is more challenging and practical. 

2) Compared with the work in [29], we consider the possibility of topology 
switching instead of discussing fixed topology, which is reasonable due to the 
interference of various uncertain factors in reality. What’s more, the scope of 
application of our algorithm changes from undirected graph to a wider balanced 
strongly connected directed graph. And by the Lyapunov-Krasovskii-based ap-
proach, the sufficient conditions about the maximum admissible time delays are 
derived. 

3) Compared with the work in [30], we add event-triggered mechanism to it, 
which can better save network resources and reduce communication cost. To 
our best of knowledge, it is the first time to use event-trigger mechanism in ZGS 
algorithm considering time-varying delays and switching directed topologies. 

The rest of this paper is organized as follows. In Section 2, we give some pre-
liminaries about graph theory and strongly convex functions. The distributed 
ZGS optimization consensus protocol and convergence analysis are derived in 
Section 3. Some simulation studies are performed in Section 4 to validate the ef-
fectiveness of our proposed ZGS optimization algorithm. Section 5 concludes 
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this paper. 
Notations: Let   and +  denote the set of real numbers and the set of 

positive integers, respectively. n  and n n×  denote the set of 1n×  real vec-
tor and n n×  real matrix, respectively. Let n1  and n0  denote, respectively, the 

1n×  column vector of all ones and zeros. n n
nI ×∈  denotes the identity ma-

trix. TA  and Tx  represent the transpose of matrix A and vector x, respective-
ly. The Krnoecker product of matrix n m

ijA a × = ∈    and p qB ×∈  is de-
noted as { }11 1 1, , ; ; , , nq mp

m n nmA B a B a B a B a B ×⊗ = ∈� � �  . x  denotes the 
standard Euclidean norm of vector x and ( )inf ⋅  denotes the greatest lower 
bound. For a continuously differentiable function : nf →  , f∇  and 2 f∇  
represent, respectively, the gradient and the Hessian matrix of f. For matrices A 
and B, the matrix inequalities ( )A B A B> ≥  and ( )A B A B< ≤  mean that 
A B−  and B A−  are positive (semi) definite, respectively. Besides, if not ex-

plicitly stated, matrices or vectors are assumed to have compatible dimensions. 

2. Problem Description and Preliminaries 

We will first introduce geometric graph theory. In this paper, we use 
( ), ,=     to represent the directed fixed communication network, where 
{ }1,2, , N= �  is a finite nonempty node set, ⊆ ×    represents the edge 

set of ordered pairs of nodes, and ( ),ij N N
a i j

×
 = ∈    is the adjacency ma-

trix. ( ),j i ∈  means that there is an arc from node j to node i. The entry ija  
of the adjacency matrix   is greater than zero if and only if ( ),j i ∈ , other-
wise 0ija = . ( ){ }| ,i j j i= ∈ ∈    denotes the set of neighbors of the ith 
node. The in-degree of node i is defined as 

1
N

i ijjd a
=

= ∑  and the in-degree ma-
trix   is defined as { }1, , Ndiag d d= � . The Laplacian matrix   associated 
with the graph   is defined as = −   . For switching topology, let 

{ } ( ){ }1 2, , , , ,l tσΘ = =�       be a finite set of directed graphs. Define the 
switching signal ( ) [ ) { }: 0, 1, 2, ,t lσ +∞ → ϒ = �  ( l +∈  denotes the total 
number of all possible graphs). For any time interval in which the k th topology 
is activated, we have ( ) ktσ = ∈Θ  , and the Laplacian matrix is described as 

k . 
Next, the strongly convex functions will be introduced. 
Definition 1. [22] A twice continuously differentiable function : nf →   

is said to be locally strong convex on any convex and compact set S if there exists 
a constant 0m >  such that the following three equivalent conditions hold for 
any ,x y S∈ : 

( ) ( ) ( )( )

( ) ( )( ) ( )
( )

2T

T 2

2

,
2

,

,n

mf y f x f x y x y x

f y f x y x m y x

f x mI

 − −∇ − ≥ −

 ∇ −∇ − ≥ −
∇ ≥

            (2) 

where m is called the convexity parameter of f. 
And if the function f is strong convex for any S. We have the following propo-
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sition: 
Proposition 1. [22] [23] Define the subset ( ) ( )( ){ }| 0Q x S f x f x= ∈ ≤ , 

where ( )0x  can be chosen such that Q is closed. Combining with (2), we can 
get that Q is a compact set. Then, ,x y Q∀ ∈ , there exists a constant M such that 
the following equivent conditions hold: 

( ) ( ) ( )( )

( ) ( )( ) ( )
( )

2T

T 2

2

2

.

