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Abstract 
In this paper, based on the second-order sufficient condition, the Clarke's 
generalized Jacobian of the Karush-Kuhn-Tucker system of the second-order 
cone constrained variational inequality (SOCCVI) problem that is nonsingu-
lar is proved by us. A modified Newton method with Armijo line search is 
presented. Three illustrative examples are given to show how the modified 
Newton method works. 
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1. Introduction 

There have been many publications about computational approaches to solve the 
optimization problems such as linear programming, nonlinear programming, 
variational inequalities, and complementarity problems, see [1]-[6] and refer-
ences therein. Some complementarity functions, such as nature function and 
Fischer-Burmeister (FB) function, have been widely and deeply studied for 
dealing with nonlinear complementarity problems and variational inequality 
problems with polyhedral cone constraints, see the famous book by Facchiniei 
and Pang [7]. A lot of methods for complementarity problems, variational in-
equality problems and nonsmooth equations have been studied by some re-
searchers, see [7]-[16]. Based on the above research, we used the Fisch-
er-Burmeister operator over the second order cone to deal with second-order 
cone constrained variational inequality (SOCCVI) problems, see [17]. However, 
in [17], we have only studied the first-order necessary conditions for SOCCVI 
problem, and no results about the second-order sufficient conditions of SOCCVI 
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have appeared. 
In this paper, we define the second-order sufficient condition of SOCCVI 

based on the metric projector. Based on the second-order sufficient condition 
and the constraint nondegeneracy, we prove the nonsingularity of the Clarke's 
generalized Jacobian of the Karush-Kuhn-Tucker system, constructed by the 
metric projector.  

The second-order cone constrained variational inequality (SOCCVI) problem 
is to find a Q∈  satisfying 

( ) , 0, ,f a b a b Q− ≥ ∀ ∈                     (1) 

where the set Q is finitely representable and expressed as 

( ) ( ){ }IR | 0, .nQ a g a h a= ∈ = ∈
 

Here ,⋅ ⋅  denotes the Euclidean inner product, : IR IRn nf → , : IR IRn mg →  
and : IR IRn lh →  are continuously differentiable functions, and   is a Car-
tesian product of second-order cones (or Lorentz cones), expressed as 

1 2 ,pll l= × × ×�                         (2) 

with 0l ≥ , 1 2, , , 1pl l l ≥� , 1 2 pl l l l+ + + =� . We denote  
( ) ( ) ( )( )T1 , , ph a h a h a= �  and ( )0 , : IR IR ili i i nh h h= →  for { }1, ,i p∈ � . So 

we have the following equivalence relations 

( ) ( ) { } ( ) ( ) { }0, 1, , , 1, , .ili i ih a h a i p h a h a i p∈ ⇔ ∈ ∀ ∈ ⇔ ≥ ∀ ∈� � 
 

The convex second-order cone program (CSOCP): 
( )
( )
( )

min

s.t. 0

F a

g a

h a

=

∈

                         (3) 

where : IR IRn mh → , : IR IRn lg → , and : IR IRnF → , is the special case of 
the SOCCVI problem. The SOCCVI can be solved by analyzing its KKT condi-
tions: 

( )
( ) ( )
( )

, , 0,

, 0, , ,

0,

FL x

h a h a

g a

µ λ

λ λ

=
 = ∈ − ∈


=

                   (4) 

where ( ) ( ) ( ) ( ), ,FL a f a g a h aµ λ µ λ= +∇ −∇  is the variational inequality 
Lagrangian function, IRmµ ∈  and IRlλ ∈ . In [18], we also point out that the 
neural network approach for SOCCVI was already studied. 

As mentioned earlier, this paper investigates the characterizations of the 
strong regularity of Karush-Kuhn-Tucker (KKT) for SOCCVI via the metric 
projector. In this paper, we use the sufficient condition of the nonsingularity the 
Clarke's generalized Jacobian of the KKT system of (1), which deduces the non-
singularity of the Clarke’s generalized Jacobian of this system and the strong re-
gularity of the KKT point. We employ modified Newton method for solving the 
SOCCVI problem and obverse the numerical performance. 
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2. Preliminaries 

In this section, we organize some basic knowledge points. Most of these basic 
knowledge points can be found in [19]. 

