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Abstract 
For plane singly-connected domains with insulating boundary and four 
point-sized contacts, 0 3C C , van der Pauw derived a famous equation re-

lating the two trans-resistances 01,23 12,30,R R  with the sheet resistance with-

out any other parameters. If the domain has one hole van der Pauw’s equa-
tion becomes an inequality with upper and lower bounds, the envelopes. This 
was conjectured by Szymański et al. in 2013, and only recently it was proven 
by Miyoshi et al. with elaborate mathematical tools. The present article gives 
new proofs closer to physical intuition and partly with simpler mathematics. 
It relies heavily on conformal transformation and it expresses for the first 
time the trans-resistances and the lower envelope in terms of Jacobi func-
tions, elliptic integrals, and the modular lambda elliptic function. New simple 
formulae for the asymptotic limit of a very large hole are also given. 
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1. Introduction 

The sheet resistance of a plane conductive layer is of prime importance in thin 
layer technologies. It is used pervasively in micro-electronic manufacturing to 
monitor the properties of thin conductive layers. It is given by ( )sheet 1R tκ ⊥= , 
where κ  is the conductivity and t⊥  is the thickness of the layer. Van der 
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Pauw showed that it is possible to derive the sheet resistance from purely elec-
trical measurements of currents and voltages, no other geometrical parameters 
are necessary [1] [2]. Yet some general requirements have to be granted: the 
conductive layer has to be plane, its resistivity and thickness must be homoge-
neous, the contacts must be small (point-sized), and the contacts must be on the 
circumference (=peripheral contacts) of a singly-connected region (no holes). 
Homogeneous resistivity also means a linear material law of electric conduction 
where resistivity is constant versus electric field, without self-heating, and with-
out self-magnetic field. The resistivity is allowed to be anisotropic with a sym-
metric resistivity tensor. In this case we can apply an isotropization procedure as 
shown in [3] [4] [5]. At the beginning we rule out anti-symmetric resisitivity 
tensors as they occur if magnetic fields are applied, but Section 4 extends the 
range of validity to include the Hall-effect. 

The plane conductive region of a conventional Hall-plate has four peripheral 
point-sized contacts with consecutive labels 0, 1, 2, 3 in a positive mathematical 
direction (i.e. counter-clockwise). Thus, if we move along the boundary from 
contact 0 via 1 and 2 to 3 (in ascending order) the conductive region is on the 
left hand side. If current is forced to flow between two contacts and the voltage is 
tapped between two contacts, then van der Pauw used the ratio  

( ) { }, , , , 0,1, 2,3 .k mn n m kR V V I k m n= − ∀ ∈
 

             (1) 

,m nV V  are the electric potentials at the m-th and n-th contacts, and kI


 is 
the current entering the conductive region through contact k and leaving it 
through contact  . The quantity ,k mnR



 has the dimension “voltage over cur-
rent”, which is a resistance. The contacts for the current may be the same or they 
may be different from the contacts for tapping the voltage, in the latter case we 
call ,k mnR



 a trans-resistance. Depending on the sequence of the indices, trans- 
resistances may be positive or negative. Van der Pauw chose the sign in the defi-
nition (1) such that for rising sequence of contacts and their cyclic permutations 
the trans-resistances are positive, 01,23 12,300, 0R R> > . For point-sized contacts, 
the trans-resistances are the only finite resistances. 

For the sake of brevity, I define van der Pauw’s function  

( ) ( )01,23 sheet 12,30 sheet

: :

vdP : exp exp .
X Y

R R R R
= =

+π− −π=
 

          (2) 

X and Y are abbreviations for the exponential terms. Then the basic result for 
Hall-plates without a hole in [1] is van der Pauw ’s equation,  

vdP 1.=                            (3) 

In the van der Pauw plane ( ),X Y  Equation (3) is a straight line 1Y X= − . 
The peculiarity of (3) lies in the fact that it relates measurable electrical quanti-
ties 01,23 12,30,R R  to the sheet resistance sheetR  irrespective of any geometrical 
details, neither the shape of the Hall-plate nor the locations of the contacts are 
specified. Having measured the two trans-resistances, one can solve the nonli-
near Equation (3) to get the sheet resistance. This is van der Pauw’s method to 
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determine the sheet resistance. It works well in many practical cases. 
However, occasionally one faces the problem that some of the above given 

requirements are not fullfilled. Then van der Pauw’s method gives inaccurate or 
even wrong results for the sheet resistance. This is an inherent problem in mate-
rials science, where one needs to characterize novel materials. Often these sam-
ples have poor quality and poor homogeneity due to limitations in the manu-
facturing process, especially when the fabrication on a small laboratory scale is 
not yet mature [6] [7] [8]. From a practical standpoint, one would like to have a 
procedure that detects poor sample homogeneity and that gives error bounds for 
the derived sheet resistance. Inhomogeneous conductivity is supposed to have a 
similar effect to small voids. This is the motivation to study Hall-plates with 
holes.  

The topic was pioneered over the last decade in a couple of papers by Szymański 
and coworkers [9] [10] [11] [12]. They introduced the concept of upper and lower 
envelopes (u.e., l.e.) for conductive samples with a hole,  

l.e. vdP u.e. 1.≤ ≤ =                         (4) 

For constant hole size, the lower envelope depends only on X. Further contri-
butions came from [13]. For nearly one decade (4) was just a conjecture, while a 
strict mathematical proof was missing, until only recently a thesis solved this 
problem (with its potential generalization to more than one hole) at a fairly ela-
borate mathematical level [14] [15]. The present article gives new and simpler 
proofs for samples with a single hole with less sophisticated mathematics and 
closer to the physical intuition of an electrical engineer. The employed mathe-
matical tools are series expansions and conformal transformations which lead to 
Jacobi functions and elliptic integrals. 

There is a certain similarity of the current topic with another topic called the 
Hall/Anti-Hall bar [16] [17]. No Hall voltage appears there between any two 
points on the hole boundary if current flows between two points on the outer 
boundary of the Hall-plate. In van der Pauw’s measurement current flows be-
tween neighboring contacts and voltages are also tapped between neighboring 
contacts, whereas in common Hall-plates current flows between non-neighboring 
contacts and voltages are tapped between other non-neighboring contacts. In the 
Hall/Anti-Hall bar we cannot speak of neighboring contacts anymore, because 
current and voltage contacts are on different boundaries. The focus of interest in 
the Hall/Anti-Hall bar lies on the case of applied magnetic field (i.e., the Hall- 
effect with non-reciprocal conductivity tensor), whereas the focus of the present 
article lies on the case of zero magnetic field (i.e., simple ohmic conduction with 
scalar conductivity). 

This article starts with the easier case of a small hole, which leads us straight 
to the star-configuration and the minimum of the van der Pauw function. Then 
we compute the trans-resistances for arbitrary hole size with conformal trans-
formations, and we prove the upper and lower envelopes. We discuss some 
properties of the trans-resistances and how they are affected by a magnetic field. 
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Finally, we check the derived formulae with numerical simulations. 