,

,

n

Mf y f x f x y x y x

f y f x y x M y x

f x MI

 − −∇ − ≤ −

 ∇ −∇ − ≤ −
∇ ≤

            (3) 

Finally, We will list the important lemmas needed in this paper. 
Lemma 1. [20] The following three notions are equivalent: i)   is 

weight-balanced, ii) T
N =1 0 , and iii) T+   is positive semi-definite. More-

over, if   is weight-balanced and strongly connected, then zero is a simple ei-
genvalue of T+  . 

Lemma 2. [34] For any vectors , nx y∈  and one positive matrix n nH ×∈ , 
the following inequality holds: 

T T T 12 .x y x Hx y H y−≤ +  

Lemma 3. [35] If the positive constant matrix n nW ×∈ , the scalar 0τ >  
and the concerned integrations of the vector function ( ) [ ]: , nr t tω τ− →   are 
well defined, then the following inequality is satisfied: 

( )( ) ( )( ) ( ) ( )
T Td d d .

t t t

t t t
r r W r r r W r r

τ τ τ
ω ω τ ω ω

− − −
≤∫ ∫ ∫         (4) 

Lemma 4. [32] Assume that the graph   is strongly connected and ba-
lanced, then the following inequality is true for any vector x with appropriate 
dimension: 

( )
( )

T
2T T T

T
max

,
2

x x x x
λ

λ

+
≥

 
  

 
                   (5) 

where ( )T
2λ +   is the minimum nonzero eigenvalue of matrix T+  , 

( )T
maxλ    denotes the maximum eigenvalue of the matrix T  . 
Lemma 5. [36] If a differential function ( )f t  satisfies ( )f t , ( )f t L∞∈� , 

and ( ) pf t L∈  for some value of [ )1,p∈ ∞ , then ( ) 0f t →  as t →∞ . 

3. Main Results 

In this section, we will elaborate the event-trigger ZGS algorithm with commu-
nication delays under switching directed networks and analyze its convergence. 
Firstly, we need the following two basic assumptions: 

Assumption 1. For the switching network, the topology ( )tσ  is directed. 
What’s more, the topology is also strongly connected and balanced for any time 
interval in which the kth topology is activated. 

Assumption 2. The cost function if  used in (1) is twice continuously diffe-
rentiable, strongly convex for 1, ,i N= � . We assume there exists a convexity 
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parameter 0im >  such that the inequalities in (2) are satisfied. if  has an in-
vertible locally Lipschitz Hessian matrix ( )2

if x∇ . 
Proposition 2. With assumption 2, there exists a unique * nx ∈  such that 

for any nx∈ , ( ) ( )*F x F x≤  and ( )* 0F x∇ = . Therefore, problem (1) is 
well-posed. 

In order to make the algorithm more practical, we take the ubiquitous com-
munication delay in practical applications into account. In this paper, we assume 
there exists a time-varying communication delay ( )tτ  among agents which sa-
tisfies ( ) [ ]0,t dτ ∈  and ( )t hτ ≤� , [ )0,1h∈ . In the actual optimization 
process, the channel between agents may be disconnected, data packet lost, faul-
ty or out of range due to network failure. At the same time, new communication 
links may appear between agents. For those reasons, we will consider both time 
delays and switching networks in problem (1). 

Since avoiding continuous communication can greatly reduce the consump-
tion of network resources, we want to adopt the event triggered communication 
mechanism in the algorithm, i.e. only when the predefined event-triggered con-
dition satisfies, the agent i samples its new state and broadcasts it to its neigh-
bours with transition delay ( )tτ . 

Let { },i
kt k +∈  denote the event-triggered instants where 0i

kt ≥  and 

0 0it = . And ˆix  denote the latest broadcast state of agent i∈ , that is, 

( ) ( ) )1ˆ , , ;i i i
i i k k kx t x t t t t +∈ �

 
thus, ( )ˆix t  converts the discrete-time signal ( )i

i kx t  into the continuous-time 
signal simply by holding its constant until the next event occurs. To determine 
the trigger instants, we first define the measurement error for agent i as 

( ) ( ) ( ) )1ˆ , , .i i
i i i k ke t x t x t t t t += − ∈                  (6) 

Then, the trigger instants for agent i are thus defined iteratively by 

( ){ }1 inf : , 0 ,i i
k k it t t t E t+ = > ≥                   (7) 

where the triggering function ( )iE t  is defined as follows: 

