
Journal of Applied Mathematics and Physics, 2022, 10, 1158-1166 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2022.104081  Apr. 14, 2022 1158 Journal of Applied Mathematics and Physics 
 

 
 
 

The Non-Equivalence of Pyramids and Their 
Pseudo-Cones: Important New Insights 

Gerd Kaupp 

University of Oldenburg, Oldenburg, Germany 

 
 
 

Abstract 
The simulation of indentations with so called “equivalent” pseudo-cones for 
decreasing computer time is challenged. The mimicry of pseudo-cones having 
equal basal surface and depth with pyramidal indenters is excluded by basic 
arithmetic and trigonometric calculations. The commonly accepted angles of so 
called “equivalent” pseudo-cones must not also claim equal depth. Such bias 
(answers put into the questions to be solved) in the historical values of the gen-
erally used half-opening angles of pseudo-cones is revealed. It falsifies all simu-
lations or conclusions on that basis. The enormous errors in the resulting 
hardness HISO and elastic modulus Er-ISO values are disastrous not only for the 
artificial intelligence. The straightforward deduction for possibly ψ-cones (ψ for 
pseudo) without biased depths’ errors for equal basal surface and equal volume 
is reported. These ψ-cones would of course penetrate much more deeply than 
the three-sided Berkovich and cube corner pyramids (r < a/2), and their 
half-opening angles would be smaller than those of the respective pyramids 
(reverse with r > a/2 for four-sided Vickers). Also the unlike forces’ direction 
angles are reported for the more sideward and the resulting downward direc-
tions. They are reflected by the diameter of the parallelograms with length and 
off-angle from the vertical axis. Experimental loading curves before and after 
the phase-transition onsets are indispensable. Mimicry of ψ-cones and pyra-
mids is also quantitatively excluded. All simulations on their bases would also 
be dangerously invalid for industrial and solid pharmaceutical materials. 
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1. Introduction 

The common indentations with equilateral three-sided pyramids facilitate simu-
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lations when pyramids are treated as equivalent cones. The formulas for 
so-called “equivalent” cone models are easier for iterative simulations and re-
quire considerably less computer time when mimicking the pyramids (e.g. [1] 
[2] etc.). The questionable “assumption” is that equal basal surfaces would lead 
to “equal penetration depths”. Thus [3], ISO 14577, so guided textbooks and in-
dentation simulation reports choose between pyramids and “equivalent cones”. 
But how is the so-called “equivalency” of pyramid models founded? The ma-
thematical formulas for the areas Atriangle = Acircle of equilateral triangle (30.5/4)a2 
and circle πr2 (Figure 1) are rightfully equated. But we showed in [4] that no 
“equivalent” behavior results in such commonly believed conditions. Pyramids 
and pseudo-cones behaved unlike for various reasons. But we could not yet 
quantify the sizes of the differences. We look now for correct deductions. 

The equal area radius r of the ψ-cone (ψ for pseudo) is transformed into the 
a-unit from the pyramid with correct mathematics. This will remain the handle 
for the calculation of equal volumes and unequal heights. These heights are 
equal to the penetration depths in the absence of pile-up and hidden internal 
migrations along cleavage planes or channels [4]. When these are present, the 
penetration depth is smaller than the calculated height [4]. The generally used 
angles of 70.2996˚ for Berkovich pseudo-cone, 42.28˚ for the cubecorner pseu-
do-cone, and 70.32˚ or 70.2996˚ for Vickers-pseudo cone in the literature are 
used for all time saving simulations. This has been challenged in [4] for various 
geometric reasons and will now be quantified. 

2. Methods 

All calculations used a common scientific pocket calculator Rebell® SC2030 with 
10 digits. All of them were used and results are reasonable rounded only when 
necessary. The worldwide unchangeable angles of diamond Berkovich and cube 
corner indenters were taken as fixed crystallographically approved quantities. 
Tip rounding is always removed in physically analyzed indentation curves as 
part of initial effects and did not interfere. Only undeniable trigonometry and 
mathematical formulas for the basal areas and volumes were used for the ma-
thematical deductions without prejudice and without data-fitting. 