2. Hall-Plates with a Small Hole 
2.1. Series Expansion of the Potential 

Let us start with a plane irregular ideal Hall-plate with a single irregular hole of 
arbitrary size. The entire inner and outer boundary is insulating except for four 
point-sized contacts 0 3, ,C C . Current 01I  is injected by an ideal current 
source at 0C  and extracted at 1C  while the voltage from 3C  to 2C  is meas-
ured. We know from Riemann that a conformal map exists, which maps the ir-
regular Hall-plate onto the unit disk with a central hole of radius 10 1r< < , 
whereby 1r  is the Riemann modulus of the singly-connected domain. Let us 
rotate the disk such that the current contacts 0 1,C C  are symmetrical to the real 
axis. Then, the azimuthal locations of the contacts are (see Figure 1)  

( ) ( ) ( ) ( )0 1 1 1 2 2 3 32 , , , ,C C C Cϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= − = = =π       (5) 

with ( )0 2Cϕ< π<


 being the azimuthal angle of the location of C


. The 
electrostatic potential at zero magnetic field, 0φ , is given in [17]. At the outer 
perimeter, it holds 

( ) ( )2
1

0 01 sheet 12
1 1

sin12 sin .
1

rI R
r

ϕ
φ ϕ

∞

=

+−
=

−π ∑












            (6) 

(6) is derived from a Fourier series which solves the Laplace equation of the 
potential in the annular region with insulating boundary conditions at the peri-
meter and at the hole. With 2

1r q=  and  

1

1 21 1 2
1 1

m

m

q q q
q q

∞

=

+
= + = +

− − ∑                   (7) 

(see (102) in Appendix A) this is 

( ) ( )2
0 01 sheet 1 1

1 1

sin2 1 2 sin .m

m
I R r

ϕ
φ ϕ

∞ ∞

= =

−  = + 
 π ∑ ∑ 









        (8) 

With (105) we get 
 

 

Figure 1. Plane annular Hall-plate with insulating boundaries and point-sized peripheral 
contacts 0 3C C . Current flows from 0C  to 1C . Voltage is tapped between 3C  and 

2C . The potentials in 2 3,C C′ ′  are identical to the potentials in 2 3,C C , respectively (see 
Section 3.2). 
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( )
( )

( )
( )

1
0 01 sheet

1

4 2
1 1 1

01 sheet 4 2
1 1 1 1

1 cos1 ln
2 1 cos

1 2 cos2 12 ln .
4 1 2 cos

I R

r r
I R

r r

ϕ ϕ
φ

ϕ ϕ

ϕ ϕ
ϕ ϕ

∞

=

 − −
=   − + 

 + − +−
+   + − −π  

π

∑
 

 



        (9) 

Rearranging this gives  

( )
( )

( )
( )

4 2
1 1 1 10 sheet

4 2
101 1 1 1 1

1 cos 1 2 cos
ln ,

1 cos 1 2 cos
r rR

I r r
ϕ ϕ ϕ ϕφ
ϕ ϕ ϕ ϕ

∞

=

 − − + − −
 =
 − + +π + − 

∏
 

 



   (10) 

which is equivalent to  

( )( )( )

( )( )( )

2
2 1

1
0

2
2sheet 01 1

1

cosh ln cos
22

exp .

cosh ln cos
2

r

R I
r

ϕ ϕ
φ

ϕ ϕ

∞

=−∞

 −  −       = 
 +    −   

  

π
∏






       (11) 

The term 0=  corresponds to the singly-connected Hall region with 1 0r = . 
The measured van-der-Pauw voltage is ( ) ( )32 0 3 0 2V φ ϕ φ ϕ= − . With  

01,23 32 01R V I=  this gives  

( )( )( )

( )( )( )

( )( )( )

( )( )( )

1 2

2
2 2 1

1
01,23

2
2sheet 2 1

1

2
2 3 1

1

2
2 3 1

1

cosh ln cos
2

exp

cosh ln cos
2

cosh ln cos
2

.

cosh ln cos
2

r
R

X
R

r

r

r

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

∞

=−∞

  −  −   −     = =    +     −      

 +  −   
   ×  −   −       

π
∏










    (12) 

If we inject the current at 1C , extract it at 2C  and measure  
( ) ( )03 0 0 0 3V φ ϕ φ ϕ= −  we can re-use (12) if we replace  

( )

( ) ( )

2 1
1

2 1 2 1
2 3 2 3

2 1 1 2
3 1 3 3 2

2

2 2
3

2 2 .
2 2

ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

−

− +
− + = −

− +
− − + − + =π −π







       (13) 

With 12,30 03 12R V I=  this gives  

( )( )( )

( )( )( )

( )( )( ) ( )( )

( )( )( )

2
2 3 2

1
12,30

2
2sheet 2 1

1

2 2
1

1 2

1

2
2 3 1

1

cosh ln cos
2

exp

cosh ln cos
2

cosh ln cos
.

cosh ln cos
2

r
R

Y
R

r

r

r

ϕ ϕ

ϕ ϕ

ϕ

ϕ ϕ

∞

−∞

  −  −   −     = =    +     −      


− ×  −   −       

π
∏










    (14) 
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A Taylor series for small holes 1 1r   keeps only the terms 1,0,1= − ,  

( ) ( )4 42 2
0 0 1 1 0 0 1 1d , d ,X X X r r Y Y Y r r= + + = + +            (15) 

with  

( )( ) ( )( )
( )( ) ( )( )

2 3 1 3 2
0

2 3 1 3 2

0 0

2 3 3 2 3 2
0 0 1 1

3 2 2 3 3 2
0 0 1 1

cos 2 cos 2
,

cos 2 cos 2

1 ,

d 4 cos cos cos ,
2 2 2

d 4 cos cos cos .
2 2 2

X

Y X

X X

Y Y

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

+ − + −
=

+ − − −

= −

+  − −      = − − +      
      

−  + −      = − − +      
      

    (16) 

,X Y  are defined in (2), 0 0,X Y  are the values for 1 0r = , and 0 0d ,dX Y  are 
the lowest order terms in 1r .  

( ) ( )42 3 2 3 12 1
1 1 1

vdP

1 16sin sin sin sin
2 2 2

1.

X Y

r rϕ ϕ ϕ ϕϕ ϕϕ

= +

− +−     = − × +     
     

<

  (17) 

In this equation, the coefficient of 2
1r  is positive, because 10 ϕ< < π  and 

1 2 3 12ϕ ϕ ϕ ϕ< < < −π . This is the simple proof that a small insulating hole 
reduces the van der Pauw function below 1. Equation (17) is also derived in 
[9]. 

2.2. Derivation of the Star-Configuration of Contacts 

A general contact arrangement is defined by three parameters 1 2 3, ,ϕ ϕ ϕ . For a 
specific set ( )1 2 3, ,ϕ ϕ ϕ  a certain value for 0 01Y X= −  follows. Yet, according 
to (16) there are many other sets ( )1 2 3, ,ϕ ϕ ϕ  which give the same 0 0,X Y . 
Which of all these sets causes the steepest drop of vdP  for small holes? In other 
words, for fixed trans-resistances of a singly-connected Hall-plate, how do we 
have to place the contacts such that the van der Pauw function becomes most 
sensitive to a small nucleating hole? Keeping 0X  fixed implicitly defines the 
azimuthal position 1ϕ  as a funcion of the other two positions, ( )1 1 2 3,ϕ ϕ ϕ ϕ= . 
From 0X const=  it follows 0 2 0X ϕ∂ ∂ =  and 0 3 0X ϕ∂ ∂ = , which gives  

0 0 0 01 1

1 2 2 1 3 3

0, 0.
X X X Xϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

∂ ∂ ∂ ∂∂ ∂
+ = + =

∂ ∂ ∂ ∂ ∂ ∂
            (18) 

The minimum of 0 0d dX Y+  means the largest negative slope of vdP  versus 
2

1r  for 1 0r → . There it holds ( )0 0 2d d 0X Y ϕ∂ + ∂ =  and  
( )0 0 3d d 0X Y ϕ∂ + ∂ = , which gives  

( ) ( )

( ) ( )

0 0 0 01

1 2 2

0 0 0 01

1 3 3

d d d d
0,

d d d d
0.

X Y X Y

X Y X Y

ϕ
ϕ ϕ ϕ

ϕ
ϕ ϕ ϕ

∂ + ∂ +∂
+ =

∂ ∂ ∂

∂ + ∂ +∂
+ =

∂ ∂ ∂

             (19) 
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We solve (18) for 1 2ϕ ϕ∂ ∂  and 1 3ϕ ϕ∂ ∂  and insert this into (19). With (16) 
and after some manipulation this gives  

( ) ( ) ( ) ( ) ( )( )1 2 3 1 2 3cos 2 cos cos cos cos 0,ϕ ϕ ϕ ϕ ϕ ϕ= − ∧ − =      (20) 

with the only meaningful solution 

2 1 3 1 .ϕ ϕ ϕ ϕπ π= − ∧ = +                   (21) 

Let us call this specific pattern of contacts a star-configuration—the contacts 
are in the vertices of a rectangle inscribed into the perimeter of the Hall-plate.  