( ) ( ) ( )2 22 2ˆ e ,t
i i i iE t e t z t c αβ −= − −                (8) 

for some , , 0i cβ α >  and ( ) ( ) ( ) ( )( )1
ˆ ˆˆ N t

i ij i jjz t a x t x tσ
=

= −∑ , where  
( ) ( )ˆ j

j kx t x t ′=  represents the latest received states from its neighbour j. There-
fore, ( ) 0i

i kE t =  and ( )ie t  is reset to 0. In this paper, we assume that each 
agent can obtain its neighbours’ information at i

kt . 
Now, we propose the following event-triggered ZGS optimisation algorithm 

with time delays and switching topologies under directed networks: 

( ) ( )( )( ) ( ) ( )( ) ( )( )( )
( )

12
1

*

ˆ ˆ ,

0 ,

N t
i i i ij j ij

i i

x t f x t a x t t x t t

x x i

σγ τ τ
−

=
 = ∇ − − −


= ∀ ∈

∑�


    (9) 

where ( ) n
ix t ∈  denotes the ith agent’s estimate of the unknown minimizer 

* nx ∈ ; ( )0 n
ix ∈  is the initial state; * n

ix ∈  is an optimal value of the lo-
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cal objective function if  defined in (1); ( )t
ijaσ  is the connection weight corres-

ponding to the graph k ; ( )tσ  is defined in Section 2; γ  is a positive gain 
constant used to adjust the convergence rate; ( )tτ  is the time-varying commu-
nication delays between agents. Combining with the definition of ( )ie t  in (6), 
we can rewrite algorithm (9) as 

( ) ( )( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( )

12
1

*

,

0 , .

N t
i i i ij j j i ij

i i

x t f x t a e t t x t t e t t x t t

x x i

σγ τ τ τ τ
−

=
 = ∇ − + − − − − −


= ∀ ∈

∑�


 

(10) 

Remark 1. Inspired by the work of Liu and Xie [29] and the work of Guo and 
Chen [30], we got the protocol (9). And for any weight-balanced and strongly 
connected graph, from (10), we can easily get 

( )( ) ( ) ( )( ) ( )( )( )(
( )( ) ( )( )( ))

( ) ( )( ) ( )( )( )

1 1 1

T

d
d

,

N N N
t

i i ij i j
i i j

i j

N k n

f x t a e t t e t t
t

x t t x t t

I e t t x t t

σγ τ τ

τ τ

γ τ τ

= = =

∇ = − − − −

+ − − −

= − ⊗ − + − =

∑ ∑∑

1 0

    (11) 

where ( ) ( ) ( )
TT T

1 , , Ne t e t e t =  � , ( ) ( ) ( )
TT T

1 , , Nx t x t x t =  � . From (11), we 
know that the gradient sum ( )( )1

N
i ii f x t

=
∇∑  would remain constant along the 

evolution of system (10). Furthermore, we have 

( )( ) ( )( ) ( )*

1 1 1
0 0, 0.

N N N

i i i i i i
i i i

f x t f x f x t
= = =

∇ = ∇ = ∇ = ∀ >∑ ∑ ∑         (12) 

Thus, algorithm (9) also satisfies the ZGS property. 
Let ( ) ( ) *

i it x t xξ = −  represent the error between the state of agent i and the 
optimisation value *x . According to (10), we have 

( ) ( )( )( ) ( )( ) ( )( )( )(
( )( ) ( )( )( ))
( )( )( ) ( ) ( )( ) ( )( )( )

12 ( )

1

12

1
,

N
t

i i i ij i j
j

i j

N
k

i i ij j j
j

t f x t a e t t e t t

t t t t

f x t L e t t t t

σξ γ τ τ

ξ τ ξ τ

γ τ ξ τ

−

=

−

=

= − ∇ − − −

+ − − −

= − ∇ − + −

∑

∑

�

     (13) 

where ( )k
ijL  denotes the entry of the Laplacian matrix k . 

Remark 2. Guo and Chen [30] also studied ZGS algorithm with time-varying 
delay and switching topology for directed graphs. Different from them, this pa-
per adopts the event triggered communication mechanism, which can reduce the 
communication cost. At the same time, Zeno behavior was avoided. 

Remark 3. Compared with the conclusion of Liu et al. [29], we relax the con-
dition from undirected graph to directed equilibrium graph. Because the Laplace 
matrix of directed graph is not symmetric matrix, T  and   cannot be re-
garded as the same in the proof. This will bring us new challenges. 

Next, we have the following analysis of the distributed optimisation algorithm 
(9) based upon the common Lyapunov theory. 