We briefly recall some concepts associated with SOC, which are helpful for 
understanding the target problems and our analysis techniques. For any two 
vectors ( )0 ,a a a=  and ( )0 ,b b b=  in 1n−×  , we use the Euclidean inner 
product T, :a b a b= , and the norm ⋅  is induced by this inner product, i.e., 

Ta a a= . And we define their Jordan product as ( )T
0 0: ,a b ab b a a b= +� . 

Then, ( )1,n−× �   together with the element ( )T 11,0, ,0 ne −= ∈ ×�    give 
rise to a Jordan algebra. Note that 2a  means x x�  and x y+  means the 
usual componentwise addition of vectors. It is known that 2 na ∈  for all 

na R∈ . Moreover, if na∈ , then there exists a unique vector in n , denoted 
by 1 2a , such that ( )1 2 1 2 1 22

a a a a= =� . We also denote ( )2 1 2
:a a= . Any 

( ) 1
0 , na a a −= ∈ ×   has the following spectral decomposition: 

( ) ( ) ( ) ( )1 1 2 2 ,a a v a a v aλ λ= +                   (5) 

where ( ) ( ),i ia v aλ  are the spectral values and the associated spectral vectors of 
a, given by 

( ) ( ) ( )
( )

( )( )
0

1 1, 1 , if 0;
21 ,
1 1, 1 , if 0,
2

i

i
i i

i

a a
aa a a v a

w a

λ

  
− ≠     = + − = 


− =

        (6) 

for 1,2i = , where c is any vector in 1n−  satisfying 1w = . 
Suppose ( ) 1

0 , na a a −= ∈ ×   having the spectral decomposition as (5), then 
the merit projector of u onto n , denoted by ( )n x , is 

( ) ( ) ( ) ( ) ( )1 1 2 2 ,n a a v a a v aλ λ
+ +

Π = +      
             (7) 

here ( ) ( ){ }max 0, , 1, 2i ia a iλ λ
+
= =   . we have 

( )
( )

( )

0
0

0 0

0

1 1 , , if ,
2

, , if ,

0, if .

n

a
a a a a

a
x

a a a a

a a

  
+ <     Π = 

<
 ≤ −


            (8) 

Lemma 2.1. Let the metric projection operator ( )nΠ ⋅


 is directionally dif-
ferentiable at x for any nt∈ , 

( )

( ) { }

( ) ( ) { }

( ) ( ) { }
( )

T
1 1

T
2 2

, if \

, if int

2 , if \ 0
,

0, if int

2 , if \ 0

, if 0

n

n

n

n n n

n

n

n

n

J a t a

t a

t v a t v a a bd
a t

a

v a v v a a bd

t a

−

+

 Π ∈ ∪

 ∈


 − ∈  ′Π = 
∈−

   ∈−  

Π =

�






 








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where 

( )

T

T
0 0

2

1
1
2n

a
a

J a
a aa aaI I

a a a a

 
 
 Π =  
 + −
 
 



 

( ) ( ){ } ( ) ( ){ }T TT T
1 1 2 2: min 0, , : max 0,v x t v a t v a t v a t

− +
   = =    . 

We recall from Lemma 2.5 in [20] the characterization of the tangent cone of 
a second-order cone at a point in it. 

Lemma 2.2. Consider the second-order cone n  and let na∈ . Then, the 
tangent cone and the second-order tangent cone of n  at a are 

( )
( ){ } { }1

0 0 0

, if int ,
, if 0,

, | , 0 , if \ 0 .
n

n n

n

n n

a
T a a

t t t t a a t a bd−

 ∈= =
 = ∈ × − ≤ ∈



 






 

and 

( ) ( )

( ){ }
2

21 2
0 0 0 0

, if int ,

, , if 0,

, | , , otherwise.

n

n n

n

n

a T

T a t T t a

c c c c s c a t t−


∈

= =

 = ∈ × − ≤ −


�

� �



 

 
For the convenience of discussions, we need the definition of the tangent 

cone, regular and normal cone of a closed set at a point, all the concepts are 
taken from [21]. 