For fixed trans-resistances 01,23R  and 12,30R  the drop in the van der Pauw 
function caused by a small hole gets largest, if the contacts are in a star- 
configuration.  

Inserting (21) into (17) gives  

( )( ) ( )
2 42

1 1 1vdP 1 4 sin 2 .r rϕ= − +                (22) 

From all star-configurations the one with the steepest decline of vdP  versus 
2

1r  is for  

1 2 3
3 5, , ,

4 4 4
ϕ ϕ ϕπ π

=
π

= =                  (23) 

where all four contacts are equidistant, i.e., they are in the vertices of a square 
inscribed in the perimeter of the Hall-plate. This configuration gives the smallest 
possible vdP  for a given hole of small size 1r ,  

( )142 4 6 8 10 12
min 1 1 1 1 1 1 1vdP 1 4 8 16 32 56 96 .r r r r r r r= − + − + − + +     (24) 

Inserting (21) into (16) into (15) gives  

( )( ) ( ) ( )

( )( ) ( ) ( )

42 2 2
1 1 1 1

42 2 2
1 1 1 1

1 8 sin cos ,

1 8 cos sin .

X r r

Y r r

ϕ ϕ

ϕ ϕ

= − +

= − +

  

  




           (25) 

Eliminating 1ϕ
  from (25) gives a curve in the van der Pauw plane ( ),X Y , 

which holds for star-configurations with small holes, 1 1 8r  ,  

( )22 2 2
1 1 12

1

1 1 8 1 8 32 .
8

Y r X r r X
r
 = + − − + 
 

            (26) 

This is the small-hole approximation of the lower envelope as it will be ex-
plained in Section 3.3. 

For holes of arbitrary size a strict proof of vdP 1≤  appears to be difficult, 
because the trans-resistance 01,23R  may increase or decrease versus hole radius 

1r  for holes of small and moderate size. 

Example: For the Hall-plate in Figure 1 set 1 10ϕ = , 2 20ϕ = . Then 32V  
(and consequently 01,23R ) increases for 3 270ϕ =  while it decreases for 

3 90ϕ =  when the hole grows from 1 0 0.1 0.5r = → →  (see also curves 1, 
4 in Figure 9(a)). 

The decrease of 01,23R  may come a bit surprizingly: a trans-resistance may 
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get smaller if one cuts out a bigger hole of the conductive medium. For the ex-
planation we consider an elongated asymmetric hole in radial direction extend-
ing from the center of the disk up to very close to the perimeter, see Figure 2. 
This asymmetric geometry can be mapped onto a symmetric one with a central 
circular hole (Any plane domain with a single hole can be mapped conformally 
to a circular ring with inner radius 1r  and outer radius 1 [18]). The radial slit 
may be placed in-between the two voltage taps. This increases the trans-resistance. 
However, it may also be placed outside the two voltage taps. Then, a larger frac-
tion of the total supply voltage drops outside the voltage taps, and therefore the 
trans-resistance becomes smaller. Thus, by the placement of the hole one can 
make the voltage 32V  smaller or larger. 

Next we have a look at the trans-resistances of Hall-plates with contacts in a 
star-symmetry as defined in (21) and shown in Figure 3(a). Without loss of 
generality, the restriction ( ]1 , 20ϕ ∈ π  is used, if 1 2ϕ > π  we only have to 
shift the indices of all contacts by one instance further to pull 1ϕ  again inside 
( ]0, 2π . From (12) and (14) we get 

( ) ( )

( ) ( )

2

1 101,23
1 2

1sheet 1

2

1 112,30
1 2

1sheet 1

2 sin2 ln cos 1
1

2 cos2 ln sin 1 .
1

rR
R r

rR
R r

ϕ
ϕ

ϕ
ϕ

∞

=

∞

=

   −    = −   +     
   −    = −   +   

π

π
  

∏

∏













 


 

 


 

        (27) 

In contrast to the example given above, both trans-resistances increase with 
growing hole if the contacts are in a star-configuration. This can be readily seen 
in (27). The plot in Figure 3(b) visualizes this fact. The inequality (17) holds for 
small holes, and according to (27) both trans-resistances increase for larger holes. 
Therefore the inequality vdP 1≤  holds also for large holes in the case of a  - 
symmetry. 
 

    
(a)                              (b) 

Figure 2. A radial slit may increase or decrease a trans-resistance depending on its loca-
tion. Yet, if it increases the first trans-resistance 01,23R , it decreases the second trans- 

resistance 12,30R . (a) Circular Hall-plate with a radial slit between the voltage taps 3 2C C−  

increases 01,23R  when the hole grows; (b) Circular Hall-plate with a radial slit outside the 

voltage taps 3 2C C−  decreases 01,23R  when the hole grows. 
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(a) 

    
(b)                                  (c) 

Figure 3. A symmetrical annular Hall-plate with four symmetrical point contacts has 
three degrees of freedom, 1ϕ

 , 1r
 , and sheetR . Its transresistance 01,23R  is a concave 

surface above the ( )1 1,rϕ   -plane. Two values of trans-resistances, 01,23 sheetR R=  and 

12,30 sheet2R R= × , give two curves in the ( )1 1,rϕ   -plane, which intersect in a unique point 

( ) ( )1 1, 0.650645,0.763757rϕ =  . (a) A symmetric annular Hall-plate (  ) with four 

point-contacts in the vertices of an inscribed rectangle; (b) Its normalized trans-resistance 

01,23 sheetR R  versus 1ϕ
  and 1r

  is a concave surface subtending all values 01,230 R< < ∞ ; 

(c) Two intersecting curves are generated, when the surfaces 01,23R  and 12,30R  are cut 

through at different heights sheetR  and sheet2 R× . 

 
The two functions in (27) have a couple of useful properties. Not only are they 

monotonic in 1r
 , they are also monotonic in 1ϕ

  in the relevant interval 

10 2ϕ≤ ≤ π . 01,23R  strictly increases with 1ϕ
 , whereas 12,30R  strictly de-

creases. Both functions are mirrored at 1 4ϕ = π  (note that the terms ( )1sin ϕ   
and ( )1cos ϕ   are swapped in the two equations in (27)). For a fixed value of 

1r
  the trans-resistance 01,23R  goes from 0 →∞  if 1ϕ

  goes from 0 90→ . 
Conversely, 01,23R  goes from ( ) ( )( )sheet 12 ln cosR ϕπ →∞  if 1r

  goes from 
0 1→ . Hence, 01,23R  goes up monotonically if one moves radially away from 
the origin in the ( )1 1, rϕ   -plane. The surface in Figure 3(b) is concave. If the 
left hand sides in (27) are given, each of the two equations gives a curve in the 
( )1 1, rϕ   -plane in the domain 1 10 ,2 0 1rϕ≤ ≤ ≤ ≤π  . The first curve encircles 
the origin while the second curve encircles the point ( ) ( )1 1 2, ,0rϕ π=   (be-
cause of the mirror symmetry of both surfaces, see also Figure 3(c)). Each curve 
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gives 1r
  as a strictly monotonic function of 1ϕ

 . If we intersect the 01,23R - 
surface at two different heights we get two curves, which have no common point 
(they do not intersect and they do not touch). If we mirror the second curve at 

1 4ϕ = π  this reflects the measurement of the second trans-resistance 12,30R . If 
the two curves cross, due to their monotonicity they have to cross in a single 
uniquely defined point, which gives 1r

  and 1ϕ
  as shown in the example of 

Figure 3(c). However, if both trans-resistances are very small this would shift 
the 01,23R -curve left of 1 4ϕ = π  and the 12,30R -curve right of 1 4ϕ = π , such 
that the two curves would not cross at all. In this case the 01,23R -curve starts at 

1ϕ′  at 1 0r =  in Figure 3(c) while the 12,30R -curve starts at 1 1ϕ ϕ′′ ′> . With (27) 
it follows  

( )
( )

( )
2

1

2 2
1 1

1 sin

vdP cos sin 1,X Y
ϕ

ϕ ϕ
′= −

′ ′′= + = + >


             (28) 

because it holds ( ) ( )1 1sin sinϕ ϕ′ ′′<  for 1 1 20 ϕ ϕ′ ′′< < π< . Equation (28) contra-
dicts the classical van der Pauw Equation (3) for singly-connected plates 
( 1 0r → ), and therefore we can rule out this case. Thus, we have proven that… 

…for any  -arrangement of contacts with fixed sheet resistance the mea-
surement of both trans-resistances 01,23 12,30,R R  defines two curves like in 
Figure 3(c), which intersect in exactly one point. This point specifies the 
hole radius 1r

  and the locations 1ϕ
  of the contacts. 