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. If the following 
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inequality 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( )

2 T T T T
2 max max max

2 T T 2 T
2 max max

ˆ ˆ1 1 2 2

ˆ4 1 1 2 8

k k k k k k k k

k k k k k k k

m h
d

m h

λ βλ βλ λ

ε λ βλ γ λ

 − + − − + ≤
− + − +

       

     
(14) 

holds for 1, 2, ,k N= � , where ( )T
max k kλ    and ( )T

max k kλ +   respectively 
denote the maximum eigenvalues of the matrix T

k k   and T
k k+  ,  

( )T
2 k kλ +   represents the minimum nonzero eigenvalue of matrix T

k k+  , 
( ){ }T Tinf : 0k k k k kv vε = ≤ + >    , ( )min ii

m m
∈

=


, im  is the convexity para-
meter of the function if  and  

{ }
( )

( ) ( ) ( )( )
T

2
1 T T T

max 2 max

ˆ max , ,
2

k k
N

k k k k k k

λ
β β β

λ λ λ

+
= <

+ + +
�

 

     
, then algo-

rithm (10) with event-triggered condition (7) (8) can solve optimisation problem 
(1) and the Zeno behaviour will be avoided. 

Proof. In order to prove our conclusion, we choose the following Lyapu-
nov-Krasovskii function 

( ) ( ) ( ) ( )1 2 3V t V t V t V t= + + ,                  (15) 

where 

( ) ( ) ( ) ( )( )( )* T *
1

1
2 ,

N

i i i i i i
i

V t f x f x f x x x
=

= − −∇ −∑           (16) 

( ) ( ) ( ) ( ) ( )( )0 T T
2

1
d d ,

Nt
i i i id t s

i
V t r r e r e r r sγ ξ ξ

− +
=

= +∑∫ ∫ � � � �          (17) 

( )
( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

3 T

1 1
2

1

3
2

1

d .

N Nt k k
ij ij jt

i j

N
k k

ij ij j
j

jt
t

j

dV t L e r L r
h m

L e r L r r

τ

γ ξ

ξ

= =

=

−

 
= +

−
 
 


× +



 

∑ ∑∫

∑
       (18) 

Firstly, from (2), we can get 

( )
2*

1
1

.
N

i i
i

V t m x x
=

≥ −∑                     (19) 

What’s more, it is easy to obtain that ( ) ( )2 30, 0V t V t≥ ≥ , for any 0t ≥ . So the 
Lyapunov function above is well defined. 

Taking the time derivative of ( )1V t  along the trajectory evolution of ( )x t  
of system (10) gives 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )
( ) ( ) ( )( ) ( )( )( )( )

T 2
1

1

T

1 1

T

1 1

T

1 1

2

2

2

2 .

N

i i i i
i

N N
t

i ij i j i j
i j

N N
t

i ij i j i j
i j

N N
k

ij i j j
i j

V t x t f x t x t

x t a e t t e t t x t t x t t

x t a e t t e t t t t t t

L t e t t t t

σ

σ

γ τ τ τ τ

γ τ τ ξ τ ξ τ

γ ξ τ ξ τ

=

= =

= =

= =

= ∇

= − − − − + − − −

= − − − − + − − −

= − − + −

∑

∑ ∑

∑ ∑

∑∑

� �

(20) 
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By the Newton-Leibniz formula, we have ( )( ) ( ) ( ) ( )dt
j j jt t

e t t e t e r r
τ

τ
−

− = − ∫ � , 

( )( ) ( ) ( ) ( )dt
j j jt t

t t t r r
τ

ξ τ ξ ξ
−

− = − ∫ � . Let ( ) ( ) ( )
TT T

1 , , Nt t tξ ξ ξ =  � , by using 

Kronecker product of matrix, (20) is rearranged as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )( )

T
1

1 1

T T

1 1 1 1

T T

1 1 1 1

T T

2 d d

2 2

2 d 2 d

2 2

N N t tk
ij i j j j jt t t t

i j

N N N N
k k

ij i j ij i j
i j i j

N N N Nt tk k
ij i j ij i jt t t t

i j i j

k n k n

V t L t e t e r r t r r

L t e t L t t

L t e r r L t r r

t I e t t I

τ τ

τ τ

γ ξ ξ ξ

γ ξ γ ξ ξ

γ ξ γ ξ ξ

γξ γξ ξ

− −
= =

= = = =

− −
= = = =

= − − + −

= − −

+ +

= − ⊗ − ⊗

∑∑ ∫ ∫

∑∑ ∑∑

∑∑ ∑∑∫ ∫

�� �

��

  ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )T T2 d 2 d .
t t

k n k nt t t t

t

t I e r r t I r r
τ τ

γ ξ γ ξ ξ
− −

+ ⊗ + ⊗∫ ∫ �� 

  (21) 

Using Young’s inequality yields 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )

T T
1

T T T

T

T T

T T T

T

2 d

d

2 d

d .