Definition 2.1. For a closed set nK ⊂   and a point a K∈ , define the fol-
lowing sets: the tangent (Bouligand) cone 

( )
0

: limsup ,K d

K aT a
d↓

−
=

 
the regular (Frchet) normal cone 

( ) ( ){ }ˆ : | , , ,n
KN a w w a a o a a a K= ∈ − ≤ − ∀ ∈

 
the limiting (in the sense of Mordukhovich) normal cone 

( ) ( )ˆ: lim sup .K KK
a a

N a N a
→

=

 
If K is a closed convex set, then  
( ) ( ) ( ) ( ) ( ) { }ˆ | , 0K K K KT a v K a N a N a T a w K w a= + ⋅ = = = ∈ ≤� � . 

Let , ,A B Z  and N be finite-dimensional real Hilbert spaces and f is a map-
ping from A B Z× ×  to N. If f is Fréchet differentiable at ( ), ,a b z A B Z∈ × × , 
then we use ( ), ,Jf a b z  (respectively, ( ), ,aJ f a b z ) to denote the Fréchet de-
rivative of f at ( ), ,a b z  (respectively, the partial Fréchet derivative of f at 
( ), ,a b z  with respect to a). And let ( ) ( )T, , : , ,f a b z Jf a b z∇ =  be the adjoint of 

( ), ,Jf a b z  (respectively, ( ) ( )T, , : , ,a af a b z J f a b z∇ = ), where the adjoint op-
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erator ( )T⋅  satisfies the following formula: if the operation is consistent, then 
T, ,a Mb M a b= . If f is twice Fréchet differentiable at ( ), ,a b z A B Z∈ × × , we 

define 

( ) ( )( ) ( ) ( )( )2 2, , : , , , , , : , , ,aa a aJ f a b z J Jf a b z J F a b z J J f a b z= =  
( ) ( )( ) ( ) ( )( )2 2, , : , , , , , : , , .aa a af a b z J f a b z F a b z J F a b z∇ = ∇ ∇ = ∇  

3. The Optimality Condition and Nonsingularity Theorem 

Let ( ) ( ) ( ) ( )T T, ,fL a f a Jg a Jh aµ λ µ λ= + −  be the Lagrangian of (1), where 
( ) ( ) 1

1, , , , pllm m l
pµ λ µ λ λ= ∈ × × × = ×� � � � � � � . Let *a  be a locally op-

timal solution to (1). Then, *a  satisfies the following Karush-Kuhn-Tucker 
condition. Using the NR function and the definition of the normal cone, the 
KKT condition can be expressed as 

( )
( )
( )

( ) ( )( )

*

*

, ,

, , 0

fL a

H a g a

h a h a

µ λ

µ λ

λ

 
 
 = =
 
 −Π −
 

 

Mimicking the arguments described as in [17], we can verify that the KKT 
system (4) is equivalent to the following unconstrained smooth minimization 
problem: 

( ) ( ) 21min : ,
2

z H zΦ =                      (9) 

where ( ), , n m lz a Rµ λ + += ∈  and ( )S z  is given by 

( )

( )
( )
( )( )

( )( )

NR 1 1

NR

, ,

, ,

,
q q

f

l l

l l

L a
g x

h aH z

h a

µ λ

φ λ

φ λ

 
 − 
 −=  
 
 
 − 

�

 

with ( ) , IR i
i i

l
l lh a λ ∈ . In other words, ( )zΦ  is a smooth merit function for the 

KKT system (4). 
By [20], we give the following definition and theorem. 
Definition 3.1. Let *a  be a feasible point of (1) such that ( ) ( )* ,a µ λ φΛ = ≠ . 

We say that the second-order sufficient condition holds at *a  if 

( ) ( )
( ) ( ){ } ( ) { }

*

* T * *

,

sup , , , , 0, \ 0a f
a

J L a t t t a t t a
µ λ

µ λ λ
∈Λ

+ > ∀ ∈     (10) 

Theorem 3.1. Let ( )* * *, ,a µ λ  is the KKT point of (1). Assume that 
(i) ( )*a φΛ ≠ ; 
(ii) the second-order sufficient condition (10) holds; 
(iii)

 
( )( )* *int N h aλ ∈   holds; 

(iv) the following constraint nondegeneracy holds, 
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( )
( ) { } ( ) ( )( )

*

* *
0*

, ,
m

n m l
Jg a

linT g a h a
Jh a

×

 
  + = ×
 
 

            (11) 

then ( )* * *, ,JH a µ λ  is nonsingular. 
Proof. It follows from ( )( )* *int N h aλ ∈   that Π  is differentiable at  

( )( )* *h a λ− . Let ( ), , n m lta t tµ λ ∈ × ×   . we have 

( )
( ) ( ) ( )

( )
( ) ( ) ( )( )

T T* * * * *

* * * *

* * * *

, ,

, ,

;

a fJ L a ta Jg a t Jh a tta
JH a t Jg a ta

t Jh a ta h a Jh a ta t

µ λ µ λ

µ λ µ
λ λ λ

 + −  
   =   
     ′ −Π − − 

 

 (12) 

Let ( )* * *, , 0
ta

JH a t
t

µ λ µ
λ

 
  = 
 
 

 (We need to show 0ta = , 0tµ = , 0tλ = ). 

