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Abstract 
An explicit algebraic stress model (EASM) has been formulated for 
two-dimensional turbulent buoyant flows using a five-term tensor repre-
sentation in a prior study. The derivation was based on partitioning the 
buoyant flux tensor into a two-dimensional and a three-dimensional com-
ponent. The five-term basis was formed with the two-dimensional compo-
nent of the buoyant flux tensor. As such, the derived EASM is limited to 
two-dimensional flows only. In this paper, a more general approach using a 
seven-term representation without partitioning the buoyant flux tensor is 
used to derive an EASM valid for two- and three-dimensional turbulent 
buoyant flows. Consequently, the basis tensors are formed with the fully 
three-dimensional buoyant flux tensor. The derived EASM has the 
two-dimensional flow as a special case. The matrices and the representation 
coefficients are further simplified using a four-term representation. When 
this four-term representation model is applied to calculate two-dimensional 
homogeneous buoyant flows, the results are essentially identical with those 
obtained previously using the two-dimensional component of the buoyant 
flux tensor. Therefore, the present approach leads to a more general EASM 
formulation that is equally valid for two- and three-dimensional turbulent 
buoyant flows. 
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1. Introduction 

Previously, tensor representation theory has been used by So et al. (2002) Ref. 
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[1], to derive an explicit algebraic stress model (EASM) for homogeneous turbu-
lent buoyant shear flows. Two different approaches have been adopted: one based 
on the proposal of Gatski and Speziale (1993) Ref. [2], and another employed the 
more general approach of Junger and Gatski (1998) Ref. [3]. The starting point of 
their analysis is the normalized anisotropic Reynolds stress equation simplified 
assuming homogeneous equilibrium turbulence. Thus derived, the equation is 
quadratic in the anisotropic stress tensor ( )( )2 3 2ij ij ijb k kτ δ= −=b  which is 
symmetric and traceless. Here, k = τii/2 is the turbulent kinetic energy, 

ij i ju uτ =  is the kinematic Reynolds stress tensor, ui is the ith component of the 
fluctuating velocity and the overbar is used to denote ensemble average. The re-
sulting equation is implicit in b. However, tensor representation theory can be 
used to render this equation explicit; thus allowing explicit algebraic stress mod-
els to be developed for buoyant shear flows. 

Up to this point, the derivation is quite general because no assumptions have 
been made to limit the model for two-dimensional (2-D) flows. As for the as-
sumptions of homogeneity and equilibrium, they were made to simplify the b 
equation so that it can be reduced to an algebraic equation. Gatski and Speziale 
(1993) Ref. [2], and Jongen and Gatski (1998) Ref. [3] also invoked these as-
sumptions in their derivation of the non-buoyant EASM. In principle, the re-
presentation theory can be used to formulate the tensor representation for b if 
the basis tensors chosen are traceless. For incompressible flows, the kinematic 
shear strain rate tensor ( ) 2i iij j jU x U xS= = ∂ ∂ + ∂ ∂S  and the rotation rate 
tensor ( ) 2i iij j jU x U xW= = ∂ ∂ − ∂ ∂W  are traceless. Since the buoyant flux 
tensor, ( )2 3 2ij ij ijG G Gδ= Γ = −Γ , that appears naturally in the b equation 
for buoyant flows is also traceless, it would appear that S, W and Γ  could be 
used as basis tensors to form the tensor representation for b. Here,  

ij i j j iG g u g uβ θ β θ= − −=G  is the buoyant production tensor, G = Gii/2 is the 
buoyant production of k, gi is the ith component of the gravitational vector, Ui is 
the ith component of the mean flow velocity vector, xi is the ith component of 
the space vector, θ is the fluctuating temperature, β is the coefficient of thermal 
expansion of the fluid and δij = 1 for i = j and 0 for i j≠ . The instantaneous ve-
locity vector iu�  and temperature θ�  are decomposed into ensemble mean and 
fluctuating parts, i.e., i i iu U u= +�  and θ θ= Θ+� . 