k n k n

t
k k n t t

t

t t

k n k n

t
k k n t d

t

t d

V t t I t e t I e t

t t I t e r e r r

r r r

t I t e t I e t

d t I t e r e r r

r r r

τ

τ

γξ ξ γ

γτ ξ ξ γ

γ ξ ξ

γξ ξ γ

γ ξ ξ γ

γ ξ ξ

−

−

−

−

≤ − ⊗ + ⊗

+ ⊗ +

+

≤ − ⊗ + ⊗

+ ⊗ +

+

∫

∫

∫

∫

�

� �

� �

� �

� �

 

 

 

 

     (22) 

Taking the time derivative of ( )2V t  along the trajectory evolution of ( )tξ  
of system (13), we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 T T
2

1

0 T T

1

0T T

1 1

0T T

1 1

T

1

d

d

d

d

N

i i i id
i

N

i i i id
i

N N

i i i id
i i

N N

i i i id
i i

N t
i i t d

i i

V t t t t s t s s

e t e t e t s e t s s

d t t t s t s s

d e t e t e t s e t s s

d t t

γ ξ ξ ξ ξ

γ

γ ξ ξ γ ξ ξ

γ γ

γ ξ ξ γ

−
=

−
=

−
= =

−
= =

−
= =

 = − + + 
 
 + − + + 
 

= − + +

+ − + +

= −

∑∫

∑∫

∑ ∑∫

∑ ∑∫

∑ ∫

� � � ��

� � � �

� � � �

� � � �

� � ( ) ( )

( ) ( ) ( ) ( )

T

1

T T

1 1

d

d .

N

i i

N Nt
i i i it d

i i

r r r

d e t e t e r e r r

ξ ξ

γ γ
−

= =

+ −

∑

∑ ∑∫

� �

� � � �

       (23) 

Since ( )( )2
i i nf x t mI∇ ≥ , where ( )min ii V

m m
∈

= , we know that  

( )( )( ) 12 1
i i nf x t I

m
−

∇ ≤  holds. It follows that 
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( ) ( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )

( ) ( ) ( ) ( )

T3

2 2
1 1

1

T T

2

d d .

N N
k

ij j j
i j

N
k

ij j j
j

t t

t d t d

dV t L e t t t t
m

L e t t t t

r r r e r e r r

γ τ ξ τ

τ ξ τ

γ ξ ξ γ

= =

=

− −

 
≤ − + − 

 
 

× − + − 
 

− −

∑ ∑

∑

∫ ∫

�

� � � �

        (24) 

Taking the time derivative of ( )3V t  gives 

( )
( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( )
( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( ) ( )( )

T3

3 2
1 1 1

T3

2
1 1

1

2
1

2
1

1 .

N N N
k k k k

ij j ij j ij j ij j
i j j

N N
k k

ij j ij j
i j

N
k k

ij j ij j
j

dV t L e t L t L e t L t
h m

d L e t t L t t
h m

L e t t L t t t

γ ξ ξ

γ τ ξ τ

τ ξ τ τ

= = =

= =

=

   
= + +   

−    

 
− − + − 

−  
 

× − + − − 
 

∑ ∑ ∑

∑ ∑

∑

�

�

 (25) 

Since ( ) 1t hτ ≤ <� , we have ( )1
1

1
t

h
τ−

≥
−

�
. Then, we conclude that 

( )
( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( )

T3

3 2
1 1 1

T3

2
1 1

1

2
1

2

.

N N N
k k k

ij j ij j ij j ij j
i j j

N N
k k

ij j ij j
i j

N
k k

ij j ij j
j

dV t L e t L t L e t L t
h m

d L e t t L t t
m

L e t t L t t

γ ξ ξ

γ τ ξ τ

τ ξ τ

= = =

= =

=

   
≤ + +   

−    

 
− − + − 

 
 

× − + − 
 

∑ ∑ ∑

∑ ∑

∑

�

 (26) 

Together with (22), (24), and (26), one can obtain that 

( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )
( ) ( )( ) ( ) ( ) ( )( )

1 2 3

T T T T

T3

2
1 1 1

T T T T

3
T T

2

2

2
1

2

2
1

k n k n k k n

N N N
k k k k

ij j ij j ij j ij j
i j j

k n k n k k n

k k n

V t V t V t V t

t I t e t I e t d t I t

d L e t L t L e t L t
h m

t I t e t I e t d t I t

d e t t I e t t
h m

γξ ξ γ γ ξ ξ

γ ξ ξ

γξ ξ γ γ ξ ξ

γ ξ ξ

= = =

= + +

≤ − ⊗ + ⊗ + ⊗

   
+ + +   

−    

≤ − ⊗ + ⊗ + ⊗

+ + ⊗ +
−

∑ ∑ ∑

� � � �

   

   

 
 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )
( )( ) ( )

( )
( )( ) ( )

( )
( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )
( )( ) ( )

