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Abstract 
In this paper, we investigate the existence of positive solutions for a singular 
third-order three-point boundary value problem with a parameter. By using 
fixed point index theory, some existence, multiplicity and nonexistence re-
sults for positive solutions are derived in terms of different values of λ . 
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1. Introduction 

In this paper, we are concerned with the existence, multiplicity and nonexistence 
of positive solutions for the following third-order boundary value problem (BVP 
for short): 

( ) ( ) ( )( ) ( ), ,  0,1 ,u t q t f t u t tλ′′′ = ∈                 (1) 

( ) ( ) ( ) ( )0 ,  0,  1 0,u u u uα η η′ ′′= = =                 (2) 

where ( )0,1α ∈ , 
1 ,1
2

η  ∈  
 are constants, λ  is a positive parameter,  

( ) [ ): 0,1 0,q → ∞ , [ ] [ ) [ ): 0,1 0, 0,f × ∞ → ∞  are continuous and ( )q t  may be 
singular at 0t =  and 1. 

Third-order differential equations arise in a variety of different areas of applied 
mathematics and physics, e.g., in the deflection of curved beam having a constant 
or varying cross section, a three-layer beam, electromagnetic waves or gravity dri-
ven flows and so on [1]. In recent years, third-order boundary value problems have 
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been studied by many methods [2]-[10], such as upper and lower solutions method, 
monotone iterative method and the different fixed point theory, etc. 

In [11], Sun proved the existence of triple positive solutions to the following 
BVP by using a fixed-point theorem due to Avery and Peterson: 

( ) ( ) ( ) ( ) ( )( ) ( ), , , ,  0,1 ,u t a t f t u t u t u t t′′′ ′ ′′= ∈
 

( ) ( ) ( ) ( )0 ,  0,  1 0,u u u uδ η η′ ′′= = =  

where ( )0,1δ ∈ , 
1 ,1
2

η  ∈  
 are constants. ( ) [ ): 0,1 0,a → ∞  and  

[ ] [ ) [ ): 0,1 0, 0,f R R× ∞ × × → ∞  are continuous. 

By applying the Krasnoselskii’s fixed point theorem, Sun [12] established the 
existence of infinitely many solutions to the following BVP, which is the special 
case for 0α =  in BVP (1) and (2): 

( ) ( ) ( )( ) ( ), ,  0,1 ,u t a t F t u t tλ′′′ = ∈
 

( ) ( ) ( )0 1 0,u u uη′ ′′= = =  

with 0λ > , 
1 ,1
2

η  ∈  
, where ( )a t  is nonnegative continuous function de-

fined on ( )0,1  and [ ] [ ) [ ): 0,1 0, 0,F × ∞ → ∞  is continuous, ( )a t  may be 
singular at 0t =  and/or 1t = . 

Motivated by the above works, here we study the third order BVP (1) and (2). 
Under certain suitable conditions, we establish the results of existence, multip-
licity and nonexistence of positive solutions for BVP (1) and (2) via the fixed 
point index theory. 

2. Preliminaries 

In this section, we present some notation and Lemmas that will be used in sub-
sequent sections. 

Lemma 2.1. [11] Let 1α ≠ , [ ]0,1h C∈ , then the BVP 

( ) ( ) ( ),   0,1 ,u t h t t′′′ = ∈                      (3) 

( ) ( ) ( ) ( )0 ,  0,  1 0,u u u uα η η′ ′′= = =                 (4) 

has a unique solution 

( ) ( ) ( )1

0
, d ,u t G t s h s s= ∫  

where 

( )

( )

( )

( )

( )

2

2
2

2
2

2
2

,  ,  ,
2 1

1 ,  ,
2 2 1

,
1 ,  ,
2 2 1

1 ,  ,  .
2 2 1

s s t s

st ts t s
G t s

s ts t s t

t t s t s

η
α

α η
α
αηη η

α
αηη η

α


≤ ≤ −


− + + ≤ ≤ −= 
 − + + ≤ ≤
 −

− + + ≤ ≤
 −

            (5) 
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Lemma 2.2. [11] Suppose 0 1α< < , 1 1
2

η≤ < ,  

( ) ( ) { }2 21 min ,
2 1

g s s η
α

=
−

, then 

( ) ( ) ( ) [ ], ,  , 0,1 .g s G t s g s t sα ≤ ≤ ∈  
Let [ ]0,1E C=  be equipped with norm 

[ ]
( )

0,1
max
t

u u t
∈

= , then ( ),E ⋅  is a 

real Banach space. 