We get 

( )
( ) ( ) ( )( )

*

* * * *

0

;

Jg a ta

Jh a ta h a Jh a ta tλ λ

 =


′= Π − − 

            (13) 

which implies that ( )*ta a∈ . From the first line of (12), we get that 

( ) ( )* * * *, , , , 0a fJ L a ta ta Jh a ta tµ λ λ+ =             (14) 

Define the index sets: 

( ){ }
( ) ( ){ }
( ){ }

*

*

*

: int , 1, , ;

: , 0 ;

: 0 .

i

i

li

li
i

i

I i h a i p

B i h a bdry h a

Z i h a

= ∈ =

= ∈ ≠

= =

�



 

If ( )0 0,b b b bϕ = − , ( )0 , nb y ∈ , we have 

( )0

1
,b b b

b
ϕ

 
 ∇ =  − 
   

Note that 

( )( ) ( ) ( )( ){ }* * *:nh a t Jh a t T h a= ∈ ∈ 
 

and 

( )( ) ( ) ( )
( )

( ) ( )

*
T* *

0 **
0

* * *
0

0,

0,

i
i

i

i i

Jh a t
h a t i B

h aT h a t

h a t Jh a t i Z

 
 ∇ − ≥ ∈ =  
 

∇ − ≥ ∈  

  

From ( )h aλ− ⊥ , we can deduce that 
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( ) ( )( )
*

* * *
0

*

0,

, , 0,

int ,

i

i i i

i
i

i I

h a h a i B

i Z

λ

λ λ λ σ σ

λ

 = ∈
  = = − > ∈ 
 

∈ ∈  
 

Hence 

( )
( )
( ) ( ) ( ) ( )( )

* *

* * * * *
0

*

int ,

1 , 1 ,

int ,

i i

i i

i
i

i

h a i I

h a h a h a i B

i Z

λ σ σ

λ

 ∈ ∈

 − = − + ∈ 


∈ ∈




 

Condition (iii) of Theorem 3.1 means 

( )
( ) ( )
( ) ( )( ) ( )

* * *

*

* * * *

0, 0,

, , 0,

i

i i i i

Jg a Jh a t i Z
a t

Jh a t T h a Jh a t i Bλ

 = = ∈ =  
∈ = ∈  



 

and ( )*Q a  is a linear space. Therefore, 

( ) ( )( )( ) ( ) ( ) ( )
*

2 2T* 2 * * * *0
0*

0

,
i

i i
i

i

T h a Jh a t h a ta Jh a ta
h a
λ

δ λ
∈

 
− = ∇ − 

 
∑




 

In addition, by Lemma 2.3 and (13), we can deduce that 

( ) ( )( )
( )

( )
( )
( )

( )( ) ( )

* * *

T

T*
0 0

T *
00

2

* *

;

1
1
2

,

i i

i i i i

i

i i

i i i i iii

l l

i i i

h a Jh a ta t

b

b h a ta t

b b b Jh a ta tbb I I
b b b b

M Jh a ta t Jh a ta

λ λ

λ

λ

λ

′Π − −

 
 
  ∇ −  =    −  + −  ⋅ 

= − =



       (15) 

where ( )i ib h a λ∗ ∗= − . From (15), we have 

[ ] ( )* ,i iI M Jh a t Mtλ− = −
 

that is 

( ) ( )

( ) ( ) ( )

T

0

T T

0 02

0

1 1
2 2

1 1 1 1
2 2 2 2

1 1 1 ,
2 2 2

ii ii
i

i
i i i ii

i iii

i
i i i

i

b
h a ta Jh a t

b

b bt t h a ta c Jh a ta Jh a ta
bb

b t t c d
b

λ λ

λ λ λ

∗ ∗

∗ ∗ ∗

∗ ∗

∇ −

= − − − ∇ − −

= − − −

 

where 
( )
( )

i

i i

h a
c

h a

∗

∗
= . 