( )
( )( ) ( )

T T T T

3 3
T T T T

2 2

3
T T

2

T T T T

3 3
T T T T

2 2

2

2 2
1 1

4
1

2

2 2
1 1

k n k n k k n

k k n k k n

k k n

k n k n k k n

k k n k k n

t I t e t I e t d t I t

d de t I e t t I t
h m h m

d e t I t
h m

t I t e t I e t d t I t

d de t I e t t I t
h m h m

γξ ξ γ γ ξ ξ

γ γ ξ ξ

γ ξ

γξ ξ γ γ ξ ξ

γ γ ξ ξ

≤ − ⊗ + ⊗ + ⊗

+ ⊗ + ⊗
− −

+ ⊗
−

≤ − ⊗ + ⊗ + ⊗

+ ⊗ + ⊗
− −
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( )
( )( ) ( )

( )
( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )
( )( ) ( ) ( )( ) ( )

( )
( )( ) ( )

( )( ) ( ) ( )( ) ( )

3 3
T T T T

2 2

T T T

3
T T T

2

3
T T

2

T T T

2 2
1 1

2

4
1

4
1

2

k k n k k n

k n k k n

k k n k n

k k n

k n k k n

d de t I e t t I t
h m h m

t I t d t I t

d t I t e t I e t
h m

d e t I e t
h m

t I t d t I t

γ γ ξ ξ

γξ ξ γ ξ ξ

γ ξ ξ γ

γ

γξ ξ γ ξ ξ

+ ⊗ + ⊗
− −

≤ − ⊗ + ⊗

+ ⊗ + ⊗
−

+ ⊗
−

≤ − ⊗ + ⊗

   

  

  

 

  

 

    

( ) ( ) ( ) ( ) ( )( ) ( )

( )
( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

( )
( )( ) ( )

( ) ( ) ( ) ( ) ( )

3
T T T T

2

3
T T

2

T T T

3
T T

2

3
T T T

max max2

4 ( )
21

4
1

2

4
1

4 .
2 1

k k n k k n

k k n

k n k k k n

k k n

k k k k

d t I t e t I e t
h m

d e t I e t
h m

t I t d t I t

d t I t
h m

d e t e t
h m

γ γξ ξ

γ

γξ ξ γ ε ξ ξ

γ ξ ξ

γ γλ λ

+ ⊗ + + ⊗
−

+ ⊗
−

≤ − ⊗ + + ⊗

+ ⊗
−

 
+ ⋅ + + ⋅  − 

   

 

  

 

   

    (27) 

Next, by Lemma 4, we can get that 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( )
( )

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )( ) ( )

( )

T T T

T3
max T

2 T
2

3
T T T

max max2

3 T
max T T
2 T

2

3
T

max

2

24
1

4
2 1

4
= 2

2 1

4
2

k n k k k n

k k
k n

k k

k k k k

k k
k k k n
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k k

V t t I t d t I t

d t I t
h m

d e t e t
h m

d
d t I t

h m

d

γξ ξ γ ε ξ ξ

λγ ξ ξ
λ

γ γλ λ

γ λγ γε ξ ξ
λ

γ γλ

≤ − ⊗ + + ⊗

+ ⋅ ⊗
− +

 
+ ⋅ + + ⋅  − 
 
 − − − + ⊗
 − + 

+ ⋅ + +

�   

 


 

   

 
 

 

 
( ) ( ) ( ) ( )T T

max2 .
1 k k e t e t

h m
λ

 
⋅  − 

 

 (28) 

Let { }1
ˆ max , , Nβ β β= �  and based on event triggered condition (8), we can 

deduce 

 

( ) ( )

( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( )( ) ( )
( )( ) ( )

2 2 2

T T 2

T T 2

T T T T
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ˆ ˆ e
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ˆ e
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ˆ e

t

t
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t
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k k n k k n

t
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α

α

α

α

β

β
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β

−

−

−

−
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= + ⊗ + +

= + ⊗ + +

= ⊗ + ⊗

+ ⊗ +
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( )( ) ( ) ( )( ) ( )

( )
( ) ( ) ( )( ) ( ) ( ) ( )

T T T T 2

T
2max T T T 2

maxT
2

ˆ ˆ2 2 e

ˆ2 ˆ2 e .

t
k k n k k n

k k t
k k n k k

k k

t I t e t I e t c

t I t e t c

α

α

βξ ξ β

βλ
ξ ξ βλ

λ

−

−

≤ ⊗ + ⊗ +

≤ + ⊗ + +
+

   

 
   

 

(29) 

Suppose 
( )

( ) ( ) ( )( ) ( )
T

2

TT T T
maxmax 2 max

1ˆ
22

k k

k kk k k k k k LL

λ
β

λλ λ λ

+
< <

+ + +

 