From Lemma 2.2, we know that if 0 1α< < , 1 1
2

η≤ < , then for 

[ ] [ ] ( ) [ ]{ }0,1 0,1 : 0, 0,1h C x C x t t+∈ = ∈ ≥ ∈ , the unique solution ( )u t  of BVP 

(2.1) and (2.2) is nonnegative and satisfies 

[ ]
( )

0,1
min .
t

u t uα
∈

≥
 

Define the cone P by 

[ ]
[ ]

( ){ }0,1
0,1 : min ,

t
P u C u t uα

∈
= ∈ ≥

 
then P is a non-empty closed and convex subset of E. 

For ,u v E∈ , we write u v≤  if ( ) ( )u t v t≤  for any [ ]0,1t∈ . For any 
0r > , let { }:rK u E u r= ∈ <  and { }:rK u E u r∂ = ∈ = . 

Define the operator :T P E→  by 

( )( ) ( ) ( ) ( )( )1

0
, , d .Tu t G t s q s f s u s s= ∫                (6) 

In view of the Lemma 2.1, it is easy to see that u is a positive solution BVP (1) 
and (2) if and only if u is a fixed point of the operator Tλ . 

In the following, we assume that: 
(H1) ( ) 0q t ≥ , ( ) 0q t ≡/  and ( )1

0
dq s s < ∞∫ . 

(H2) [ ] [ ) [ )( )0,1 0, , 0,f C∈ × ∞ ∞ , ( ),f t u  is non-decreasing in u  and 

( ), 0f t u >  for any [ ]0,1t∈ , 0u > . 

Lemma 2.3. Assume (H1)-(H2) hold, then the operator :T P P→  is com-
pletely continuous. 

Proof. For u P∈ , according to the definition of T and Lemma 2.2, it is easy 
to prove that ( )T P P⊂ . By the Ascoli-Arzela theorem, it is easy to show 

:T P P→  is completely continuous. 
The proofs of our main theorems are based on the fixed index theory. The 

following three well-known Lemmas in [13] [14]. 
Lemma 2.4. Let E be a Banach space and P E⊂  be a cone in E. Assume that 

Ω  is a bounded open subset of E. Suppose that :T P P∩Ω→  is a completely 
continuous operator. If there exists { }0 \x P θ∈  such that 0x Tx xµ− ≠ , for all 
x P∈ ∩∂Ω  and 0µ ≥ , then the fixed point index ( ), , 0i T P P∩Ω = . 

Lemma 2.5. Let E be a Banach space and P E⊂  be a cone in E. Assume that 
Ω  is a bounded open subset of E. Suppose that :T P P∩Ω→  is a completely 
continuous operator. If inf 0x P Tx∈ ∩∂Ω >  and Tx xµ ≠  for x P∈ ∩∂Ω  and 
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1µ ≥ , then the fixed point index ( ), , 0i T P P∩Ω = . 
Lemma 2.6. Let E be a Banach space and P E⊂  be a cone in E. Assume that 

Ω  is a bounded open subset of E with θ ∈Ω . Suppose that :T P P∩Ω→  is 
a completely continuous operator. If Tx xµ≠  for all x P∈ ∩∂Ω  and 1µ ≥ , 
then the fixed point index ( ), , 1i T P P∩Ω = . 

Now for convenience we use the following notations. Let 

[ ]

( )
[ ]

( )0

0,1 0,10

, ,
lim max , lim max ,

xt tx

f t x f t x
f f

x x+

∞

→+∞∈ ∈→
= =

 

[ ]

( )
[ ]

( )
0 0,1 0,10

, ,
lim min , lim min ,

t x tx

f t x f t x
f f

x x+ ∞∈ →+∞ ∈→
= =

 

( ) ( )1

0
d ,A g s q s s= ∫  

( ) ( ) ( ){ }, : 0,  is a positive solution of BVP 1.1  and 1.2 ;u u Pλ λΦ = > ∈
 