For any doubly-connected Hall-plate with arbitrary 1 2 3 1 sheet, , , ,r Rϕ ϕ ϕ  we can 
find a  -configuration of contacts with 1 4ϕ ≤ π , which has the same trans- 
resistances 01,23 01,23 12,30 12,30,R R R R= =  , but generally different hole size 1r

  and 
different sheet resistance sheetR .  

The proof goes like this: 
Suppose we have a general asymmetrical contact placement, which gives 
two measurement results 01,23 12,300 R R≤ ≤ < ∞ . If accidentally the mea-
surement returns 01,23 12,30R R>  we simply swap the two trans-resistances 
by moving all contacts one instance further. Now we consider a hypotheti-
cal Hall-plate with a  -symmetry as in Figure 3(a). We choose its sheet 
resistance  

( )sheet 01,23.
ln 2

R Rπ
=                      (29) 

Then it follows from (27) that 1 4ϕ = π , if this Hall-plate had no hole, 

1 0r = . If it has a hole, 1ϕ
  is smaller, but at this moment we do not know 

anything about the hole. If we set 01,23 01,23R R=  we get a first curve in the 
( )1 1, rϕ   -plane which starts at ( ) ( )1 1 4, ,0rϕ π=   and encircles the origin 
counter-clockwise. We also set 12,30 12,30R R= , which gives a second curve 
that encircles the point ( )02,π  in the ( )1 1, rϕ   -plane clock-wise. Since 

12,30 01,23R R≥  the second curve starts at a point on the 1ϕ
 -axis, which is 

left of 1 4ϕ = π . Therefore, the two curves must intersect. Since all curves 
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are strictly monotonic in 1ϕ
 , they must intersect in a single point only. 

This gives the unique solution of a hypothetical  -Hall-plate, which has 
the same trans-resistances as our original Hall-plate, albeit it has a different 
hole and a different sheet resistance.  

This argument clearly shows that one cannot determine the sheet resistance of 
a doubly-connected Hall-plate with the measurement of both trans-resistances 
as in the singly-connected case, unless one has additional information about the 
hole or the contacts placements. In general it holds sheet sheetR R≠ , either one can 
be larger than the other one. For the  -case the value of the van der Pauw func-
tion vdP  is bounded: we insert (29) into (2)  

( )
12,30

01,2312,30

01,23

1 1 1vdP exp ln 2 1,
2 2 2

R
RR

R
 −  = + = + ≤       

        (30) 

which is fulfilled due to our assumption 01,23 12,30R R≤ . 

3. Hall-Plates with a Large Hole 
3.1. Conformal Mapping of the Annular Hall-Plate 

Next we apply conformal mapping to the general ring-shaped Hall-plate from 
Figure 1. Since the current contacts are symmetric to the real axis it is clear that 
all points { } 11 z r− ≤ ℜ ≤ −  and { }1 1r z≤ ℜ ≤  on the real axis are at the same 
potential, say 0 V. There we can insert a contact. We can further cut the ring 
apart at the positive real axis, apply contacts at both cut edges, and short them 
with a wire (see Figure 4(a)), without affecting the potential in the annular re-
gion. From the discussion in [17] we know that the fraction ( )11 ϕ− π  of the 
current flows through the shorted wire, independent of the size of the hole. The 
conformal transformation  

( )logw z=                        (31) 

maps the annulus in the z-plane to the rectangle in the w-plane shown in Figure 
4(b). The width of this rectangle is ( )1ln r  and its height is 2π . The outer pe-
rimeter of the ring in the z-plane appears at the right edge of the rectangle in the 
w-plane, whereas the hole boundary appears at the left side of the rectangle. A 
Schwartz-Christoffel transformation maps this rectangle from the w-plane onto 
the upper half of the ζ -plane in Figure 4(c),  

1 2
4 4

d .
1 1

w c cζ
ζ ζ ζ ζ ζ ζ

= +
− − + +∫            (32) 

In the w-plane the current contacts ,C G  are placed symmetrically to the 
large contacts ,AB HJ . Thus, also in the ζ -plane they are symmetrically to 
the large contacts. From the sequential order of the points on the rectangular 
boundary in the w-plane it follows the same order in the ζ -plane,  

0 2 3 0 4 5 01 with 0.ζ ζ ζ ζ ζ ζ ζ− < < < < < < >          (33) 

It holds 
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(a)                                    (b) 

 
(c) 

 
(d) 

Figure 4. Conformal transformations of a doubly-connected Hall-plate, which is cut open 
to give a singly-connected Hall-plate if current flows between points G and C. Contacts 

AB HJ=  are inserted at the cuts. The annular region in the z-plane is mapped to a rec-
tangle in the w-plane, to the upper half of the ζ -plane and to an infinitely long stripe 
with a longitudinal slit in the t-plane. Points ,K M  are the stagnation points when cur-
rent flows between G to C. (a) Hall-plate in the z-plane; (b) Hall-plate in the w-plane; (c) 
Hall-plate in the ζ -plane; (d) Hall-plate in the t-plane. 
 

( ) ( )4 1
1 1 41

4 4

dln ,
1 1H J

cr w w c K
i

ζ ζ ζ
ζ ζ ζ ζ ζ ζ

− ′= − = =
− − + +∫  (34) 

where ,H Jw w  are the locations of the points ,H J  in the w-plane, respective-
ly, K ′  is the complementary complete elliptic integral of the first kind (see 
Appendix B), and 1i = − . It also holds  

( )4
1 1 40

4 4

d .
1 1H Ei w w c c K

ζ ζ ζ
ζ ζ ζ ζ ζ ζ

= − = = −π
− − + +∫    (35) 

Combining (34) and (35) gives  

https://doi.org/10.4236/jamp.2022.103066


U. Ausserlechner 
 

 

DOI: 10.4236/jamp.2022.103066 972 Journal of Applied Mathematics and Physics 
 

( ) ( )
( )

( )1 14
4

4

ln ln
,

r rK
L

K
ζ

ζ
ζ

 ′
= ⇒ = 

 π

π

             (36) 

with the modular lambda elliptic function ( )L y  (see Appendix B). Inserting 
the right side of (36) into (35) gives the scaling constant 1c  of the mapping (32). 
The locations 0ζ±  of the point current contacts ,C G  in the ζ -plane follow 
from  

( )

( )

0
1 1 0

4 4

0 0 1
1 4 4 4

4 4

d
1 1

, sn 1 , ,

G Ei w w c

c F K

ζ ζϕ
ζ ζ ζ ζ ζ ζ

ζ ζ ϕ
ζ ζ ζ

ζ ζ

− = − =
− − + +

    = − ⇒ = −

π

π   
   

∫
        (37) 

with the Jacobi-sine function ( )sn ,u k  from the Appendix B. In an analogous 
way we find the locations of the voltage taps ,D F  in the ζ -plane,  

( )

( )

2 2
4 4

4

3 3
4 4

4

= sn 1 , ,

sn 1 , .

