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Abstract 
This article is concerned with a mathematical model of tumor growth go-

verned by 2nd order diffusion equation ( ) ( )2 ,C f C D C S r t
t

λ∂
= + ∇ +

∂
. The 

source of mitotic inhibitor is almost periodic and time-dependent within the 
tissue. The system is set up with the initial condition ( ) ( )0,0C r C r=  and 

Robin type inhomogeneous boundary condition ( ),CD PC K r t
n

∂
+ =

∂
. Un-

der certain conditions we show that there exists a unique solution for this 
model which is almost periodic. 
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1. Introduction 

Since 1980, researchers in mathematics and biology have proposed and studied 
several deterministic mathematical models for tumor growth by diffusion equa-
tion. The main assumption is that these models serve as simplified but comple-
mentary description for one aspect of a complex biological phenomenon: the 
growth and stability of tissue. Given some simplified conditions, the study of 
these models is focused on describing qualitatively the early stages of growth of 
tissue. The diffusion equation is the type of a linear partial differential equation. 

For example, Shymko, Glass [1] [2] and Adam [3] [4] proposed the following 
model governed by an inhomogeneous diffusion equation 
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( )
2

2

C CD C PS x
t x

λ∂ ∂
= − +

∂ ∂
                   (1) 

with the source term ( ) 21S x x
L

= −  for 
2
Lx ≤  and 0 otherwise. Here L is  

the initial length of the chalone-producing tissue, being confined to the domain 
2x L≤ . The production rate of the chalone is 0P >  per unit length, the dif-

fusion coefficient is D and the decay rate is λ  which is proportional to its con-
centration ( ),C x t . Since ( )S x  is not constant, the source of mitotic inhibitor 
is not uniformly distributed within the tissue (in contrast to many earlier re-
sults). It was found that stable and unstable regimes of growth become signifi-
cantly modified from the uniform-source case. Consequently, this model is very 
sensitive to the type of source term assumed. In fact, many of the existing deter-
ministic models of tumor cell growth are proposed by an ordinary differential 
equation (ODE) coupled to one or more equations of reaction and diffusion 
type. The ODE derives from mass conservation applied to the tumor and de-
scribes the evolution of the tumor boundary and the reaction-diffusion equa-
tions describe the distribution of nutrients (oxygen and glucose) and growth in-
hibitory factors (chalones) [5] [6]. 

Clearly, a more realistic model requires a higher dimension because systems 
governing tumor growth are best served in a three dimensional domain. Conse-
quently, Britton and Chaplain studied a more generalized system below [7]. 

( ) ( ) ( )2 in 0, ,C f C D C S r
t

λ∂
= + ∇ + Ω× ∞

∂
             (2) 

( )0 in 0, , 0CD PC P
n

∂
+ = ∂Ω× ∞ ≥

∂
               (3) 

( ) ( )0,0 0 forC r C r r= ≥ ∈Ω                   (4) 

where ( ),C C r t=  is the concentration of some chemical inhibitors in a 
bounded n-dimensional region Ω  ( 1,2,3n = ). We note that , 0, 0D Sλ > ≥ , P 
is the permeability of the tissue surface. Using maximum principles for parabolic 
and elliptic operators, the authors examined the effect of growth inhibitory fac-
tor. It was shown that if 0,f C  and Ω  satisfy the conditions of the parabolic 
comparison theorem, then C is always non-negative and unique. Also, the con-
centration decreases monotonically in the open interval ( )0, R  provided that 

( ) 0S r′ ≤  and f differentiable with 0f ′ < . This model is certainly a big im-
provement compared to one-dimensional system. 