If the assumption of 2-D flow were invoked, the properties of the tensors S, W 
and Γ  will become quite different. While the tensors S and W become 2-D 
with elements in one row and one column being identically zero, Γ  remains a 
3-D tensor and its use to form the basis tensors for b with S and W becomes very 
complicated. Therefore, an assumption was made to split the buoyant flux tensor 
into two parts, a symmetric traceless tensor f = fij that has the same properties as 
S and W for 2-D homogeneous shear flows, and a three-dimensional tensor N = 
Nij. This was accomplished through the introduction of a 2-D tensor ( )2d

ijδ , first 
proposed by Pope (1975) Ref. [4], to define ( )( )2d

ij ij ijf G G Gδ= −  and  
( )2 2 3d

i ijj ijN δ δ= − . The 2-D tensor ( )2d
ijδ  is defined as 
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( )2

1 0 0
0 0 0
0 0 1

d
ijδ = .                       (1) 

Thus partitioned, f has properties similar to that of S and W in the case of 2-D 
homogeneous shear flows, i.e., elements in one row and one column are identi-
cally zero, and the theoretical derivation of the EASM can be carried out to give 
an explicit expression for b. 

The tensor representation thus proposed limits the applicability of the EASM 
to 2-D flows only. In the EASM derived by So et al. (2002) Ref. [1], a five-term 
representation was assumed. Among the five basis tensors, three involve S and 
W, while two involve S, W and f. It is the presence of these last two basis tensors 
that render the representation not applicable to 3-D flows. Therefore, the de-
rived EASM needs further extension to 3-D flows. It is recognized that the limi-
tation stems from the partitioning of Γ  into f and N. Therefore, if the derived 
EASM is to be equally applicable to 3-D flows, a way has to be found so that Γ  
can be chosen as one of the tensors used to form the basis tensors. This suggests 
that the basis tensors should be formed from S, W and Γ . 

The present paper is an extension of the model of So et al. (2002) Ref. [1] to 
3-D flows. However, the analysis will invoke the incompressibility assumption 
because S and W will remain as traceless tensors even for 3-D flows. Instead of 
splitting Γ  into a 2-D symmetric traceless tensor f and a 3-D tensor N, the 
present approach uses S, W and Γ  as the basis tensors to formulate a repre-
sentation for b. A seven-term representation was derived for the general 3-D 
case. For pure shear flows without buoyancy, the EASM reduces to the form 
proposed by Gatski and Speziale (1993) Ref [2], i.e. a three-term representation. 
The seven-term representation of b is simplified to a four-term representation 
involving S, W and Γ  as basis tensors, and its performance is found to be es-
sentially identical to the EASM of So et al. (2002) Ref. [1] for 2-D homogeneous 
buoyant shear flows with a five-term representation involving S, W and f as ba-
sis tensors. 

2. Mathematical Formulation 

The EASM of So et al. (2002) Ref. [1] was derived from the Reynolds stress equ-
ation assuming the validity of Boussinesq approximation and equilibrium tur-
bulence. The governing equation of the Reynolds stress anisotropy tensor as 
given in So et al. (2002) Ref. [1] is 

{ } ( ) { }2 24
3 2 1

1 2 1
3 3

aa a a
gλ λ

   − − + − + − + − = +   
   

b bS Sb bS I bW Wb b b I S L ,(2) 

where ( )6a Gλ ε λ= +   L d Γ  and ijd=d  is the anisotropic dissipation 
rate tensor. In Equation (2),  

( )( ) ( ) ( ) ( )*
1 11 2 1 2 1g C P C G P Gε ε α ε β ε′ ′= + + − + = + +� � ,  

( )1 24 3 2a C= − , ( )2 42 2a C= − , ( )3 32 2a C= − , 4 5 2a C= , 6 6 1a C= − , 
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kλ ε= , *
1 2 1Cα′ = + , and 1 2 1Cβ ′ = − . The model constants are specified 

as 1 3.4C = , 2 0.36C = , 3 1.25C = , 4 0.40C = , 5 4.2C = , *
1 1.8C =  and 

6 0.3C = . Also, 2iiP P=�  is the shear production of k, ε is the dissipation rate 
of k, and ( ) ( )ij i k j k j k i kP u u U x u u U x= − ∂ ∂ − ∂ ∂  is the shear stress production 
tensor. Equation (2) is implicit in b and further derivation is needed to render it 
explicit. In deriving Equation (2), the pressure-strain model of Speziale et al. 
(1991) Ref. [5] has been assumed. It can be written here as: 

( )