3. Results 

The literature values of half opening angles of the pseudo-cones for Berkovich, 
cube corner, and Vickers indenters (of 70.2996˚, 42.28˚, and 70.32 or 70.2996˚ 
respectively) are incorrectly made to have the same basal areas, volumes, and 
heights as the pyramids. Historically, heights equivalence (“hpyramid = hcone”) 
might have been a “necessity”, because the indentation depths are used for 
ISO-hardness and ISO-indentation modulus. We deduce here equal basal area 
and equal volume for ψ-cones but unequal depths. The used terms are indicated 
in Figure 1(a) (taken from [4]) and in Figure 1(b). The three-times flat and to-
tally different all around circular force fields alone should have halted using  
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Figure 1. Perspective images for (a) a three-sided pyramid and (b) a cone (not true to scale). 

 
pseudo cones! 

3.1. Error Discovery on the Deduction Ways of the Common 
“Equivalent” Pseudo-Cones 

The comparison of the so-called “equivalent cones” with the corresponding 
three-sided normal pyramids requires straightforward basic algebra and trigo-
nometry with always 10 significant figures, due to numerous irrational numbers 
with numerous equations. We test on the basis of the known formulas for 
equal-sided triangle, circle, pyramid and cone by equating the triangle Atriangle = 
a230.5/4 and circle areas Acircle = πr2. Such equality is the basis for pseudo-cones. 
One obtains from the 2/1 ratio at the central cut of the equal-sided triangle 
heights 2 0.5 2 23 4 0.1378322r a a= =π  and r = 0.371257624a (Figure 1). The 
pyramidal angle tanβ = 30.5a/6hpyr and the pyramidal depth hpyr = 30.5a/6tanβ, 
where β is the well-known half-angle of the diamond Berkovich (β = 65.27˚) or 
of cubecorner (β = 35.264˚). For the pseudo-cone we have  

0.25 0.5
pseudo-cone tan 3 2 tan .h r aα απ= =  
One obtains 0.25 0.5 0.5

pseudo-cone pyr 3 6 tan 2 3 tanh h a aβ α= π . For Berkovich with 
β-B = 65.27˚ and tanβ = 2.171160716 results hpseudo-cone/hpyr = 2.792413659/tanα. 
Here comes the historical error: Only by setting hpseudo-cone/hpyr to 1, which is the 
same as dividing Vcone over Vcone, was the divisor hpyr equal to the dividend hcone. 
Such setting is absolutely cheating: It is putting a desired answer into the ques-
tion. The dividend 2.792413659 is taken as an unbelievably biased “tanα” from 
the cone to give “αcone = 70.29688723˚” (undistinguishable from the less precisely 
calculated common 70.2996˚; maybe historical equalization with Vickers?) in the 
case of Berkovich. It was falsely created, spread, and believed. Unimaginably, 
despite the correctly calculated equal basal circle-surface area, where r is smaller 
than 0.5a and also smaller than half of the basal triangle height? It directly indi-
cates, without any further calculation effort, that the pseudo-cone must be shar-
per but not blunter than the pyramid with β = 65.27˚. 

Surprisingly, the corresponding bias was repeated for cubecorner-c with β-c = 
35.264˚ and hpseudocone-c/hpyr-c = 0.909378623/tanα where the divisor was falsely 
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made to “tanα-c and thus α-c to 42.282713˚”. This bias is the commonly used false 
“value of 42.28˚”. 

The four-sided Vickers indenter is more often used in industries. The biased 
published angle values for the “equivalent” pseudo-cone-V are 70.32˚ or 70.2996˚: 
As above, the corresponding unbelievable trick was used for precisely obtaining 
the second of these values. 

All these false pseudo-cone angles withstood for more than 30 years until the 
apparently first challenge started with [4]. Involved scientists, authors, reviewers, 
funding providers, textbook writers, academic teachers, and industrial users did 
not check and complain. But apparently, all of them liked a “same depth” for 
pyramids and their pseudo-cone heights at the same force. Any “equality” of 
these pseudo-cones and pyramids with the faulty biased angles is now strictly 
excluded. 