( ){ }0 : there exists  such that , ;u P uλ λΛ = > ∈ ∈Φ
 

*
*sup ,   inf .λ λ= Λ = Λ  

3. The Main Results and Proofs 

Lemma 3.1. Suppose (H1) holds and 0f = ∞ , then Φ ≠ ∅ . 
Proof. Let 0R >  be fixed, then we can choose 0 0λ >  small enough such 

that 0 sup
Ru P K Tu Rλ ∈ ∩ < . It is easy to see that 

0 ,   , 1.RTu u u P Kλ µ µ≠ ∀ ∈ ∩∂ ≥  
By Lemma 2.6, it follows that 

( )0 , , 1.Ri T P K Pλ ∩ =                      (7) 

From 0f = ∞ , it follows that there exists ( )0,r R∈  such that 

( ) [ ] [ ]2
0

1, ,   0, ,  0,1 .f t x x x r t
Aλ α

≥ ∀ ∈ ∈               (8) 

We may suppose that 0Tλ  has no fixed point on rP K∩∂ . Otherwise, the 
proof is finished. Let ( ) 1e t ≡  for [ ]0,1t∈ , Then 1e K∈∂ . We claim that 

0 ,   ,  0.ru Tu e u P Kλ µ µ≠ + ∀ ∈ ∩∂ ≥                (9) 

In fact, if not, there exist 1 ru P K∈ ∩∂  and 1 0µ ≥  such that 1 0 1 1u Tu eλ µ= + , 
then 1 0µ > . For 1 ru P K∈ ∩∂  and 1 0µ > , by Lemma 2.2 and (8), we have 

( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

1 1 0 1 1

1
0 1 10

1
0 1 10

1
0 1 12 0

0

1
1 1 1 1 10

, , d

, d

1 d

1 d ,

u u t Tu t e t

G t s q s f s u s s

g s q s f s u s s

g s q s u s s
A

u g s q s s u r
A

λ µ

λ µ

αλ µ

αλ µ
α λ

µ µ µ

≥ = +

= +

≥ +

≥ +

≥ + = + = +

∫

∫

∫

∫
 

we get 1r r µ≥ + , which is a contradiction. Hence by Lemma 2.4, it follows that 
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( )0 , , 0.ri T P K Pλ ∩ =                      (10) 

By virtue of the additivity of the fixed point index, by (7) and (10), we have 

( )( ) ( ) ( )0 0 0, \ , , , , , 1,R r R ri T P K K P i T P K P i T P K Pλ λ λ∩ = ∩ − ∩ =
 

which implies that the nonlinear operator 0Tλ  has one fixed point  

( )0 \R ru P K K∈ ∩ . Therefore, ( )0 0,uλ ∈Φ . The proof is complete. 
Lemma 3.2. Suppose (H1) and (H2) hold, 0f ∞ = , then Φ ≠ ∅ . 
Proof. Let 0r >  be fixed. From (H2) and the definition of cone P, it follows 

that there exists 0C >  such that ( )( ),f t u t C≥  for all [ ]0,1t∈  and  

ru P K∈ ∩∂ . Then for sufficiently large λ  with 
r

AC
λ

α
>  and ru P K∈ ∩∂ , 

we have 

( )( ) ( ) ( ) ( )( )
( ) ( ) [ ]

1

0
1

0

, , d

d ,  0,1 .

Tu t G t s q s f s u s s

C g s q s s r t

λ λ

λα

=

≥ > ∈

∫

∫
 

This implies that inf 0
ru P K Tuλ∈ ∩∂ >  and Tu uµλ ≠  for ru P K∈ ∩∂ , 

1µ ≥ . By Lemma 2.5, it follows that 

( ), , 0.ri T P K Pλ ∩ =                      (11) 

From 0f ∞ = , there exists R r>  such that 

( ) [ ) [ ]1, ,    , ,  0,1 .
2

f t u u u R t
A

α
λ

≤ ∀ ∈ ∞ ∈
 

Then for Ru P K∈ ∩∂ , by the definition of cone P, we get  

[ ] ( )0,1mint u t u Rα α∈ ≥ = , and so 

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) [ ]

1

0

1

0

, , d

1 d ,   0,1 .
2

Tu t G t s q s f s u s s

g s q s u s s R t
A

λ λ

λ
λ

=

≤ < ∈

∫

∫
 

We obtain Tu uλ µ≠  for Ru P K∈ ∩∂ , 1µ ≥ . It follows from Lemma 2.6 
that 

( ), , 1.Ri T P K Pλ ∩ =                      (12) 