K

K

ζ ϕ
ζ ζ

ζ

ζ ϕ
ζ ζ

ζ

  − −  
  
  = − −  


π

 π

                (38) 

A final transformation maps the upper half of the ζ -plane onto the infinite 
stripe in the t-plane in Figure 4(d),  

( )( )
( ) ( )

5 5
3 4

0 4 4 0

d
.

1 1
t c c

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

− +
= +

− − − + + +∫       (39) 

The point of the input current is at Gt →∞ , the point of the output current 
is at Ct → −∞ . The structure is folded in such a way that the large contacts HJ  
and AB  are placed back to back: current ( )01 11I ϕ− π  exits the right upper 
part of the stripe through contact HJ  and it enters the left upper part of the 
stripe through contact AB . The hole degenerates to a slit MK  with zero width. 
The slit is aligned in current flow direction. The points K and M are the stag-
nation points of the current flow pattern. The exterior angles at points ,G Ct t  
are π , at points ,K Mt t  they are −π , which brings the terms ( )5ζ ζ±  to the 
numerator and the terms ( )0ζ ζ±  to the denominator of the integrand in (39). 
The ultimate goal of all these transformations is to achieve homogeneous current 
density in the stripe in the t-plane. Then the distance between points Dt  and 

Ft  gives the voltage 32V . There are still two unknowns 3 5,c ζ  to be deter-
mined. With 5ζ  we make the width of the slit zero,  

( )( )
( ) ( )

( )
( )

1 5 5
3

0 4 4 0

2 2
0 5

1 12 2 2 2 2 2 2 2
4 0 4

d
0

1 1

dd 0.
1 1

J Lt t c
ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζζ

ζ ζ ζ ζ ζ ζ ζ ζ

∞

∞ ∞

− +
− = =

− − − + + +

−
⇒ + =

− − − − −

∫

∫ ∫
   (40) 

With the substitution 1x ζ=  and with [19] this gives  
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( )
( ) ( )

2 2
45 0

2 2
0 0 4 4

,
,
K

K
ζζ ζ

ζ ζ ζ ζ
−

=
Π −

                   (41) 

with the complete elliptic integral of the third kind ( )2
0 4,ζ ζΠ  (see Appendix 

B). The scaling constant 3c  follows from  

( )
( )

( )
0

0

2 2
5

3 2 2
0 4 4

d
,

1 1H Ei t t i c
ζ

ζ

ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ
+

−

−
− = =

− − − + +∫       (42) 

whereby the integration path is an infinitely small semi-circle around 0ζ , i.e., 
( )0 exp iζ ζ ε ϕ= +  with 0ε →  and : 0ϕ π→  (see Figure 4(c)). We arbitra-

rily choose the width of the stripe equal to 1. With ( )d exp di iζ ε ϕ ϕ=  it fol-
lows  

( ) ( )
( )
( )

2 2
0 0 5

3
0 0 4 0 0 0 4

2 2
0 5

3 2 2 2
0 4 0 0

exp d

exp 2 1 1

,
2 1

i i
i c

i

i
c

ζ ζ ε ϕ ϕ

ε ϕ ζ ζ ζ ζ ζ ζ ζ

ζ ζ

ζ ζ ζ ζ

π

−
=

− − + +

− −
=

− −

π

∫
        (43) 

from which we get 3c . The measured voltage is ( )32 01 sheet F D H EV I R t t t t= − −  
with  

( )
( )

3

2

2 2
5

3 2 2
0 4 4

d
,

1 1F Dt t c
ζ

ζ

ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

−
− =

− − − + +∫         (44) 

which is split up in two integrals  

( )3

2

3 3 22
4 4 42 2 2

4 44

d , , = ,
1

F F K
ζ

ζ

ζ ϕ ϕζζ ζ ζ ζ
ζ ζζ ζ ζ

    −
= −   

− −   π 
∫     (45) 

(the equality at the right side comes from (113) and (38)) and  

( )
3

2 2 2 2 2 2
0 4

2 2
3 4 2 4

4 42 2 2
4 40 0 0

d

1

1 arcsin , , arcsin , , .

ζ

ζ

ζ

ζ ζ ζ ζ ζ

ζ ζ ζ ζ
ζ ζ

ζ ζζ ζ ζ

− − −

       
= Π −Π                  

∫
       (46) 

Both integrals (45) and (46) are solved by substituting 1 xζ = . ( ), ,w n kΠ  
is the incomplete elliptic integral of the third kind (see Appendix B). Summing 
up the results of (43) - (46) gives the trans-resistance as a function of parameters 
in the ζ -plane,  

( )
( )

22 2 2
0 401,23 4 0 032

sheet sheet 01 0 4

2 2
3 32 4 2 4

4 4 4 42 2
4 4 4 40 0

,12 1

, , , , , , .

R V
R R I K

F F

ζ ζζ ζ ζ
ζ ζ

ζ ζζ ζ ζ ζ
ζ ζ ζ ζ

ζ ζ ζ ζζ ζ

 Π− −  = = −  
         × − +Π −Π                  

π
     (47) 

The hole size is reflected by 4ζ  (see (36)), and the three azimuthal positions 
of the point contacts are given by 0 2 3, ,ζ ζ ζ  (see (37), (39)). Expressing the 
trans-resistance in terms of the physical parameters 1 2 3 1, , , rϕ ϕ ϕ  gives  
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( )( )01,23 2 3 21
1

sheet 1

2 32 2
1 1

1 1
1 1

2 2
1 1 1 1 1

2
2 3

dn2 1 dn ,
sc

1 1sn , , sn , , ,
sn sn

sn sn 1 , and cn cn 1 ,

sc sn cn and dn 1 sn

sn sn 1 , and sn sn

R
k K

R

k k

K k K k

k

K k

ϕ ϕ

ϕ ϕ

ϕ

−= Π − −


   +Π −Π    
   

    = − = −    
 

π π

 
 π π  

= = −

  = − =  
 



π 



( )
( )

3

1
4

1 ,

ln
and .

K k

r
k L K K k

ϕ

ζ

 
− 

 

 
= = =  

 
 


 

π 

π

       (48) 

In (48) sn, cn, dn are Jacobi functions (see Appendix B). The modular lambda 
elliptic function L simply scales 1r k  in a highly non-linear way. For the 
second trans-resistance we can use the replacements (13) in (48). With these 
formulae for the trans-resistances 01,23R  and 12,30R  we will proof two basic 
properties of doubly-connected plates with peripheral point contacts in the fol-
lowing sections. 

3.2. Proof of the Upper Envelope 

The upper envelope was first conjectured in [9]. It reads 

vdP 1,≤                           (49) 

for arbitrary placement of the point-contacts on the outer perimeter of a Hall-plate 
with one insulated hole of arbitrary size. The inequality (49) was proven recently 
in [14] by arguments using the prime function and Fay’s trisecant identity. This 
Section presents an alternative proof based on the conformal mapping in Figure 
4(d). It is short and elegant and it needs no numerical computations. 

We start with a general contact arrangement in Figure 4(a), 

( ) ( ) ( ) ( )
1 1 2 3 1

1 2 3 1

0 2 ,
exp , exp , exp ,

2
exp .C i D i F i G i

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

< ≤ ∧ < < < −

= = = = −

π π
    (50) 

If accidentally 1 2ϕ > π  we shift all contacts by one instance to get 1 2ϕ ≤ π . 
The current splits in two parts, one flowing left around the hole and the other 
one flowing right around the hole. Thus, there must be a point F' right of the 
hole, which has the same potential as point F (=contact 3C ) left of the hole. 
There must also be a point D' right of the hole, which has the same potential as 
point D (=contact 2C ) left of the hole. Let us call the potential in point F 3V , in 
point D 2V , in point F' 3V ′ , and in point D' 2V ′ . Then it holds 32 3 2V V ′ ′=  and 
this means 01,23 01,2 3R R ′ ′= . In Figure 4(d) we can easily localize points F' and D'. 
Point F' has the same horizontal position as point F, however, point F' is on the 
upper edge of the stripe, whereas point F is on the lower edge. The same applies 
to points D and D'. 