( )

*
1 1 2 3

4 5 6

2
3

1 2
3 3

ij ij ij ik jk jk ik mn mn ij

ik jk jk ik ik kj mn nm ij ij ij

C C P b C kS C k b S b S b S

C k b W b W C b b b b C G G

ε δ

ε δ δ

 Π = − + + + + − 
 

   − − + − − −   
   

�

  (3) 

Following the work of Rivlin and Ericksen (1955) Ref. [6], let ( ) ( ) ( )1 2, , , N�T T T  
be any symmetric 3 × 3 traceless tensors formed from the tensors S, W and Γ . 
A linear relation of the form, 

( )

1

N
n

n
n

Q
=

= ∑b T ,                        (4) 

can be established between b and the tensors ( ) ( )1,2, ,n n N= �T , which are not 
necessarily linearly independent. With b being a function of S, W and Γ , there 
will be 41 tensors forming this basis altogether. According to Jongen and Gatski 
(1998) Ref. [3], for pure shear flows, three of the basis tensors are sufficient to 
give a relatively good approximation for 3-D flows. In view of this, a seven-term 
representation for b with four terms involving Γ  is assumed in the present 
analysis. These seven basis tensors are given by 

( ) ( ) ( ) { }
( ) ( ) ( ) { }
( ) { }

1 2 3 2 2

4 5 6 2 2

7

1, , ,
3

1, , ,
3

2 .
3

= = − = −

= = − = −

= + −

T S T SW WS T S S I

T Γ T ΓW WΓ T Γ Γ I

T ΓS SΓ ΓS I

          (5) 

Assuming dij = 0 and a4 = 0 and forming the scalar product of Equation (2) 
with each of the tensors ( ) , 1, 2, ,7m m = �T , and using (4), the following equa-
tion is obtained, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

7 7 7

3 2
1 1 1

6
1

1 , 2 , 2 ,   

, ,

n m n m n m
n n n

n n n

m m

Q a Q a Q
g

a G
a

λ
ε

λ

= = =

− − +

= +

∑ ∑ ∑T T T S T T W T

S T Γ T
 (6) 

The above equation can be written in a compact form as, 

( ) ( )( )
7

7

1
, m

mn n
n

A Q
=

=∑ R T .                      (7) 

where ( )7
mnA  and (R, T(m)) are given by, 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )7
3 2

1 , 2 , 2 ,n m n m n m
mnA a a

gλ
= − − +T T T S T T W T ,     (8a) 
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( )( ) ( )( ) ( ) ( )( )6
1, , ,m m ma G

a
ε

λ
= +R T S T Γ T .            (8b) 

The solution of (7) can be obtained by determining the matrices (T(n)S, T(m)), 
(T(n)W, T(m)), (T(n), T(m)) and (R, T(m)). Here, a distinction can be made depend-
ing on whether the solution is sought for 2-D or 3-D flow. In the following, two 
different solutions are presented: one for 3-D flows with a 7-term basis and 
another for 2-D and 3-D flows with a 4-term basis. The 7-term representation 
gives rise to matrices that are very complicated, and it is not possible to simplify 
them to give analytical expressions for the coefficients Qn. The choice of a 
4-term representation, on the other hand, allows simplifications to be made to 
deduce analytical expressions for Qn, and yet permits b to reduce to the buoyant 
case without shear identically. That way, the solution can be compared with the 
5-term representation previously derived by So et al. (2002) Ref. [1] with S, W 
and f as the basis tensors. 

3. Solution with a 7-Term Basis 

According to Clapham and Nicholson (2009) Ref. [7], in linear algebra, the Cay-
ley-Hamilton theorem states that every square matrix over a commutative ring 
satisfies its own characteristic equation. In view of this property, it is helpful to 
invoke the Cayley-Hamilton theorem in the present analysis. Therefore, using 
the Cayley-Hamilton theorem identity for their entries, the matrices (T(n)S, T(m)), 
(T(n)W, T(m)), (T(n), T(m)) and (R, T(m)) can be reduced to: 