According to the additivity of the fixed point index, by (11) and (12), we have 

( )( ) ( ) ( ), \ , , , , , 1,R r R ri T P K K P i T P K P i T P K Pλ λ λ∩ = ∩ − ∩ =
 

which implies that the nonlinear operator Tλ  has at least one fixed point  

( )\R ru P K K∈ ∩ . Therefore, ( ),uλ ∈Φ . The proof is complete. 
Lemma 3.3. Suppose (H1) and (H2) hold, 0 0f f∞= = , then *0 λ< < ∞ . 
Proof. By Lemma 3.1, it is easy to see that * 0λ > . It follows from (H2) and 

0f f∞= = ∞  that there exists 0C >  such that ( ),f t u Cu≥  for all 0u ≥  
and [ ]0,1t∈ . Let ( ), uλ ∈Φ , by the definition of cone P and Lemma 2.1, we 
obtain that 
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( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

1

0
1

0
12
0

2

, , d

d

d

,

u t Tu t G t s q s f s u s s

C g s q s u s s

C u g s q s s

AC u

λ λ

λα

λα

λα

= =

≥

≥

=

∫

∫

∫

 
so 2u AC uλα≥ , thus ( ) 12 ACλ α

−
≤ . This completes the proof of Lemma 

3.3. 
Lemma 3.4. Suppose (H1) and (H2) hold, hold and 0 0f f ∞= = , then 

*0 λ< < ∞ . 
Proof. By Lemma 3.2, it is easy to see that *λ < ∞ . It follows from (H2) and 
0 0f f ∞= =  that there exists 1 0C >  such that ( ) 1,f t u C u≤  for all 0u ≥  

and [ ]0,1t∈ . Let ( ), uλ ∈Φ , from the definition of cone P and Lemma 2.2, we 
have 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )
[ ]

1

0
1

1 0
1

1 0

1

, , d

d

d

,  0,1 ,

u t Tu t G t s q s f s u s s

C g s q s u s s

C u g s q s s

AC u t

λ λ

λ

λ

λ

= =

≤

≤

= ∈

∫

∫

∫
 

so 1u AC uλ≤ , thus 
1

1
AC

λ ≥ . This completes the proof of Lemma 3.4. 

Lemma 3.5. Suppose (H1) and (H2) hold, 0f f∞= = ∞ , then ( )*0,λ ⊂ Λ . 
Moreover, for any ( )*0,λ λ∈ , BVP (1) and (2) has at least two positive solu-
tions. 

Proof. For any fixed ( )*0,λ λ∈ , we prove that λ ∈Λ . By the definition of 
*λ , there exists 2λ ∈Λ , such that *

2λ λ λ< ≤  and ( )2 2,uλ ∈Φ . Let 

[ ] ( )20,1mintR u t∈<  be fixed. From the proof of Lemma 3.1, we see that there ex-
ist 1 , r Rλ λ< <  and ( ) ( )1 \R ru t P K K∈ ∩  such that ( )1 1,uλ ∈Φ . It is easy 
to see that ( ) ( )1 20 u t u t< <  for all [ ]0,1t∈ . Then we have 

( ) ( ) ( )( ) ( )1 1 1, ,  0,1 ,u t q t f t u t tλ′′′ = ∈
 

and 

( ) ( ) ( )( ) ( )2 2 2, ,  0,1 .u t q t f t u t tλ′′′ = ∈
 

Consider now the modified BVP: 

( ) ( ) ( )( ) ( )1 , ,  0,1 ,u t q t f t u t tλ′′′ = ∈                (13) 

( ) ( ) ( ) ( )0 ,  0,  1 0,u u u uα η η′ ′′= = =                (14) 

where 

( )( )
( )( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( ) ( )

1 1

1 1 2

2 2

, ,  ,

, , ,  ,

, ,  .

f t u t u t u t

f t u t f t u t u t u t u t

f t u t u t u t

 ≤
= < <
 ≥  

Clearly, the function 1fλ  is bounded for [ ]0,1t∈ , u P∈  and is conti-
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nuous in u . Define the operator 1 :T E E→  by 

( )( ) ( ) ( ) ( )( ) [ ]1
1 10

, , d ,  ,  0,1 .T u t G t s q s f s u s s u E t= ∈ ∈∫  
Then 1 :T P P→  is completely continuous and all the fixed points of opera-

tor 1Tλ  are the solutions for BVP (13) and (14). It is easy to see that there exists 