The following model adds a more general, time-dependent source function 
( , )S r t  

( ) ( ) ( )2 , in 0, ,C f C D C S r t
t

λ∂
= + ∇ + Ω× ∞

∂
            (5) 

( )0 in 0, , 0,CD PC P
n

∂
+ = ∂Ω× ∞ ≥

∂
               (6) 

( ) ( ) ( )2
0,0 .C r C r L= ∈ Ω                     (7) 
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Here the source function is time-dependent. The boundary condition is of 
homogeneous Robin type. Existence and uniqueness of an almost periodic solu-
tion for this model were studied in [8] with the following result. If ( )2

0C L∈ Ω  
and ( ) 0, 0f C Pα′ ≤ − < > , ( ) ( ) ( )1 2:f H L⋅ Ω → Ω  is local Lipschitz conti-
nuous, ( )2L Ω -norm of K is uniformly bounded in time, and S is temporally 
almost periodic with its ( )2L Ω -norm uniformly bounded in time. Then there 
exists a unique almost periodic solution for (5)-(7). 

In this paper, we study a similar system similar to (5)-(7) under non-homo- 

geneous Robin boundary condition ( ),CD PC K r t
n

∂
+ =

∂
 in ( )0,∂Ω× ∞  and 

initial condition ( ) ( ) ( )2
0,0C r C r L= ∈ Ω . We prove that, under certain condi-

tions of initial and boundary data, there exists a unique solution which is almost 
periodic. The existence is obtained via continuous contraction semigroup and 
fixed point theorem and uniqueness is obtained via integral estimates on L2 
norm of C. 

2. Existence and Uniqueness of the Almost Periodic Solution 

In this section, we discuss the existence and uniqueness of almost periodic solu-
tion when the source function is almost periodic and the dynamics of the sys-
tem. We consider the following system with a time-dependent source function 
( ),S r t  and Robin inhomogeneous boundary data: 

( ) ( ) ( )2 , in 0, ,C f C D C S r t
t

λ∂
= + ∇ + Ω× ∞

∂
            (8) 

( ) ( ), in 0, ,CD PC K r t
n

∂
+ = ∂Ω× ∞

∂
                (9) 

( ) ( ) ( )2
0,0 .C r C r L= ∈ Ω                    (10) 

Here , 0D P > , ( ) [ ]( )2, 0,K r t C T∈ Ω×  for any 0T > . First, we prove the 
following existence theorem for (8)-(10). 

Theorem 2.1. Assume that ( )2
0C L∈ Ω  and ( ) 0, 0f C Pα′ ≤ − < > . Let 

( ) ( ) ( )1 2:f H L⋅ Ω → Ω  be local Lipschitz continuous, ( )2L Ω -norm of K is un-
iformly bounded in time, and S is temporally almost periodic with its ( )2L Ω -norm 
uniformly bounded in time. Then there exists a unique almost periodic solution 
for (8)-(10) such that ( ) ( )( )2 2 10, ; 0, ;C L T L L T H∞∈ Ω∩  for any 0T > . 

PROOF. We use a transformation C G H= +  where H is a smooth function 

in Ω  satisfying the boundary condition ( ),HD PH K r t
n

∂
+ =

∂
 on ∂Ω . Then 

(8) is converted to 

( ) ( )2 2,G Hf G H D G S r t D H
t t

λ∂ ∂
= + + ∇ + + ∇ −

∂ ∂
         (11) 

where G satisfies the homogeneous boundary condition 0GD PG
n

∂
+ =

∂
. Similar  

to the system studied in [8], local existence for (11) can be obtained by [9] [10] 
[11]. Consequently this establishes local existence for (8)-(10). 
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Let S
∞

 be the L∞  norm of S and ,C C∇  be the 2L  norms of C and 
C∇ . We differentiate 2C  and substitute (10) to get 

( )

( ) ( )

( )

2

2

2

1 d d d d d
2 d

d , d

d , d

tC C C x f C C x D C C x SC x
t

f C C x D C K r t C S

P C S S r t C x

λ

λ

Ω Ω Ω Ω

Ω ∂Ω

∂Ω Ω

= ⋅ = ⋅ + ∇ ⋅ +

= − ∇ +

− +

∫ ∫ ∫ ∫

∫ ∫
∫ ∫

   (12) 