( ) ( )( )
2

3 1 10 17 11 1 6 1 8

21 2 10
1 4 2 3 17 20 18 1 14

1 12

2
1 1 3 1 8 1 14 1 9 1 10

2
8 1 6

10 17 1 8 9 16 6 8

11

21
17

,

1 1 10 2
6 3 3

11 1 130 0 22 2 2

1 1 1 1 1 10
6 6 6 3 6 3

1 11 1
3 26 6

132 2

n m

η η η η η ηη ηη

η η ηηη η η η η η ηη
ηη

η ηη ηη ηη ηη ηη

η ηηη η ηη η η η η
η

η ηη

=

− −

 − + − − − − −
 + 

 + 
 − 

− +−

T S T

22 8 12
2 10

1 14 16 19 6 14 20 8 14
4 6 2 9

1 12

1 7 6 10

11 1 6 20 1 9 6 8 19 6 14 7 8 6 9

8 9

2
8

1 8 18 1 14 1 10

61 1 2
5 5

3 6 3
2 2

1 1
1 1 1 1 1 1 6 6

13 6 6 6 3 6
3

1 11 1 1
3 23 2 3

η η ηη ηη η η η η η η η
η η η ηηη

ηη η η
η ηη η ηη η η η η η η η η η

η η

η ηηη η ηη ηη

−  
   − − +
   − −+   

 − 
− − − −  

 + 
 

+− −
1 7 6 10 3 6 1 9

1 6
20 8 14

11 8 9 8 10

1 1 1 1
2 6 6 6 2

1 13
3 3

ηη η η η η ηηη η η η
η η η η η

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     − − +       − +         − + +         

(9a) 
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( ) ( )( )
1 2 5 14 2 8 15 16 17

21 4 8
22 2 9

5 1 2 2 3 1 4 15 2 8 23 2 14
2 10 1 12

4 6

2 10 21
2 3 1 4 17 20 1

1 12

,

1 10 3 0 3
2 2

1 331 1 1 1 13 0 3 3 2 322 2 2 2 2
2

1 31 1 10 0 22 2 2

n m

ηη η η η η η η η

η η ηη η η
η ηη η η ηη η η η η η η

η η ηηη η

η η η
η η ηη η η ηη

ηη

=

− − − −

− +   −   − + − +
   + +−   

 − − − − −
 
+ 

T W T

14 18

14 2 8 15 17 2 6 13 16

8 12 22
21 2 10

15 2 8 23 2 14 13 2 6 2 7 6 12
4 6 2 9

1 12

2 9 22
16 20 2 7 6 12 6 1

4 6

1 13 0 3 0
2 2

3131 1 1 1 13 3 3 02 3 22 2 2 2 2
2

1 3 1 1 10 02
2 2 2

η

η η η η η η η η η

η η ηη η η
η η η η η η η η η η η η η

η η η ηηη

η η η
η η η η η η η η

η η

−

− − −

−  −   − − − − +
   + +−   

 −  − −
 
+ 

4 19

21 4 8 22 8 12

17 18 1 14 16 19 6 14
2 10 1 12 2 9 4 6

3 3
1 1 03 32 22 2

2 2

η

η η η η η η
η η ηη η η η η

η η ηη η η η η

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 
 
 − −   
    − + − −    − − − −     

(9b) 

( ) ( )( )

1 3 8 14 9 10

1 2 5 14 2 8 15 16 17

2
3 1 10 17 11 1 6 1 8

8 14 10 6 7 9

14 2 8 15 17 2 6 13 16

2
9 16 11 1 6 7 6 6 8

10 17 1 8 9 16 6 8

0 2 2
0 6 0 2 6 2 2

1 1 10 2
6 3 3

2 0 2,
2 6 2 0 6 0 2

1 1 12 0
3 6 3

1 1 22 2 2 2
3 3 3

n m

η η η η η η
ηη η η η η η η η

η η η η η ηη ηη

η η η η η η
η η η η η η η η η

η η η ηη η η η η

η η ηη η η η η η

− − − −

− −

−=
− − −

− −

T T

2
8 1 6 112ηη η

 
 
 
 
 
 
 
 
 
 
 
 
 

+ − 
 

,  (9c) 

( )( )

( )

( )

( )

( )

( )

( )

6
1 1 8

6
14

6
1 3 10

6
1 8 6

1 14

6
1 9 7

6
1 10 9

2

,

2

2
2

m

a G
a

a G

a G
a

a G
a

a

a G
a

a G
a

ε
η η

λ
ε
η

λ
ε

η η
λ

ε
η η

λ

η

ε
η η

λ
ε

η η
λ

 
+ 

 
 