Case (I). If *i B∈ , we have 
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( ) ( )( )

( )( )

( )( ) ( )

T

T

;

11
2 12

1 1

i

i i i i

i
i i

i i i

i i i
i

h a Jh a ta t

c
Jh a ta t

c I c c

M Jh a ta t Jh a ta

λ λ

λσ
σ σ

λ

∗ ∗

∗

∗ ∗

′Π − −

 
 = −− − + + 

= − =



           (16) 

When *i B∈ , ( ) ( )( )0 ,i i ih a h aλ σ σ∗ ∗ ∗= − . Now we need to prove that 

( )Qta T a∗∈  and 

( ) ( ) ( )
( )

T

0

i i
i

i

h a Jh a ta
Jh a ta

h a

∗ ∗
∗

∗
≥                  (17) 

From ( ) ( )0
i ih a h a∗ ∗= , we have 

( )
( )

( )0

0

1
i

i i

i
i

h a
h a

ch a

σ
λ σ

σ

∗

∗ ∗

∗

    = =    −−     

where 1ic =  and 
( )
( )0

i

i i

h a
c

h a

∗

∗
= . Hence 

( )2 2T T T2 11 , 0,0 .
1 1

i
i i i i i iM c c c c cσλ

σ σ
∗ − = − − + = + + 

       (18) 

(16) and (18) imply 

( ), 0i iJh a taλ∗ ∗ =
 

which means ( )ta Q a∗∈ . 
It follows from (16) that 

( )( ) ( )
( ) ( )

( )
( )
( )

( )

TT

0T
T

T

T

T 0

T

1 1
2 21,

1 1 1
2 1 2 1
1 1
2 21,

1 1 1 1
2 1 2 1

i i i
i

i i
i i

i
i

i
i

i i i

ii

i i

i i i

M Jh a ta t Jh a ta

M I Jh a ta M t

c h a ta
c

Jh a tac I c c

c t
c

tc I c c

λ

λ

σ σ
σ σ

λ
σ λ

σ σ

∗ ∗

∗

∗

∗

− =

⇔ − =

  − ∇   ⇔  − −  −  + + 
 
  
 =  −  − 

+ + 

        (19) 

Therefore, we can deduce that 

( )
( )

T

0T T T1 1 11, 0
2 1 2 1

i

i i i i

h a ta
c c c

Jh a ta

σ σ
σ σ

∗

∗

 ∇−  + + =  + +  
   

which is 

( ) ( )
( )

T

0T1, 0
i

i i

h a ta
c

Jh a ta

∗

∗

 ∇ − =  
 

                   (20) 
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From (20), we get 

( ) ( ) ( )
( )

T
T

0 .
i i

i
i

h a h a ta
h a ta

h a

∗ ∗
∗

∗
∇ =

 
Hence, (17) holds. 

Case II. Let *i Z∈ . From the second equation of (13), we can get that 

( )( ) ( )0 ;
i

i i i iJh a ta t Jh a taλ λ∗ ∗′Π − − =  
It follows from the projection of the second-order cone that 

( ) 0.iJh a ta∗ =
 

Case III. Let *i I∈ . From the second equation of (13), we can get that 

( ) ( )( ) ( ) ( ),
i

i i i i i ih a Jh a ta t Jh a ta t Jh a taλ λ∗ ∗ ∗ ∗′Π − = − =  
Then 0itλ = . 

To sum up the above three situations, ( )ta a∗∈  implies 

( )
( ) ( ) ( ) ( )T

0 0

0,

, .

i

i i i i

Jh a ta i Z

h a h a ta h a Jh a ta i B

∗ ∗

∗ ∗ ∗ ∗ ∗

 = ∈


∇ = ∈  
From (12) and (13), we assume that 

( ) ( ) ( )T T* * * * *, , 0a fJ L a ta Jg a t Jh a aµ λ µ λ+ − =           (21) 

( )* 0Jg a ta =                         (22) 

( ) ( ) ( )( )* * * *; 0Jh a ta h a Jh a ta tλ λ′−Π − − =            (23) 

By (21) and (22), we have 

( ) ( ) ( )