Since ( )2L Ω -norm of K is uniformly bounded in time, there exists a number 

0c  such that 

( ) 2

2 2 2
0

, d d

1 d d d d
2 2

K r t C S P C S

PK S C S P C S S c
P

∂Ω ∂Ω

∂Ω ∂Ω ∂Ω

−

≤ + − ≤

∫ ∫

∫ ∫ ∫
         (13) 

Substitute (13) in (12) we have 

( ) ( )2

2

2
2 2 2 2

0

2
2 2 2

0

1 d d d , d
2 d

d d

2 2

.
2 2

C f C C x D C C x K r t C S
t

P C S SC x

C D C c S C

C D C c S

λ

λ αα
α

α λ
α

Ω Ω ∂Ω

∂Ω Ω

= ⋅ + ∇ ⋅ +

− +

≤ − − ∇ + + +

≤ − − ∇ + +

∫ ∫ ∫

∫ ∫
      (14) 

This implies that 

( )
2

22 20
0 2

2
2 2

0 0 2

2
e 1 e

2

t t c
C C S

C c S M

α α λ
α α

λ
α

− −  
≤ + − + 

 
 

≤ + + = 
 

            (15) 

when t T≥  for some sufficiently large T. Therefore, all solutions C enter the 
following bounded set in ( )2L Ω  

{ }: .C C M= ≤                      (16) 

Suppose that 1C  and 2C  are two solutions with same initial value ( )0C r  
and boundary value ( ),K r t . Then 1 2C C C= −  satisfies the following system 

( ) ( ) 2
1 2

C f C f C D C
t

∂
= − + ∇

∂
                  (17) 

( )0 in 0, , 0CD PC P
n

∂
+ = ∂Ω× ∞ >

∂
              (18) 

with ( ),0 0C r = . 
A quick calculation shows 

( )2 2 2 2 2 21 d d d
2 d

C f C x D C P C S C D C
t

η α
Ω ∂Ω

′= − ∇ − ≤ − − ∇∫ ∫  (19) 

This implies that 
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2 21 d 0
2 d

C C
t

α+ ≤                      (20) 

therefore we know 0C ≡  and the solution is unique since ( ),0 0C r = . 
On the other hand, if we assume that 1C  and 2C  are two solutions with 

01 02,C C  as initial values respectively and same boundary value. Then 1 2C C C= −  
satisfies (17) and (18) with initial value ( ) ( ) ( )01 02,0C r C r C r= − . It is easy to 
check that C satisfies (19) and (20). Therefore, 

22 2
01 02e .tC C Cα−≤ −                     (21) 

Define the solution operator 2 2
,0 :tS L L→  by ( ),0 0tS C C t=  for 0t ≥ , 

where ( )C t  is the solution of (8)-(10). By (21), ,0tS  possesses strong contrac-
tion property with absorbing sets (16). 

Recall that a function : IR Xϕ →  where ( ), XX d  is a metric space, is 
called almost periodic [12] [13] if for every 0ε >  there exists a relatively dense 
subset Mε  of IR  such that 

( ) ( )( ),Xd t tϕ τ ϕ ε+ ≤                     (22) 

for all t IR∈  and Mετ ∈ . Almost periodic functions play an important role in 
the theory of nonautonomous dynamical systems. 

By similar arguments in [14] [15] [16], Theorem 2.2 in [8] holds for system 
(8)-(10) and the corresponding pullback attractor defines a unique almost peri-
odic solution. Therefore the proof of Theorem 2.1 is now completed. 

3. Conclusion 

We study a mathematical model of tumor growth presented by a diffusion equa-
tion with appropriate initial and boundary conditions. The boundary value is of 
Robin type and is inhomogeneous. We show that there exists a unique solution 
that is almost periodic. The main method is to show that a pullback attractor de-
fines a unique almost periodic solution for the system. 
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