− 
 
 

+ 
 
 

= + 
 
 
 
 
 

+ 
 
 
 +
 

R T ,               (9d) 
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where the scalar invariants ηi’s are given by 

{ } { } { } { } { } { }
{ } { } { } { } { } { }
{ } { } { } { } { }
{ } { } { } { }
{ } { }

2 2 3 2 2 2 2
1 2 3 4 5 6

3 2 2 2 2 2
7 8 9 10 11 12

2 2 2 2 2
13 14 15 16 17

2 2 2 2 2 2
18 19 20 21

2 2 2
22 23

, , , , , ,

, , , , , ,

, , , , ,

, , , ,

, .

η η η η η η

η η η η η η

η η η η η

η η η η

η η

= = = = = =

= = = = = =

= = = = =

= = = =

= =

S W S W S W S Γ

Γ ΓS Γ S S Γ S Γ W Γ

W Γ WSΓ W SΓ WSΓ WΓS

WS ΓS WΓ SΓ WS Γ W S Γ

W Γ S W ΓWS

(10) 

Matrix A(7) in Equation (8a), its inverse, and the scalar coefficients of Equation 
(4) are deduced by making use of the MAPLE software. The coefficients thus 
determined will allow Equation (4) to reduce correctly to the pure shear flow 
limit when Γ  is set to zero and the pure buoyant flow limit when S and W va-
nish in Equation (2). 

4. Solution with a 4-Term Basis 

In the case of a 4-term representation, solution can be sought depending on 
whether 2-D or 3-D flows are considered. For 3-D flows, only the first four rows 
and columns of Equation (9) have to be retained and no further simplifications 
to the scalar coefficients ηi can be made. On the other hand, for 2-D flows, the 4 
* 4 matrices thus obtained are reduced to simpler forms as some of the ηi’s from 
Equation (10) in this case simplify to 

3 4 5 1 2 15 2 8

17 18 1 14 20 21 2 10

22 2 9 23 2 14

1 10, 0, , ,
2 2

1 10, , 0, ,
2 2

1 1, ,
2 2

η η η ηη η η η

η η ηη η η η η

η η η η η η

= = = =

= = − = =

= =

           (11) 

while others are as given in Equation (10). Thus simplified, the matrices, (T(n), 
T(m)), (R, T(m)), (T(n)S, T(m)) and (T(n)W, T(m)), in the 2-D case become 

( ) ( )( )( )

1 8

1 2 142

2
1 10

8 14 10 6

0 0
0 2 0 2

, 10 0
6

2

dn m

η η
ηη η

η η

η η η η

 
 − − 

=  
 
  − 

T T ,          (12a) 

( )( )( )

( )

( )

( )

( )

6
1 1 8

6
142

6
10

6
1 8 6

2
,

dm

a G
a

a G

a G

a G
a

ε
η η

λ

ε
η

λ

ε
η

λ

ε
η η

λ

 
+ 

 
 
 −
 

=  
 
 
 
 

+ 
 

R T ,              (12b) 
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( ) ( )( )( )

2
1 10

2

2
1 1 8

10 1 8 9

10 0
6

0 0 0 0
, 1 10 0

6 6
10
6

dn m

η η

η ηη

η ηη η

 
 
 
 
 =
 
 
 
 
 

T S T ,          (12c) 

( ) ( )( )( )
1 2 14

2 1 2 2 8

14 2 8

0 0
0 0

,
0 0 0 0

0 0

dn m

ηη η
ηη η η

η η η

− − 
 
 =
 
 

− 

T W T .          (12d) 

The matrix A(4) in the 2-D case is reduced to 

( )

2 81
2 1 2 3 1 3 10 2 14

1 2 14
2 1 2 2 2 8

4
2

2 101
3 1 3 1 8

8 10 614
3 10 2 14 2 2 8 3 1 8 3 9

12 2 2
3

2 2 0 2 2
A

1 1 10
3 6 3

12 2 2 2 2
3

a a a a
g g

a a
g g

a a
g g

a a a a a
g g g g

ηη
ηη η η η

λ λ
ηη η

ηη η η
λ λ

ηη
η ηη

λ λ
η η ηη

η η η η ηη η
λ λ λ λ

 − − − − − − 
 
 