( ) ( )
*

T T* * * * *

T* * * *

0 , , ,

, , , , .

a f

i i
a

i B

ta J L a ta Jg a t Jh a t

ta J L f a ta Jh a ta t

µ λ µ λ

µ λ λ
∈

= + −

= − − ∑
 

For *i B∈ , 

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )

( )( ) ( ) ( )
( )

T T* * *
0 0

*
T T* *

0 *

T* *
T T* *

2*

T* *
T*

2*

, ,

,

,

,

i i i i i i

i
i i i i

i

i i
i i i i

i

i i
i i

i

Jh a ta t h a tat Jh a ta t

h a
h a ta t Jh a ta t

h a

h a Jh a ta
h a t Jh a ta t

h a

h a h a
Jh a ta I t

h a

λ λ λ

λ λ

λ λ

λ

= ∇ +

= −∇ ⋅ +

= − +

 
 = − 
  

       (24) 

By (19), we get 
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( ) ( )
( ) ( )

( ) ( ) ( )

T*
T* *

0 *

T* T * *
0

T
0

T
0

1 1
2 2

1 1
2 1 1

1 1
2 2

1 1 1
2 1 1

i
i i

i

i i i
i i

i i
i

i i i
i i

h a
h a ta Jh a ta

h a

c h a ta c Jh a ta Jh a ta

t c t

c t c d t

σ σ
σ σ

λ λ

σλ λ λ
σ σ

 
 − ∇ + 
 
 

−  ∇ − ⋅ −  + +  

 + 
 =
 − − +  + +  

      (25) 

Since 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T* T * *
0

TT T * *
0

T* T * *
0

T T* * *
0

1 1
2 1 1

1 1 1
2 2 1 1

1 1
2 1 1

1 1
2 1 1

1

i i i
i i

i i i
i i i

i i i
i i

i i i
i

i

c h a ta c Jh a ta Jh a ta

c h a ta c c Jh a ta Jh a ta

c h a ta v Jh a ta Jh a ta

c h a ta h a ta Jh a ta

c

σ σ
σ σ

σ σ
σ σ

σ σ
σ σ

σ σ
σ σ

σ
σ

− ∇ − ⋅ − + + 

−
= ∇ − −

+ +

− = ∇ − − + + 

− = ∇ − ∇ − + + 

= ∇
+

( ) ( )( )T* *
0
i ih a ta Jh a ta−

      (26) 

and 

( )

T
0

0 0

0

0

1 1 1
2 1 1

1 1 1
2 1 1

1 1
1 1

1
1

i i i
i i

i i i
i

i i
i

i i
i

c t c t t

c t t t

c t t

c t t

σλ λ λ
σ σ
σλ λ λ
σ σ

λ λ
σ σ

λ λ
σ

− − + + + 
− = + + + + 

= +
+ +

= +
+

                (27) 

From (25), (26) and (27), we get that 

( ) ( ) ( )( )T* *
0 0

1 ,
1 1

i i i i
i ic t t c h a ta Jh a taσλ λ

σ σ
+ = ∇ −

+ +  

that is 

( ) ( )( )T* *
0 0 .i i i i

i ic t t c h a ta Jh a taλ λ σ+ = ∇ −             (28) 

Note that 

( ) ( ) ( )
( )

T* *
T

0 2*

i i
i i i i

i i i
i

h a h a
c t t I c c t I t

h a
λ λ λ λ

 
 + = − = − 
 
 

        (29) 

It follows from (24), (28) and (29) that 
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( ) ( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( ) ( )( )

( ) ( )

*

T
T

2

2T

0

2 2T0
0 0

0

T TT 0
1

0

T *

, ,

,

1 0
.

0

,

i i
i i i i

i

i i i
i

i
i i

i
i B

j
p j j

jj

h a h a
Jh a ta t Jh a ta I t

h a

Jh a ta c h a ta Jh a ta

h a ta Jh a ta
h a

ta h a h a ta
h a I

ta a ta

λ λ

σ

λ

λ

λ

∗ ∗
∗ ∗

∗

∗ ∗ ∗

∗ ∗
∗

∈

=

 
 = − 
 
 

 = ∇ − 
 

 
= ∇ − 

 

  
= − ∇ ∇   −  

=

∑

∑



     (30) 

From (30) and (14), we have 

( ) ( )* * * T *, , , , 0.a fJ L a ta ta t a tµ λ λ+ =
 

From the second-order sufficient condition, we have 0ta = . Hence, from (21), 
we deduce 

( ) ( )T T* * 0.Jg a t Jh a tµ λ+ =
 

(23) and condition (iv) of Theorem 3.1 imply 0dµ = , 0dλ = . Therefore, 

( )* * *, ,JH a µ λ  is nonsingular.  