Our error discovery clearly reveals the disastrous historical “deductions”, more 
than about 30 years ago. Every hardness measurement (e.g. 2

ISO N contactH F h=  or 
Er-ISO) by simulations with iterating data-fitting that used this type of pseu-
do-cones (notwithstanding the unphysical exponent on h that should be 3/2 in-
stead [5] [6]) is also obsolete for that reason. Unfortunately, these very frequent 
unphysical simulations create severe risks with the technical materials’ characte-
rizations. An unbiased deduction of pseudo-cone geometries is thus very impor-
tant for the quantification of the huge involved errors. It will become evident in 
Section 3.2. 

3.2. Deduction Test for Unbiased ψ-Cones with Correct Volumes 
and Heights 

We start with the equalized basal areas for the expression of radius r in units of 
the three-sided pyramidal side length a (Figure 1). For the correct deduction of 
unbiased ψ-cones (now ψ for pseudo) with the equal volume (as required by the 
energy law) the unequal heights of the pyramids and ψ-cones ensue. The re-
quirement of Atriangle-pyr = Acircle-cone gives Equation (1). 

2 0.5 23 4a r= π  and 2 2 0.53 4r a= π  with 0.25 0.53 2r a π=        (1) 

With Vpyr = Ahpyr/3 and Vcone = Ahcone/3 the respective heights are hpyr = 
30.5a/6tanβ and hcone = r/tanα = 30.25a/2π0.5tanα. The respective volumes are Vpyr = 
a3/24tanβpyr and Vψ-cone = a330.125/24π0.5tanαcone after substitutions and simplifica-
tions. For Berkovich (β-B = 65.27˚) we calculate Vpyr-B = 0.019190963a3 at hpyr-B = 
0.132958897a and for its ψ-cone Vψ-cone-B = 0.019190963a3 at hψ-cone-B = 
0.264191103a. For cubecorner (β-c = 35.264˚) we calculate Vpyr-c = 0.058926415a3 
at hpyr-c = 0.408254180a and for Vψ-cone-c = 0.058926415a3 at hψ-cone-c = 0.811206506a. 
The height values calculate unequal for pyramid and its ψ-cone. We use the 
energy law that requires equalizing the volumes at equal force to obtain Equa-
tion (2), and there from Equation (3). This allows for the calculation of tanαψ-cone. 

3 3 0.125 0.5
pyr -cone24 tan 3 24 tana a ψβ απ=               (2) 
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0.125 0.5
-cone pyr pyrtan 3 tan 0.647239808 tanψα β β=π=          (3) 

The angles αcone are thus 54.563917˚ for the Berkovich-ψ-cone (as compared 
with commonly 70.2996˚) and 24.591634 for the cubecorner-ψ-cone (as com-
pared with commonly 42.28˚). 

For four-sided Vickers (β-v = 68˚) is r = a/π0.5 larger than a/2 for the ψ-cone-v. 
Thus, hpyr-v = 0.20201a is now larger than hψ-cone-v = 0.19741a and also the angle 
αcone-v = 70.71521˚ (here larger than β-v) for the Vickers-ψ-cone (as compared 
with commonly 70.32˚ or 70.2996˚). Mimicry is also here excluded. 

The different bracketed values from Section 3.1 compare the still stubbornly 
used common pseudo-cone angle values. These huge angle faults of the biased 
common values of Section 3.1 are enormous for the biased simulations of (na-
no)indentations. They make them completely worthless. 

Our results with so many decimals demonstrate the precision of the used 
arithmetic. They have to be rounded to the precision of the β-angles. We must 
stress that they represent the height of the indenters. The penetration depths 
are only equal to the heights in the absence of pile-up and internal migrations 
upon indentation. These cases require corrections for their depth decreases, as 
reported in [4]. The sideward influences had been exhaustively exemplified in 
[7]. 