    
, it 

follows from (29) that 

( )
( )

( ) ( )( ) ( ) ( )( ) ( )

( )

T
2 max T T

T T
2 max

2
T

max

ˆ2
ˆ1 2

e .ˆ1 2

k k
k k n

k k k k

t

k k

e t t I t

c α

βλ
ξ ξ

λ βλ

βλ
−

≤ + ⊗
+ −

+
−

 
 

   

 

  (30) 

Substituting (30) into (28), we can obtain 

( )
( )

( ) ( )
( ) ( )

( ) ( )( )
( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( )
( )( )

( )
( )

3 T T T
max max max

2 T T T
2 2 max

3 2 T
max T T

2 T T
2 max

T 3 T
max max

T 2
max

ˆ4
2

ˆ2 1 1 2

ˆ8
ˆ1 1 2

4
ˆ2 1 2 1 1

k k k k k k
k

k k k k k k

k k
k k n

k k k k

k k k k

k k

d
V t d

h m

d
t I t

m h

c c d

m h

γ λ γβλ λγ γε
λ λ βλ

γ βλ
ξ ξ

λ βλ

γ λ γ λ
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 +
≤ − − − −
 − + + −


− + ⊗
− + − 

+
+ +

− −

�
     

     

 
 

   

   

  ( )( )
2

T
max

e
ˆ2

t

k k

α

βλ
−

 
 
 −  

(31) 

Let 

( )
( ) ( )

( ) ( )
( ) ( )( )

( )
( ) ( ) ( )( )

3 T T T
max max max

2 T T T
2 2 max

3 2 T
max

2 T T
2 max

ˆ4
2

ˆ2 1 1 2

ˆ8
,

ˆ1 1 2

k k k k k k
k

k k k k k k

k k

k k k k

d
d

h m

d

m h

γ λ γβλ λγφ γε
λ λ βλ

γ βλ

λ βλ

+
= − − −

− + + −

−
− + −

     

     

 

   
 

( )
( )( )

( )
( ) ( )( )

T 3 T
max max

T 2 T
max max

4
,

ˆ ˆ2 1 2 1 1 2
k k k k

k k k k

c c d

m h

γ λ γ λ
ψ

βλ βλ

+
= +

− − −

   

   
 

so because of the conditions  

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( )

2 T T T T
2 max max max

2 T T 2 T
2 max max

ˆ ˆ1 1 2 2

ˆ4 1 1 2 8

k k k k k k k k

k k k k k k k

m h
d

m h

λ βλ βλ λ

ε λ βλ γ λ

 − + − − + ≤
− + − +

       

     
 

and 
( )

( ) ( ) ( )( )
T

2

T T T
max 2 max

ˆ
2

k k

k k k k k kL

λ
β

λ λ λ

+
<

+ + +

 

    
 we have 0, 0φ ψ≥ > . 

Thus, ( )V t�  can be simply expressed as 

( ) ( ) ( )( ) ( )T T 2e .t
k k nV t t I t αφξ ξ ψ −≤ − + ⊗ +�              (32) 

Next, according to the proposition 2 proposed in the work of Chen and Ren 
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[31], we can get that there exists a positive constant kρ  such that 

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2*
1

1

T T

T T

0

2

2

N

i
i

k k n
k

k k n
k

m x x t V t

x t L L I x t

t L L I t

ρ

ξ ξ
ρ

=

≤ − ≤

≤ + ⊗

= + ⊗

∑

                (33) 

holds over the compact set  

( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( )( )

T* *

2

1 2

|

10
8 32

k
i i i i

k

k

x t R f x f x t f x t x x t

L
V x mN

ε

Θ = ∈ − −∇ −


  ≤ + +   

, where  

( ){ }T Tinf |k k k k kv vε = ≤ +    . Consequently, (33) can be rewritten as 

( ) ( ) 2
1 e .

2
tkV t V t αφρ

ψ −≤ − +�                   (34) 

Integrating both sides of (36) for any t yields 

( ) ( ) ( )10
0 d ,

2 2
tkV t V V s s

φρ ψ
α

− ≤ − +∫               (35) 

i.e. 

( ) ( ) ( )10
d 0 ,

2 2
tkV t V s s V

φρ ψ
α

+ ≤ +∫                (36) 

which implies that ( )V t  and ( )10
d

2
tk V s s

φρ
∫  are both bounded. It follows 

from ( ) ( )1V t V t≤  that ( )1V t  is bounded. From (19), we get  

( ) ( )
2 2*

1 1
N N

i i i ii im x x t m tξ
= =

− =∑ ∑  is bounded. Since  

( ) ( )2 2

1
N

i ii m t m tξ ξ
=

≥∑ , we get ( )tξ  is bounded. It follows from (31) that 

( )e t  is bounded. Hence, we further get ( )tξ�  is bounded according to (14). 