4. A Modified Newton Method and Numerical Experiments 

In this section, we use a modified Newton algorithm to solve the unconstrained 
smooth minimization problem (9). 

The presented algorithm is actually a counterpart in the case of second order 
cone constrained VI problems of ([7], Algorithm 9.1.10), which is used to solve 
polyhedral cone constrained VI problems. Note that although ( )S z  is non-
smooth, the merit function ( )zΦ  is continuously differentiable if f is, see ([7], 
Proposition 1.5.3). In the following proposition we give the relationship between 
the merit function and the KKT condition. 

Proposition 4.1. Suppose that ,f h  and g  are continuously differentiable. 
If ( ), ,JH a µ λ  is nonsingular, then every stationary point of the merit function 
( ), ,a µ λΦ  is a KKT triple of the SOCCVI. 
The proof of Proposition 4.1 is similar to that of Proposition 4.1 in [17], so we 

omit it here. 
Algorithm 4.1 
Data Given ( )0 0 0 0, , n m lz a µ λ= ∈ × ×   , 0σ > , 1p >  and ( )0,1γ ∈ . 

Step 1 Set 0k = . 
Step 2 If ( ), ,k k k kz a µ λ=  is a stationary point of Φ  stop. 
Step 3 Find a solution kt  of the system 

( ) ( ) 0.k kH z JH z t+ =                     (31) 

If the system (31) is not solvable or if the condition 

https://doi.org/10.4236/jamp.2022.104071


H. Liu et al. 
 

 

DOI: 10.4236/jamp.2022.104071 1047 Journal of Applied Mathematics and Physics 
 

( )T pk k kz t tσ∇Φ ≤ −                     (32) 

is not satisfied, (re)set ( )k kt z≡ −∇Φ . 
Step 4 Find the smallest nonnegative integer ki  such that, with ki i= , 

( ) ( ) ( )T
2 2 ;k i k k i k kz t z z tγ− −Φ + ≤ Φ + ∇Φ              (33) 

set 2 ki
kτ

−≡ . 
Step 5 Set 1k k k

kz z tτ+ ≡ +  and 1k k← + ; go to step 2. 
The superlinear convergence of Algorithm 4.1 can be obtained by reference to 

Algorithm 4.1 in [17]. To demonstrate effectiveness of the Newton method, 
some illustrative SOCCVI problems are tested. Observe that all the trajectories 
were successfully able to converge to the SOCCVI solution. 

5. Numerical Experiments 

Example 5.1. Consider the SOCCVI problem (1) where 

( )
4

1

2

3

5

5
2 1

2
2 2

1

x

x
x

f x x

x

− 
 − 
 = −
 

− 
 +   

and 

( ){ }5 5: .Q x h x x K= ∈ = ∈
 

This problem has a solution ( )T* 5,0.5, 2,1, 1x = − . It can be verified that the 
Lagrangian function for this example is 

( ) ( ), , .L x f xµ λ λ= −  
The gradient of the Lagrangian function is 

( ) ( )
5 5

, , ,
f x

L x
I

µ λ
×

∇ 
∇ =  

   
where I is the identity mapping and ( )f x∇  is the gradient of ( )f x . For ex-
ample 5.1, Table 1 is a comparison chart of the results of different complemen-
tarity functions. 

In our simulations, the initial points are ( )T0 1,0,0,0,0x = , ( )T0 0,0,0,0,0λ = , 
and the stopping criterion is set at ( ) 61 10z −∇Φ ≤ × . The trajectories of Algo-
rithm 4.1 for the above problems are shown in Figure 1 and Figure 2. 

Example 5.2. Consider the SOCCVI problem (1) where 
 

Table 1. The results of Example 5.1. 

n time k e 

FB 9.69147 63 3.7417e−4 

NR 7.21559 39 1.4142e−4 

https://doi.org/10.4236/jamp.2022.104071


H. Liu et al. 
 

 

DOI: 10.4236/jamp.2022.104071 1048 Journal of Applied Mathematics and Physics 
 

 
Figure 1. Transient behavior of x in Example 5.1 with 0.01σ =  and 0.45γ = . 