We do not encourage using the non-biased ψ-cones for simulations. On the 
contrary: Pyramids and their ψ-cones are also not equivalent due to their dif-
ferent sloping angles. The unbiased Berkovich- and cubecorner-ψ-cones would 
penetrate about two times deeper (49.67%) than the pyramids. The now com-
pleted challenge of [4] was therein already evident but required this final 
quantifying deduction. When the unbiased ψ-cones would be used for simula-
tions their outputs would also be incorrect for the unequal directions. Such 
simulations with whatever mimicking cones must never be tried again; the ex-
isting ones must be deleted. Phase-transition onsets under load must be expe-
rimentally detected and for technical objects strictly avoided upon operation, 
because polymorph-interfaces promote disastrous cracking (e.g. at airliners) 
[4] [7] [8]. Phase-transitions play also their important role in pharmaceutical 
solids (e.g. two polymorphs of crystallized cis-platinum [9]). 

3.3. The Depth Directions for the Forces in Pyramids as Compared 
with Their ψ-Cones 

It is our duty now to calculate the differences between the pyramids and their 
unbiased ψ-cones without data-fitting. The calculated sideward force component 
angles vertical to the indenter slopes of the pyramid are 90˚ − 65.27˚ = 24.73˚ for 
Berkovich and 90˚ − 54.564˚ = 35.436˚ for its ψ-cone. In the case of cube corner 
we have correspondingly 90˚ − 35.264˚ = 54.736˚ and 90˚ − 24.5916˚ = 65.4084˚. 
These directional angles with respect to the central vertical axis are now 15.73˚ and 
18.03˚ respectively steeper than in [4] where the biased false common pseudo-cone 
αcone-angles had been used. Figure 2 exemplifies it with the cube corner angles. It  

https://doi.org/10.4236/jamp.2022.104081


G. Kaupp 
 

 

DOI: 10.4236/jamp.2022.104081 1163 Journal of Applied Mathematics and Physics 
 

 
Figure 2. The depth directions diagram with the angles of the cube corner (left side) in 
relation to its vertical axis and of its ψ-cone (right side) in relation to its vertical axis. 

 
depicts the enlarged pyramidal cross-section of one from the flat triangular 
force-fields and for its ψ-cone the enlarged cross-section of the circular force-field 
all around (cf Figure 1). They are set close to each other for immediately ob-
serving the enormous differences, e.g. their depth differences. The geometric 
questions (including off-angle and length of the diameter in the parallelograms) 
are trigonometrically evident. 

The sidewise angles (lesser down) with respect to the horizontal axis are equal 
to the β-angles of the pyramids and the α-angles of the ψ-cones (cf Figure 1). 
They indicate the flatness of the sidewise force component. It is much flatter for 
cube corner than for Berkovich and it had already been told in [4] that this qual-
ifies the cube corner for fracture toughness determinations. Here, the ψ-cone 
models with the unbiased α-angles would be flatter than the pyramids. But that 
excludes their mimicry power completely. Also simulations with the new mi-
micking models could again not take care of the slope-angle influence in relation to 
materials’ cleavage planes or channels. There is no pass by 1) at the use of pyramidal 
geometry and 2) at the prior experimental detection of the phase-transition onset 
with depth and force [5] [6]. 

For the calculation of the resulting downward direction we distinguish the 
downward and sideward depths with their long known undeniable 80:20 ratio 
[6] to obtain the directional parallelogram from the pyramidal apex at both sides 
of Figure 2. It is calculated with the respective sine, tangent, and cosine func-
tions. The parallelograms are characterized by their smaller angle (90 − βpyr) for 
the pyramid or (90 − αψ-cone) for the ψ-cone. Their sides are the respective frac-
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tions of hpyr or hψ-cone: 0.2 times for sideward and 0.8 times for downward direc-
tion. For the calculation of the resulting diameter length and off-angle we add 
the small top triangles to the bottom of the parallelogram. The so obtained right 
angle triangle gives the resulting downward depth direction and its off-angle 
with the vertical axis. Table 1 compares the pyramidal and ψ-conical angle and 
lengths to show how much they differ from each other. From there we can cal-
culate the forces by using the experimental indentation of individual materials 
with FN = kh3/2 [5] in their calculated directions up to the (by simulations un-
available) phase-transition onset. From such onset force we start with a physi-
cally and chemically different polymorph. We can also calculate the different di-
rections of the not mimicking ψ-cone for comparison to see how much the error 
of ψ-cones would further increase when using these. 