0 2r u>  such that 1 0T u rλ <  for any u P∈ . From Lemma 2.6, we have 

( )01, , 1.ri T P K Pλ ∩ =                      (15) 

Let 

( ) ( ) ( ) [ ]{ }1 2: , 0,1 .U u P u t u t u t t= ∈ < < ∀ ∈
 

We claim that if u P∈  is a fixed point of operator 1Tλ , then u U∈ . In fact, 
if 1u T uλ= , then 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )

1
1 10
1

2 2 2 2 20

, , d

, , d ,

u t T u t G t s q s f s u s s

G t s q s f s u s s Tu t u t

λ λ

λ λ

= =

< = =

∫

∫  

and 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )

1
1 10
1

1 1 1 1 10

, , d

, , d .

u t T u t G t s q s f s u s s

G t s q s f s u s s Tu t u t

λ λ

λ λ

= =

> = =

∫

∫  

From the excision property of the fixed point index and (15), we obtain that 

( ) ( )01 1, , , , 1.ri T U P i T P K Pλ λ= ∩ =
 

From the definition of 1T , we know that 1T T=  on U , then 

( ), , 1.i T U Pλ =                        (16) 

Hence, the nonlinear operator Tλ  has at least fixed point 1v U∈ . Then 1v  
is one positive solution of BVP (1) and (2). This gives λ ∈Λ , ( )1, vλ ∈Φ  and 
( )0,λ ⊂ Λ . 

We now find the second positive solution of BVP (1) and (2). By f∞ = ∞  and 
the continuity of ( ),f t u  with respect to u , there exists 0C >  such that 

( ) [ ]2

2, ,   0, 0,1 .u Cf t u u t
AA αλα

≥ − ∀ ≥ ∈              (17) 

For ( ) 1e t ≡ , let 

{ }: there exists 0 such that .u P u Tu eτ λ τΩ = ∈ ≥ = +  
We claim that Ω  is bounded in E. In fact, for any u∈Ω , it follows from 

Lemma 2.2 and (17) that 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

1

0

1

20

, , d

2
d

u t Tu t e t Tu t

G t s q s f s u s s

u t Cg s q s s
AA

λ τ λ τ

λ

λα
αλα

= + = +

≥

 
≥ − 

 

∫

∫

 

https://doi.org/10.4236/jamp.2022.104080


X. F. Feng, H. Y. Feng 
 

 

DOI: 10.4236/jamp.2022.104080 1153 Journal of Applied Mathematics and Physics 
 

   

( ) ( )1

20

2
d

2 .

u Cg s q s s
AA

u C

α
λα

αλα

λ

 
≥ − 

 
= −

∫  

This implies u Cλ≤ . Thus Ω  is bounded in E. Therefore there exists 

1 2R u>  such that 

1
,  , 0.Ru Tu e u P Kλ τ τ≠ + ∀ ∈ ∩∂ ≥

 

By Lemma 2.4, we get that 

( )1
, , 0.Ri T P K Pλ ∩ =                      (18) 

Using a similar argument as in deriving (10), we have that 

( )1
, , 0,ri T P K Pλ ∩ =                      (19) 

where [ ] ( )1 10,10 mintr u t∈< < . According to the additivity of the fixed point in-
dex, by (16), (18) and (19), we have 

( )( )( )
( ) ( ) ( )

1 1

1 1

, \ ,

, , , , , , 1,

R r

R r

i T P K U K P

i T P K P i T U P i T P K P

λ

λ λ λ

∩ ∪

= ∩ − − ∩ = −
 

which implies that the nonlinear operator Tλ  has at least one fixed point 

( )( )1 12 \R rv P K U K∈ ∩ ∪ . Thus, BVP (1)-(2) has another positive solution. The 
proof is complete. 

Lemma 3.6. Suppose (H1) and (H2) hold, 0 0f f ∞= = , then ( )* ,λ +∞ ⊂ Λ . 
Moreover, for any ( )* ,λ λ∈ +∞ , BVP (1)-(2) has at least two positive solutions. 