When the second trans-resistance 12,30R  is measured, current flows between 
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points C (=contact 1C ) and D (=contact 2C ) and the voltage is measured be-
tween points G (=contact 0C ) and F (=contact 3C ). Analogously, for 12 ,3 0R ′ ′  
current flows between points C and D′  and the voltage is tapped between 
points G and F'. However, Figures 4(a)-(d) do not apply in this case, because 
now the potential distribution is asymmetric. Hence the potential along the 
straight line HJ  is not constant and therefore we are not allowed to insert an 
extended contact there. In fact we have to step back to (31) which maps the an-
nulus of Figure 1 without a cut and without large contacts ,AB HJ  to an infi-
nite stripe made up of rectangles like in Figure 4(b) lined up along the { }wℑ - 
direction yet without the extended contacts. Instead of the annulus we can think 
of a helical track that winds around the out-of-plane axis of Figure 1 infinitely 
often, whereby all four contacts repeat after every full revolution. This is shown 
in Figure 5(a), where we have infinitely many current and voltage contacts, each 
ones shorted with a pole, and the potential is periodic in each turn of the spiral. 
The first turn of the spiral for azimuthal angles 0 2ϕ≤ < π  is called the Rie-
mann sheet #0. It is followed by Riemann sheet #1 for azimuthal angles 
2 4ϕπ ≤ < π  and it is preceded by Riemann sheet ( )# 1−  for azimuthal angles 

2 0ϕ− π ≤ < . This trick extablishes an equivalence between the doubly-connected 
domain in Figure 1 and the infinite singly-connected domain in Figure 5(a) (in  
 

     
(a)                                (b) 

   
(c)                                   (d) 

Figure 5. Helical and multi-storey surfaces can represent doubly-connected Hall-plates. 
The potential in each loop or storey is periodic. The poles short the respective contacts in 
all loops and storeys. The plots are meant only as an illustration of the infinite number of 
Riemann sheets. (a) Two loops of an infinite helical Hall-plate. Each loop corresponds to 
a new Riemann sheet. The poles are contacts 0 1 2 3, , ,C C C C ; (b) A multi-storey Hall-plate, 

each storey corresponds to a new Riemann sheet. The four poles are contacts 0 1 2 3, , ,C C C C . 
Note the tiny slits across a major part of the width in all storeys; (c) Current streamlines 
in two storeys of the multi-storey Hall-plate if current flows from 2C  to 1C ; (d) Top 
view on current vectors and potential in the multi-storey Hall-plate if current flows from 

2C  to 1C . Note the current flowing smoothly around the longitudinal slit. 
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fact we may also consider it doubly-connected because it closes at infinity, thus 
we have shifted the closure to infinity). Applying the transformation (31) to 
Figure 1 gives an infinite stripe made up of infinitely many replications of the 
rectangle of Figure 4(b) with all its contacts. The Schwartz-Christoffel transfor- 
mation (32) maps this infinite stripe to infinitely many Riemann sheets, which 
all look like in Figure 4(c), yet the potentials along AB  and HJ  are not 
homogeneous. Instead, Riemann sheet #0 is connected to Riemann sheet #1 along 
HJ  and it is connected to Riemann sheet ( )# 1−  along AB . The final map-

ping (39) gives a structure like in Figure 5(b), which comprises infinitely many 
storeys. Each storey represents one Riemann sheet. Each storey is connected to 
the upper one along HJ  and to the lower one through AB  of Figure 4(d). 
The voltage and current contacts are at identical positions in all storeys, and the 
potential is identical in all storeys. This justifies our last step, where we collaps 
all storeys to a single one, whereby we can join the loose ends AB  with HJ  
in such a way that A coincides with J and B coincides with H. This final domain 
is identical to the one in Figure 4(d) with the only difference that the potential 
along line AB HJ=  is not homogeneous, and therefore the contacts ,AB HJ  
are deleted and the edges ,AB HJ  are glued together. This is shown in Figure 6. 

Now we consider the measurement of 12,30R  in Figure 6. Thereby, current 
flows between 1C C=  and 2C D= . We may choose the polarity of the current 
arbitrarily, for physical intuition it might be simpler to inject the current in 
point D instead of point C and extract it at point C instead of D. Analogously, 

12 ,3 0R ′ ′  is measured by injecting current at point D′ , extracting it at point C, 
and measuring the voltage between points F ′  and G. Now the slit plays a deci-
sive role: since we started with 10 2ϕ< ≤ π  the slit in Figure 6 is closer to the 
lower edge with points ,D F  than to the upper edge with points ,D F′ ′ . The 
slit represents an obstacle to the current flow, and therefore the voltage between 
points ,F G  must be larger than the voltage between points ,F G′ . Hence, it 
holds 12,30 12 ,3 0R R ′ ′> . 

The reciprocity principle [20] says that at zero magnetic field the voltage be-
tween F D′ ′  for current flowing between GC is identical to the voltage between  
 

 

Figure 6. Annular Hall-plate in the t-plane with longitudinal slit. Current may flow be-
tween arbitrary contacts 0 1 2 3, , ,C G C C C D C F= = = = , in this example the current 

flows from G to C, which gives a homogeneous current density with 32 3 2V V ′ ′= . 
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GC for current flowing between F D′ ′ . In fact this also holds in the presence of 
a magnetic field as long as the entire boundary is insulating with all point-sized 
current contacts on the same boundary with G and C being neighbours as well 
as F ′  and D′ , see Section 4. 

To sum up, we have two sets of contacts in Figure 1, the original points 

0 1 2 3, , ,C C C C  and the new points 3 2 1 0, , ,C C C C′ ′ , whereby the first trans-resis- 
tances are identical, 01,23 3 2 ,10R R ′ ′= , but the second trans-resistance is smaller 
for the new points, 2 1,03 12,30R R′ ′ < . 

I call this transformation 0 1 2 3 3 2 1 0, , , , , ,C C C C C C C C′ ′→  a contraction, be-
cause the new points are closer together than the old ones. 

Let us repeat the contraction process infinitely often, until all four contacts are 
infinitely close together. 

In this limit the contacts are so close together that the current arcs between 
the current contacts are tiny. Then the hole is comparatively distant and it 
does not affect the current distribution any more. Thus the potentials at the 
voltage contacts become identical to the potentials in a singly-connected Hall 
plate. 

However, for singly-connected Hall plates the van der Pauw Equation (3) holds. 
Since the second trans-resistance decreased during the contraction process, the 
inequality (49) must hold before contraction. This completes the proof. 