 

 

Figure 2. Convergence behavior of the error *x x−  for Example 5.1. 
 

( )

2

1

3

4

5

6

4
e 2.178

3 4
tan 1

2
2 1

x

x

x
f x

x
x
x

− 
 − 
 +

=  
+ 

 +
  −   
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and 

( ){ }6 6: .Q x h x x K= ∈ = ∈�
 

This problem has an approximate solution  
( )T* 4,0.9999, 1.3333, 0.7854, 2,0.5x = − − − . It can be verified that the Lagrangian 

function for this example is 

( ) ( ), , .L x f xµ λ λ= −  
The gradient of the Lagrangian function is 

( ) ( )
5 5

, , ,
f x

L x
I

µ λ
×

∇ 
∇ =  

 
 

where I is the identity mapping and ( )f x∇  is the gradient of ( )f x . For ex-
ample 5.2, Table 2 is a comparison chart of the results of different complemen-
tarity functions. 

In our simulations, the initial points are ( )T0 1,0,0,0,0,0x = ,  
( )T0 0,0,0,0,0,0λ = , and the stopping criterion is set at ( ) 61 10z −∇Φ ≤ × . The 

trajectories of Algorithm 4.1 for the above problems are shown in Figure 3 and 
Figure 4. 

 
Table 2. The results of Example 5.2. 

n time k e 

FB 8.06143 57 2.4872e−4 

NR 6.191146 31 1.0423e−4 

 

 
Figure 3. Transient behavior of x in Example 5.2 with 0.01σ =  and 0.45γ = . 
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Figure 4. Convergence behavior of the error *x x−  for Example 5.2. 

 
Table 3. The results of Example 5.3. 

n time k e 

FB 9.86342 65 2.9713e−4 

NR 7.291559 40 1.1275e−4 

 
Example 5.3. Consider the SOCCVI problem (1) where 

( )
3

1

2

4

5

6

6
4 3

e 2.718
tan 1

2
3 1

x

x
x

f x
x

x
x

− 
 − 
 −

=  
− 

 −
  −   

and 

( ){ }5 5: .Q x h x x K= ∈ = ∈�
 

For example 5.3, Table 3 is a comparison chart of the results of different 
complementarity functions. 

This problem has a solution ( )T* 6,0.75,0.9999,0.7854,2, 0.3333x = − . In our 
simulations, the initial points are ( )T0 1,0,0,0,0,0x = , ( )T0 0,0,0,0,0,0λ = , and 
the stopping criterion is set at ( ) 61 10z −∇Φ ≤ × . The trajectories of Algorithm 
4.1 for the above problems are shown in Figure 5 and Figure 6. 

Example 5.4. Consider the SOCCVI problem (1) where 
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Figure 5. Transient behavior of x in Example 5.3 with 0.01σ =  and 0.45γ = . 
 

 

Figure 6. Convergence behavior of the error *x x−  for Example 5.3. 
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and 

( ){ }5 5: .Q x h x x K= ∈ = ∈
 

This problem has a solution ( )T* 2,0,1.3333,0,0x = . In our simulations, the 
initial points are ( )T0 1,0,0,0,0x = , ( )T0 0,0,0,0,0λ = , and the stopping crite-
rion is set at ( ) 61 10z −∇Φ ≤ × . Comparison of decay rates of ( ) *x t x−  for 
the two complementary function (FB function and NR function) in Figure 7 
The error plots shown in Figure 7 reveal that the NR function and FB function 
have almost the same convergence rates. 

 

 

Figure 7. Convergence behavior of the error *x x−  for Example 4. 

6. Conclusion 

In this paper, we target the second-order cone constrained variational inequality 
(SOCCVI) problem by using the modified Newton algorithm which is applied in 
[17], based on the metric projector. We have established that for a locally optim-
al solution to a SOCCVI problem, the nonsingularity of the Clarke’s generalized 
Jacobian of the KKT system, constructed by the metric projector, is equivalent to 
the second-order sufficient condition and constraint nondegeneracy. Three nu-
merical simulations are conducted which show the efficiency of the Newton al-
gorithm. This paper improves our previous work [17].  
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