Proof. For any fixed ( )* ,λ λ∈ +∞ , we prove that λ ∈Λ . By the definition of 

*λ , there exists 1λ ∈Λ , such that * 1λ λ λ≤ <  and ( )1 1,uλ ∈Φ . Let 

1
1r u
α

>  be fixed. From the proof of Lemma 3.2, we see that there exist 

2λ λ> , R r>  and ( ) ( )2 \R ru t P K K∈ ∩  such that ( )2 2,uλ ∈Φ . By the defi-

nition of cone P, it is easy to see that ( ) ( )1 20 u t u t< <  for all [ ]0,1t∈ . Define 

( ) ( ) ( ) [ ]{ }1 2: , 0,1 .V u P u t u t u t t= ∈ < < ∀ ∈
 

Using the method similar to get (16), we yield 

( ), , 1,i T V Pλ =                        (20) 

Hence, the nonlinear operator Tλ  has at least fixed point 1v V∈ . Then 1v  
is one positive solution of BVP (1) and (2). This gives λ ∈Λ , ( )1,vλ ∈Φ  and 
( )* ,λ +∞ ⊂ Λ . 

We now find the second positive solution of BVP (1) and (2). From 0 0f = , 
there exists [ ] ( )0 10,10 mintr u t∈< <  such that 

( ) [ ] [ ]0, ,  0, , 0,1 .
2

uf t u u r t
Aλ

≤ ∀ ∈ ∈
 

Then for 
0r

u P K∈ ∩∂ , we have 
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( )( ) ( ) ( ) ( )( )

( ) ( ) [ ]

1

0

1
00

, , d

d ,  0,1 .
2 2

Tu t G t s q s f s u s s

u u
g s q s s r t

A

λ λ

λ
λ

=

≤ = < ∈

∫

∫
 

This implies Tu uλ µ≠  for 
0r

u P K∈ ∩∂ , 1µ ≥ . It follows from Lemma 2.6 
that 

( )0
, , 1.ri T P K Pλ ∩ =                      (21) 

Using a similar argument as in deriving (12), we have that 

( )0
, , 1.Ri T P K Pλ ∩ =                      (22) 

where 0 2R u> . According to the additivity of the fixed point index, by (20), 
(21) and (22), we have 

( )( )( )
( ) ( ) ( )

0 0

0 0

, \ ,

, , , , , , 1,

R r

R r

i T P K V K P

i T P K P i T V P i T P K P

λ

λ λ λ

∩ ∪

= ∩ − − ∩ = −
 

which implies that the nonlinear operator Tλ  has at least one fixed point 

( )( )0 02 \R rv P K V K∈ ∩ ∪ . Thus, BVP (1)-(2) has another positive solution. The 
proof is complete. 

Lemma 3.7. Suppose (H1) and (H2) hold, 0f f∞= = ∞ , then ( *0,λ Λ =  . 
Proof. In view of Lemma 3.5, it suffices to prove that *λ ∈Λ . By the defini-

tion of *λ , we can choose { }nλ ⊂ Λ  with ( )
*

1, 2,
2n nλλ ≥ = �  such that  

*
nλ λ→  as n →∞ . By the definition of Λ , there exists { } { }\nu P θ⊂  such 

that ( ),n nuλ ∈Φ . We now show that { }nu  is bounded. Suppose the contrary, 
then there exists a subsequence of { }nu  (still denoted by { }nu ) such that 

nu →∞  as n →∞ . It follows from { } { }\nu P θ⊂  that n nu uα≥  for all 
[ ]0,1t∈ . Choose sufficiently large τ  such that 

* 2

1.
2

Aλ α τ
>

 

By f∞ = ∞ , there exists 0R >  such that ( ),f t u uτ≥  for all u Rα>  and 
[ ]0,1t∈ . Since nu →∞  as n →∞ , there exists sufficiently large 0n  such 

that 
0nu R≥ . Thus, we have 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

0 0 0 0 0 0

0

0 0

1

0
* 1

0

* *12 2
0

, , d

d
2

d .
2 2

n n n n n n

n

n n

u u t Tu t G t s q s f s u s s

g s q s u s s

u g s q s s A u

λ λ

λ ατ

λ λα τ α τ

≥ = =

≥

≥ =

∫

∫

∫
 

This gives 
* 2

1,
2

Aλ α τ
≤                         (23) 

which contradicts the choice of τ . Hence, { }nu  is bounded. It follows from 
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the completely continuous of T that { }nTu  is equicontinuous, i.e., for each 
0ε > , there is a 0δ >  such that 