The essential step in the proof was to show that 12 ,3 0 12,30R R′ ′ <  holds. To this 
end we used the arguments of the multi-storey Hall-plate in Figure 5 to justify 
Figure 6, in which the slit was a bigger obstacle for 12,30R  than for 12 ,3 0R ′ ′ . We 
can avoid the use of multi-storey Hall-plates by the following line of arguments. 
We use Figure 1. In the measurement of 12,30R  current 12I  flows from 1C  to 

2C  and voltage 03V  is tapped. Thereby a first current ( ) ( )12 2 1 2I ϕ ϕ− π  flows 
clockwise around the hole [17]. In the measurement of 12 ,3 0R ′ ′  we inject the 
same current 12I  into 1C  and extract it at 2C ′  and we tap the voltage 03V ′ . 
Thereby a second current ( ) ( )12 1 2 2I ϕ ϕ ′− π  flows counter-clockwise around 
the hole, whereby 2ϕ ′  is the azimuthal position of 2C ′ . If 2C ′  is in the lower 
half of the z-plane it holds 1 2 0ϕ ϕ ′− <  and then the current is  

( ) ( )12 1 22 2I ϕ ϕ ′π+ − π . We have to prove that 03 03V V′ < . Per definition, the 
point 2C ′  was obtained from 2C  by a contraction process, therefore it holds 

1 2 2 1ϕ ϕ ϕ ϕ′− < − . If 2C ′  is in the lower half of the z-plane it holds  

1 2 2 12ϕ ϕ ϕ ϕ′− < −π+ . Consequently, in any case the first current is larger than 
the second current, because 2C  is more distant from 1C  than 2C ′  is from 

1C . If we superimpose both measurements, identical currents 12I  flow simul-
taneously from 1C  to 2C  and from 1C  to 2C ′  and a positive net current 
flows clockwise around the hole in a direction from 3C ′  towards 3C . Since 
there are no current sources except in 1 2 2, ,C C C ′  the potential drops monoton-
ically along the clockwise current streamline on the outer perimeter from 3C ′  
to 3C . This means 3 3V V′ > , which means 03 03V V′ < , which again completes 
this proof. 
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3.3. Derivation of the Lower Envelope 

The upper envelope theorem implies that for any doubly-connected Hall-plate 
we can find a  -configuration which has the same trans-resistances 01,23 12,30,R R  
and the same sheet resistance. This is not a specific property of  -configura- 
tions. Also other contact patterns have the same property: e.g. contacts with 

1 22ϕ ϕ= <π < π  and 2 3ϕ ϕ− =π − π , let us call them type 2 configurations, 
are also able to assume any physically meaningful pairs of values for the two 
trans-resistances (see Figure 7). 

In the van der Pauw plane of Figure 7, a specific Hall-plate is represented by a 
dot. During the contraction process (c.p.) this point moves vertically up in the 
van der Pauw plane until it finally is on the straight line 1Y X= − , which is the 
upper envelope (u.e.). If we reverse the contraction process we can expand the 
contact arrangement, whereby the point moves down in the van der Pauw plane. 
However, this expansion process (e.p.) stops when the spacing between the cur-
rent contacts, 0 1C C− , is larger than the spacings of all other neighbouring 
contacts, 1 2 2 3 3 0, ,C C C C C C− − − , and the voltage contacts are in the obtuse an-
gle of the current contacts. This brings us in a natural way to the question of the 
smallest possible Y and the smallest possible vdP X Y= +  for fixed X. For the 
 -configuration of contacts we know that the van der Pauw function decreases 
with larger holes and for 1 4ϕ → π . On the other hand, the van der Pauw func-
tion tends to its maximum of 1 if only the contact arrangement is contracted 
sufficiently, or if 1 1 20ϕ ϕ∨ → π→  in a  -configuration. Then, one trans- 
resistance goes to infinity and the other one to zero. Thus, the question arises, 
what is the minimum van der Pauw function, if the hole and one trans-resistance 
are fixed. In other words, what are the maximum second trans-resistance and its 
associated contact locations? For every arbitrarily chosen first trans-resistance 
we get a maximum second trans-resistance. The set of all these pairs is called the 
lower envelope (l.e), because all Hall-plates with a fixed Riemann modulus are 
repesented by points between upper and lower envelopes. 
 

 

Figure 7. In the van der Pauw plane ( ),X Y  each Hall-plate is represented by a dot. It 

moves up in the contraction process (c.p.) and down in the expansion process (e.p.). The 
upper envelope (u.e.) is the line 1Y X= − . The lower envelope (l.e) is given by (69). 
Type 2 and type 3 contact arrangements give the curves 2 and 3, respectively. The three 
curves ( ),2,3  assume a hole of size 1 1 2r = . 
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[9] conjectured that the lower envelope is given by  -contact arrangements 
and this was also proven in [14]. For small holes, our derivation of (21) leads 
straight to the same conjecture. A precise statement of the lower envelope reads:  

For a fixed trans-resistance 01,23R  the arrangement of the point contacts 
for largest 12,30R  is a  -arrangement.  

3.4. A Proof of the Lower Envelope 

In mathematical terms the lower envelope is defined like this: 
Equation (48) gives 01,23R  as a function of the contacts’ positions 1 2 3, ,ϕ ϕ ϕ . 

If 01,23R  has to remain constant, this defines ( )1 2 3,ϕ ϕ ϕ  as an implicit func-
tion of 2ϕ  and 3ϕ . If we compute 12,30R  analogous to (48) and insert the im-
plicit function of ( )1 2 3,ϕ ϕ ϕ , this gives a function of two degrees of freedom, 

( )12,30 2 3,R ϕ ϕ . We want to prove that this function assumes a unique maximum 
if 2 1ϕ ϕ= π−  and 3 1ϕ ϕ= π+ , which is the  -configuration as it is defined in 
(21). 

Put in another way,  

( )( ) ( )( )

( )( ) ( )( )

01,23 1 2 3 2 3 01,23 1 2 3 2 3

2 3

12,30 1 2 3 2 3 12,30 1 2 3 2 3

2 3

2 1 3 1 1

, , , , , ,
0, 0,

, , , , , ,
0, 0,

for and and ,20

R R

R R

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂

π

∂

= − = + ≤π π<

   (51) 

whereby the first line of (51) reflects the constancy of trans-resistance 01,23R  
and the second line defines the extremum of 12,30R . The proof gets simpler if we 
apply the following transformations. Instead of the free parameters 1 2 3, ,ϕ ϕ ϕ  
we use (37), (38) and (113) to introduce new parameters 0 2 3, ,F F F ,  

0 1
0

2 2
2

3 3
3

, 1 ,

, 1 ,

, 1 ,

F F k K
k

F F k K
k

F F k K
k

ζ ϕ

ζ ϕ

ζ ϕ

   = = −  
  

   = = − −   
   
   = = − −   
   

π

π

π

                 (52) 

with ( )K K k=  and 4k ζ=  like in (48). From (50) it follows  

0 0 2 3 0and .4 2K F K F F F F≤ ≤ < − < < <π            (53) 

The replacements (13) were used to compute 12,30R  with the same formula as 

01,23R . In terms of the new parameters 0 2 3, ,F F F  the replacement rules become  

0 0 2

2 0 2 3

3 0 2

2 2
2 2

3 2 2.

F K F F
F K F F F
F K F F

− −

− + − +

− + −







                  (54) 

Analogous to (21) the  -configuration is specified by  

0 2 3 02 an .4 dF K F F KK F≤ ≤ < = − = −π               (55) 
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We define the following function  

( ) ( )
( ) ( )( )( )

( )
( )

( )
( )

2

2 2

dn
, , 1 dn ,

sc

1 1sn , , sn , , ,
sn sn

x z yf x y z x k K
x K

z k y k
x x

−= Π − −


   +Π −Π         

    (56) 

where we skipped the second argument in the Jacobi functions, e.g.,  
( ) ( )sn sn ,x x k= . With (48) it holds  

( )01,23
0 2 3

sheet

12,30 0 2 0 2 0 2
3

sheet

2 , ,

32 , , .
2 2 2

R
f F F F

R
R F F F F F F

f K F K K
R

π

π

=

+ − − = − + − − 
 

     (57) 

The first part of the upper envelope theorem requires constant 01,23R , which 
means ( )0 2 3d , , 0f F F F =  with the implicit function ( )0 0 2 3,F F F F= . This 
gives  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,0,0 0,1,00
0 2 3 0 2 3

2

1,0,0 0,0,10
0 2 3 0 2 3

3

, , , , 0

, , , , 0,

F
f F F F f F F F

F
F

f F F F f F F F
F

∂
+ =

∂
∂

+ =
∂

           (58) 

in  -configuration, which is in 0 0F F=  , 2 0F F K= − , 3 0F F K= − +  accor- 
ding to (55). From (56) it follows  

( ) ( ) ( ) ( )0,1,0 0,0,1, , , , .f x y z f x y z= −                 (59) 

Inserting this into (58) and adding up both equations gives  

0 0

2 3

.
F F
F F
∂ ∂

= −
∂ ∂

                        (60) 

Inserting (59) into the second line of (58) gives  
( ) ( )
( ) ( )
0,1,0

0 0 00
1,0,0

3 0 0 0

, ,
.