Therefore, 
( )d

d
t

t
ξ

 is bounded due to 
( )

( )
d

d
t

t
t

ξ
ξ≤ � . By using Lemma 5, we 

can get that ( ) 0tξ →  as t →∞ , i.e. ( ) * 0x t x− → , which implies the dis-

tributed optimisation problem is solved in system (10). 
In the following, we will show that the Zeno-behaviour of triggering time will 

be excluded through the whole process for i V∀ ∈ , i.e. there exists a constant 
0ζ >  such that 1

i i
k kt t ζ+ − ≥ . 

Note that when ( )1,i i
k kt t t +∈ , ( ) ( )i ie t tξ= ��  and ( )i tξ�  is bounded; 

Thus, there exists a constant 0η >  such that ( )ie t η≤� . Combining with 

( ) 0i
ke t = , we have 

( ) ( ) ( )d d .i i
k k

t t i
i i kt t

e t t e t t t tη η= ≤ = −∫ ∫�              (37) 
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From the definition of triggering time sequences, we know that ( ) 0iE t ≥  at 
the next trigger time instant 1

i
kt + , i.e. 

( ) ( ) ( )2 2
1 1ˆ e .t i i i

i i k k kz t c e t t tαβ η−
+ ++ ≤ ≤ −             (38) 

In the evolution of the system, whether ( ) 2ˆ 0iz t =  or not, the left expres-
sion of (38) is always positive for the existence of the term 2e tc α− . So for every 

0t t=  there will always exists a constant ( )0 0tζ >  such that  

( ) ( )1 0
i i
k kt t tη ζ+ − ≥ , i.e. ( ) ( )0

1 0i i
k k

t
t t

ζ
η+ − ≥ > , which means that Zeno-behaviour 

is excluded for all agents. This completes the proof. 

4. Numerical Simulations 

In this section, we will show the effectiveness and feasibility of our proposed 
theoretical results in Theorem 1. Here, we assume that there are eight nodes in 
the directed graph, the node states are scalars, and the local objective functions 
corresponding to the nodes are as follows: 

( ) ( ) ( )4 28if x x i i x i= − + × × −                  (39) 

with 1,2,3,4,5,6,7,8i = . Obviously, the local objective function ( )if x  satisfies 
Assumption 2 and the convexity parameters 16im = , 1,2,3,4,5,6,7,8i = . Our 

 

 
Figure 1. The directed switching topologies: (a) 1 ; (b) 2 ; (c) 3 . 
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goal is to solve the global optimisation problem ( ) ( )8
1 iiF x f x
=

= ∑ . In other 
words, we need to prove that the states of all nodes will eventually converge to 
the global optimal value * 5.1153x = . We select the initial state of each node as 

*
ix i= , 1,2, ,8i = � , which is also the corresponding local optimal value. 
As shown in Figure 1, three switching cases of directed topological graphs are 

given, all of which are strongly connected and balanced. According to the calcu-
lation, we can get 1 1ε = , 2 1.791ε = , 3 2.894ε =  and ˆ 0.00238β < . So we 
choose the parameters 1 0.0023β = , 2 0.0022β = , 3 0.0021β = , 4 0.0019β = , 

5 0.0018β = , 6 0.002β = , 7 0.0021β = , 8 0.0017β = . What’s more, we select 
the parameters 50γ = , 15c = , 0.16α = , so we can select the time-varying de-
lay as ( ) ( )0.000008 0.000008sin ttτ = + , which meets the condition (14). 

All the simulation results are shown as follows and the sample time is 0.1. 
From Figure 2, we can see that the system state ( )ix t  and the recently broad-
cast state ( )ˆix t  will eventually converge to the global optimum *x , which 
proves our conclusion. Figure 3 shows the switching signal ( )tσ . 

 

 
Figure 2. The trajectories of states of each node. 
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Figure 3. The switching signal ( )tσ . 

5. Conclusion 

In this paper, ZGS algorithm with time-varying delays and switching topologies 
is extended from undirected graph network to directed equilibrium graph. 
Combined with event triggering mechanism, a new convergence result is pro-
posed. It is proved that the agent state based on the algorithm will converge to 
the optimal state when the obtained conditions are satisfied. In addition, the al-
gorithm avoids Zeno behavior. Finally, a simulation example is given to verify 
the effectiveness of the algorithm. In the future, we will try to solve the distri-
buted optimization algorithm with constraints. Because constraints are often 
used in practical applications, this is a topic of practical significance. 
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