+ 
 =  

− − − − 
 
 
 − − + − − − − − 
 

, (13) 

The inverse of A(4) and the scalar coefficients in this case are again obtained 
using the MAPLE software and the resultant coefficients Q1 to Q4 can be simpli-
fied to 

( )12 61
1

1 1 2 1

3 Q g a G ka gQ
D D D

λλ
η

= + ,                 (14a) 

( )2 22 2
22 61 2

2
1 1 2 1

3 Q g a G ka a gQ
D D D

λλ
η

= + ,             (14b) 

( )2 22 2
32 3 61 3

3
1 1 2 1

66 Q a g a G ka a g
Q

D D D
λλ
η

= − − ,            (14c) 

( )42 6
4

2

Q g a G k
Q

D
λ

= ,                    (14d) 

where 
2 2 2 2 2 2

1 2 2 3 16 2 3D a g a gλ η λ η= + − ,               (15a) 
2 2 2 2 2

2 3 1 2 9 3 1 2 8 10 1 2 8 2 6 1 2 10 1 142 4 6 2D a g a gλη η η ληη η η ηη η η η η η η ηη= − − + − + ,  (15b) 

and Q12, Q22, Q32 and Q42 are given in Appendix I. 
Once derived, b depends on Γ , λ, P ε� , and G. A model for iuθ  is re-

quired if Γ  is to be evaluated. In So et al. (2002) Ref. [1], iuθ  was evaluated 
by solving its transport equation with a suitable model for the pressure scram-
bling term and the modeled transport equations for 2θ  and θε , the tempera-
ture variance and its dissipation rate. The variable λ can be determined by solv-
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ing the modeled transport equations for k and ε. Therefore, Γ , G and λ are all 
known, and the only unknown left is P ε� . An equation for P ε�  can be de-
rived following the approach taken in So et al. (2002) Ref. [1]. Again, the equa-
tion is found to be cubic, and it can be written as 

3 2
2

1 2 3 0P P PA A Aα
ε ε ε

     
′ + + + =     
     

� � �
,              (16) 

1 2 2GA α α β
ε

 ′ ′ ′= + 
 

,                    (17a) 

( )
2

2 2 2 2 2
2 8 6 2 2 3 1 1 1

22 2 2 2
3

G GA a a a aβ α λη β λ η λ η α λ η
ε ε

2  ′ ′ ′ ′= + − + − − − 
 

,  (17b) 

( )
2

2
3 8 6 6 8 3 10 2 14 1 1

2
1 1

2 2 2 2 2

2 .

G GA a a a a a

a

λη λ β η λη λη λ η
ε ε

β λ η

    ′= − − − + +       
′−

 (17c) 

Details of the derivation of Equation (16) are given in So et al. (2002) Ref. [1]. 
Since the roots of a cubic equation can be found in any mathematical handbook, 
such as Ref. [7], they are not given here. If b is to be explicitly determined, the 
heat flux model of So et al. (2002) Ref. [1] can again be adopted. 

5. Discussion 

The results given in Equation (4), Equation (14) and Equation (15) reduce to the 
pure shear flow and the pure buoyant flow limit when Γ  and S are set to zero indi-
vidually. When Γ  is set to zero, Equation (4) yields a 3-term representation with Q4 
= 0. The other scalar coefficients reduce to 1 1 13Q a g Dλ= , 2 2 1Q a g Qλ=  and 

2 2
3 1 3 16Q a a g Dλ= − , which are the same as those given by Gatski and Speziale 

(1993) Ref. [2] and Jongen and Gatski (1998) Ref. [3]. Furthermore, when Equa-
tion (4), Equation (14) and Equation (15) are substituted into Equation (2), the 
equation is satisfied identically. As for the pure buoyant limit, setting S to zero 
reduces Equation (4) to a 1-term representation and the result is given by 

( )6a G k gλ= −b Γ , because W is also zero. This is identical to the expression 
obtained from Equation (2) when S = W = 0 is substituted. In other words, Equ-
ation (4), Equation (14) and Equation (15) reduce to the two limiting forms cor-
rectly. Therefore, it remains to be shown that when Equation (4), Equation (14) 
and Equation (15) are used to calculate 2-D homogeneous buoyant shear flows 
the results are essentially identical to those given previously by So et al. (2002) 
Ref. [1]. 