( ) ( ) ( )( ) ( )( ) *
1 2 1 2 ,n n n n n nu t u t Tu t Tu tλ λ ε λ ε− = − < ≤

 
where 1,2,n = � , [ ]1 2, 0,1t t ∈  and 1 2t t δ− < . Then { }nu  is equicontinuous. 
According to the Ascoli-Arzela theorem, { }nu  is relatively compact. Hence, 
there exists a subsequence of { }nu  (still denoted by { }nu ) and *u P∈  such 
that *

nu u→  as n →∞ . By n n nu Tuλ= , letting n →∞ , we obtain that 
* * *u Tuλ= . If *u θ= , using a similar argument as in deriving (23), by 0f = ∞ , 

we also get a contradiction. Then { }* \u P θ∈ , and so *λ ∈Λ . This completes 
the proof. 

Lemma 3.8. Suppose (H1) and (H2) hold, 0 0f f ∞= = , then [ )* ,λΛ = +∞ . 
Proof. In view of Lemma 3.6, it suffices to prove that *λ ∈Λ . By the defini-

tion of *λ , we can choose { }nλ ⊂ Λ  with ( )*2 1,2,n nλ λ≤ = �  such that 

*nλ λ→  as n →∞ . By the definition of Λ , there exists { } { }\nu P θ⊂  such 
that ( ),n nuλ ∈Φ . We now show that { }nu  is bounded. Suppose the contrary, 
then there exists a subsequence of { }nu  (still denoted by { }nu ) such that 

nu →∞  as n →∞ . It follows from { } { }\nu P θ⊂  that n nu uα≥  for all 
[ ]0,1t∈ . Choose τ  small enough such that 

*2 1.Aλ τ <  
By 0f ∞ = , there exists 0R >  such that ( ),f t u uτ≤  for all u Rα>  and 
[ ]0,1t∈ . Since nu →∞  as n →∞ , there exists sufficiently large 0n  such 

that 
0nu R≥ . Thus, we have 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

0 0 0 0 0

0

0 0

1

0
1

* 0
1

* *0

, , d

2 d

2 d 2 .

n n n n n

n

n n

u t Tu t G t s q s f s u s s

g s q s u s s

u g s q s s A u

λ λ

λ τ

λ τ λ τ

= =

≤

≤ =

∫

∫

∫  
This gives 

*2 1,Aλ τ ≥                          (24) 

which contradicts the choice of τ . Hence, { }nu  is bounded. It follows from 
the completely continuous of T that { }nTu  is equicontinuous, i.e., for each 

0ε > , there is a 0δ >  such that 

( ) ( ) ( )( ) ( )( )1 2 1 2 *2 ,n n n n n nu t u t Tu t Tu tλ λ ε λ ε− = − < ≤
 

where 1,2,n = � , [ ]1 2, 0,1t t ∈  and 1 2t t δ− < . Then { }nu  is equicontinuous. 
According to the Ascoli-Arzela theorem, { }nu  is relatively compact. Hence, 
there exists a subsequence of { }nu  (still denoted by { }nu ) and *u P∈  such 
that *nu u→  as n →∞ . By n n nu Tuλ= , letting n →∞ , we obtain that 

* * *u Tuλ= . If *u θ= , using a similar argument as in deriving (24), by 0 0f = , 
we also get a contradiction. Then { }* \u P θ∈ , and so *λ ∈Λ . This completes 
the proof. 

From Lemmas 3.1, 3.3, 3.5 and 3.7, we get the main result as follows. 
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Theorem 3.1. Let (H1), (H2) be fulfilled and suppose that 0f f∞= = ∞ , then 
there exists * 0λ >  such that BVP (1)-(2) has at least two positive solutions for 

( )*0,λ λ∈ , at least one positive solution for *λ λ=  and no positive solution 
for *λ λ> . 

By Lemmas 3.2, 3.4, 3.6 and 3.8, we obtain the main result as follows. 
Theorem 3.2. Let (H1), (H2) be fulfilled and suppose that 0 0f f ∞= = , then 

there exists * 0λ >  such that BVP (1)-(2) has at least two positive solutions for 

*λ λ> , at least one positive solution for *λ λ=  and no positive solution for 
( )*0,λ λ∈ . 
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