Table 1 shows the calculated slightly rounded depth directions and angles of 
the more sideward and the resulting downward directions. The forces at these 
directions are obtained by using the physically deduced [5] formula FN = kh3/2 
after determination of the physical hardness k (mN/µm3/2) (FN is the normal in-
dentation force) from the slope of the indented material’s loading curve. All val-
ues in Table 1 are larger for the sharper ψ-cones that do not mimic. 

We must stress, that the resulting vertical force direction departs significantly 
from the vertical applied axis of the indentation. 

The commonly disregarded differences between the pyramids and their biased 
pseudo-cones (with equal heights) or unbiased ψ-cones (with enormous height 
differences) are very large. But both are in fact not mimicking the pyramids. 

Our quantification of the huge differences between pyramids and their 
ψ-cones makes obsolete any use for simulations of (nano)indentations. Their 
false claimed results are extremely dangerous for the use of technical including 
solid pharmaceutical materials [9], the mechanical properties of which must be 
very precisely known. 

4. Conclusions 

The purpose of this paper is to discourage any use of simulations by using faster  
 
Table 1. Depth direction angles, heights and lengths for Berkovich and cube corner indentations and for the respective ψ-cone 
models. 

Indenter with β-Angle  
or ψ-conea) 

Sidewardb)  
DeepAngle 

Sidewardc) Flat 
Angle 

Vertical 
off-Angle 

0.8 Indenter 
Heightd) 

Diagonal Length 

Berkovich (65.27˚) 24.73˚ 65.27˚ 4.8894˚ 0.106367a 0.130997a 

Berkovich-ψ-Cone 35.436˚ 54.564˚ 6.9163˚ 0.211353aa) 0.256268a 

Cube corner (35.264˚ 54.754˚ 35.246˚ 10.2979˚ 0.326603a 0.379948a 

Cube corner-ψ-Cone 65.4083˚ 24.5917˚ 11.8992˚ 0.648965aa) 0.731194a 

a)Instead of r the a-fractions from the pyramid is used for the equal basal area calculation; b)in relation to the center axis; c)in relation to 
the horizontal axis; d)the height and length values represent the mathematical 8/2 ratio of the force distribution directions downward 
and sideward [6] in the absence of pile-up and hidden internal migration apart from the created half volume diameter [4]. 
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calculated cones. Physically sound undeniable mathematic calculations are relia-
ble and much easier. The false common angles of the widely used pseudo-cones 
are severely biased. Their use for simulations to save computer time is strongly 
falsifying. All such simulations are obsolete and dangerous. They cannot simu-
late phase-transition onsets and they violate the energy law by excluding the 20% 
loss of normal force for not-penetrating events [6]. These simulations try to help 
themselves with a multitude of further iterative “work-hardening” simulations. 
Such published “results” cannot be repaired and must be fully extinguished. Also 
our tentatively deducted unbiased ψ-cones are not mimicking the pyramids. 
Three-sided pyramid-pseudo-cones are sharper and would go deeper than the 
pyramids with unlike force directions. Advanced simulations with the new un-
biased ψ-cones are also impossible, because the force direction influences re-
spond to specific materials properties. These must be experimentally determined 
(phase-transition onsets, cleavage planes’ or channels’ or holes’ orientations and 
widths) [7]. 

Computer time is only saved by physical analysis using basic mathematical 
calculations, avoiding simulations and data-fittings. That requires characteriza-
tion with properly analyzed pyramidal (or with real cones) indentations. Only 
these reveal the previously ignored sharp phase-transition onsets and energies 
under load. One needs crystallographic investigations for the pile-up questions 
in case of materials’ anisotropy. Indentations are most important for the rapid 
optimization of materials’ properties with respect to their safety, when exposed 
to unavoidable forces. It is important to always stay below any materials’ 
phase-transition onset force to avoid the cracking-risk. Simulations and da-
ta-fitting iterations produce dangerous risks with false HISO or false Er-ISO and 
therefrom derived mechanical properties of technical materials and by denying 
phase-transitions. Beware of using simulated and fitted indentation data for ar-
tificial intelligence applications. They are on the Internet but they must be ur-
gently disregarded and stopped. 
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