The EASM previously derived by So et al. (2002) Ref. [1] and denoted as 
EASM/GS or EASM/BJG, has been validated against the direct numerical simu-
lation (DNS) data of Gerz et al. (1989) Ref. [8] and also against calculations us-
ing a two-equation turbulence model, i.e., an EASM without accounting for 
buoyancy effects and a full Reynolds stress model assuming the SSG model of 
Speziale et al. 1991 Ref. [5] for the pressure strain term. Since EASM/GS and 
EASM/BJG give identical results, from this point on, the model of So et al. 
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(2002) Ref. [1] will be referred to as EASM/BJG. This comparison reveals that, 
while accounting for buoyancy effects is important in an EASM, the full Rey-
nolds stress model gives the best prediction of the DNS data because of its ability 
to model the history of the flow. The present EASM, denoted as EASM/Γ, is es-
sentially a more general version of EASM/BJG. Therefore, its validity can be ve-
rified by comparing with the calculations of EASM/BJG and the DNS data. Cal-
culated results from the two-equation and the Reynolds stress model will not be  

 

 
Figure 1. Comparison of the calculated k with DNS data. (a) is for the Ri = 0.1 case, and 
(b) is for the Ri = 1.0 case. 
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shown because they have already been compared to EASM/BJG in So et al. 
(2002) Ref. [1]. The details of the calculations, including the assumption and the 
normalization used to reduce the governing equations to ordinary differential 
equations, the numerical method, and the specification of the initial conditions 
for the Gerz et al. (1989) Ref. [8] case, have been fully discussed in So et al. 
(2002) Ref. [1]. These details will not be repeated here, the interested readers 
could consult the reference. Calculations have been carried out for a range of 
Richardson numbers ranging from ( ) ( )2d d d d 0.1Ri cg z U zβ Θ ==  to 1.0.  

 

 
Figure 2. Comparison of the calculated temperature variance with DNS data. (a) is for 
the Ri = 0.1 case, and (b) is for the Ri = 1.0 case. 
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Here, S = dU/dz is the shear gradient, dΘ/dz is the temperature gradient, gc is 
the gravitational constant and z is the vertical coordinate aligned with the gravi-
tational direction g3. 

The plots k/ko, 2 2
oθ θ , u uθ θ′ ′  and w wθ θ′ ′−  versus τ = St are shown in 

Figures 1-4, respectively. The subscript “o” is used here to denote the initial 
value and τ is the dimensionless time. Here, the prime is used to denote the root 
mean square value of the fluctuating quantities. Only the results for Ri = 0.1 and  

 

 
Figure 3. Comparison of the calculated streamwise heat flux with DNS data. (a) is for the 
Ri = 0.1 case, and (b) is for the Ri = 1.0 case. 
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Figure 4. Comparison of the calculated normal heat flux with DNS data. (a) is for the Ri 
= 0.1 case, and (b) is for the Ri = 1.0 case. 

 
1.0 are shown in Figures 1-4. Essentially the same predicted behavior is seen for 
other values of Ri. The predictions of EASM/BJG and EASM/Γ are essentially 
identical, thus showing that a one-term explicit representation of the buoyant 
flux is sufficient to describe the buoyant behavior as that given by a 2-term re-
presentation. Therefore, partitioning of Γ  into f and N is restrictive. It is 
demonstrated here that such a partitioning is not necessary. As a result, a fairly 
general form of EASM for turbulent buoyant shear flows has been derived. The 
resulting EASM is valid for both 2-D and 3-D flows. 
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6. Conclusion 

This paper shows a more general way to derive an EASM for 3-D buoyant shear 
flows. The approach reveals that it is not necessary to partition the buoyant flux 
tensor into a 2-D symmetric traceless tensor f and a 3-D tensor N to deduce 
analytical expressions for the coefficients of the representation for b. The deriva-
tion can be carried out directly using Γ , even though Γ  is a symmetric trace-
less 3-D tensor. Thus, the methodology established here can serve as a general 
approach to derive EASM for a variety of flows where external body forces give 
rise to a symmetric traceless 3-D tensor in the b equation. 
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