, ,

f F F K K FF
F f F F K K F

− −∂
=

∂ − −

  

  
               (61) 

The second part of the upper envelope theorem says that 12,30R  has an ex-
tremum, which means  

( )0 2 0 2 3 0 2d 2 2, 2 2 ,3 2 2 0f K F F F F F K F F K− − − + − − − =  in  
 -configuration with 0 0 2 0 3 0, ,F F F F K F K F= = − = −    according to (55). 
This gives  

( ) ( ) ( )

( ) ( ) ( )

1,0,0 0,1,0 0,0,10 0 0

2 2 2

1,0,0 0,1,0 0,0,10 0 0

3 3 3

1 1 1 1 3 1 0,
2 2 2 2 2 2

1 1 31 0
2 2 2

F F F
f f f

F F F

F F F
f f f

F F F

     ∂ ∂ ∂−
− + − + − =     ∂ ∂ ∂     

 ∂ ∂ ∂−
+ + + = ∂ ∂ ∂ 

  (62) 

in  -configuration. Adding both equations and using (59) and (60) gives  
( ) ( )
( ) ( )
0,1,0

0 0 0

1,0,0
0 0 0

3 2 , 2 , 21 .
2 3 2 , 2 , 2

f K F K F F K

f K F K F F K

− − −
=

− − −

  

  
            (63) 
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Re-inserting this into the first equation of (62) gives  

0

3

1 .
2

F
F
∂

=
∂

                         (64) 

Combining (64) and (61) gives  
( ) ( )
( ) ( )
0,1,0

0 0 0

1,0,0
0 0 0

, ,1 .
2 , ,

f F F K K F

f F F K K F

− −
=

− −

  

  
               (65) 

To sum up, we have to proof the validity of (63) and (65). From the contrac-
tion process we know that the extremum of 12,30R  cannot be a minimum, it 
must be a maximum. The nice feature is that both equations have an identical 
shape, they differ only in the test point 0x . Thus we only have to prove  

( ) ( )
( ) ( )

0,1,0
0 0 0

01,0,0
0 0 0

, ,1 for .
2 2, ,

f x x K K x K x K
f x x K K x

− −
= ≤ <

− −
        (66) 

From the reciprocity principle in [20] we know that 01,23R  remains constant 
if we swap current and voltage contacts. This gives  

( ), , , , .
2 2 2

z y y z y zf x y z f K x K K x− + + = − − − − − 
 

       (67) 

Combining (67) and (59) gives  

( ) ( ) ( )1,0,0 0,1,0, , 2 , , .
2 2 2

z y y z y zf x y z f K x K K x− + + = − − − − − 
 

   (68) 

For a Hall-plate with contacts in  -configuration it holds  

0 0 0, ,x x y x K z K x→ → − → − , see (55). Inserting this into (68) gives (66), which 
completes the proof. An alternative proof of (66) is given in Appendix C. 

3.5. The Minimum of the Van Der Pauw Function 

With (57) and (55) the lower envelope curve in the van der Pauw plane is para-
metrized in a closed formula as follows,  

( )( )
( )( )

( )

0 0 0

0 0 0

0 4

exp 2 , , ,

exp 2 3 2 , 2 , 2 ,

for 2 and .

X X f F F K K F

Y Y f K F K F F K

K F K K K ζ

→ = − − −

→ = − − − −

≤ < =

   

   



      (69) 

The lower envelope is identical to general  -configurations with 10 2ϕ< ≤ π  
(insert the first line of (52) into (69)). For the specific  -configuration with 

1 2 34 4, ,4ϕ ϕ ϕπ 3π= = 5π=  the van der Pauw function has its minimum, 

( ) ( ) ( )( )1 2 3 1 min 1vdP , , , vdP 2exp 2 3 4, 4, 4 ,r r f K K Kϕ ϕ ϕ ≥ = − −     (70) 

whereby ( )K K k=  depends only on the Riemann modulus 1r  (see (48)). 
Figure 8 shows this function. It is close to 1 for 1 0.1r <  and it is very close to 0 
for 1 0.8r > . 

The lower envelope theorem marks the outstanding position of the  - 
Hall-plates: if the two values 01,23 sheetR R , 12,30 sheetR R  are given, we can find a 
 -arrangement that fits to them, and we can be sure that there is no other  
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Figure 8. The plot shows the minimum of the van der Pauw function minvdP  versus hole 

radius 1r . All possible arrangements of the four point contacts were varied until the 
minimum was obtained for a specific  -configuration of contacts which is specified by 

1 2 34 4, ,4ϕ ϕ ϕπ 3π= = 5π= , then the contacts are in the vertices of a square inscribed 
into the unit circle. The blue curve 1 is the exact Formula (70), the red dashed curve 2 is 
the small hole approximation (24), and the green dashed curve 3 is the large hole ap-
proximation (83). Curve 1 is behind curves 2, 3. Both approximations are very accurate. 
They have identical values at 1 0.4508043r = . 

 
contact arrangement with a smaller hole which could give the same values  

01,23 sheetR R , 12,30 sheetR R . Thus, the star-arrangement determines the minimum 
required hole size to give the measured deviation of the van der Pauw function 
from 1. Other contact arrangements like the type 2 configuration are also able to 
produce the same trans-resistances, but they may need larger holes to do so. 
Conversely, contact arrangements with 2 1 3 13 , 5ϕ ϕ ϕ ϕ= = , which I call type 3 
configuration, cannot give very large 12,30R  and very small 01,23R  at fixed hole 
radius 1r , as it is shown in the red curve (3) in Figure 7. The type 3 curves go 
through the point ( ) ( ), 3 4,1 4X Y =  for 1 0ϕ →  for all hole sizes 1r . Type 3 
configuration and  -configuration are similar near 1 4ϕ = π . 

3.6. Some Properties of ( )f x y z, ,  and vdP  

The function ( ), ,f x y z  may be expressed in various formulae. We can elimi-
nate the complete elliptic-Pi function in (56) with the help of [21]. We can also 
pull out a logarithm from the incomplete elliptic-Pi integrals with [22],  

( )
( )

( )
( )

( )
( ) ( ) ( )( )

2

2 2

1sn , ,
sn

sc sn1 ln sn , sn , .
2 dn sn

z k
x

x x z
z z k x k

x x z

 
Π  
 

 +
= + −Π  − 

        (71) 

Here we use again the short-hand writing ( ) ( )sn , snu k u= . This gives  

( ) ( )
( )

( )
( ) ( ) ( )( )

( )
( ) ( ) ( )( ) ( ) ( )( )( )2 2 2 2

sn sn1, , ln sn ,
2 sn sn

dn
sn , sn , sn , sn , .

sc

x z x y
f x y z z y Z x k

x z x y

x
z y z k x k y k x k

x

 + −
= + −  − + 

+ − −Π +Π

   (72) 

( ),Z u k  is the Jacobi-zeta function defined in (111). For vanishing hole, 
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1 0 0r k= ⇒ = , only the logarithmic term in (72) remains. With [23],  

( )( ) ( )( )
( )
( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( )( )2 2 2 2

sn , sn ,

dn dn
sn , sn , sn , sn , ,

sc sc

yE x k xE y k

x y
y k x k y x k y k x

x y

−

= Π − − Π −
 (73) 

and with the addition theorems of the Jacobi-zeta function [24] and of the Jaco-
bi-sn function [30] it follows  

( )
( )
( )

( )
( ) ( )( ) ( )

( ) ( )
( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( )2 2 2 2

, ,

sn sn sn1 ln sn ,
2 sn sn sn sn

dn dn
sn , sn , sn , sn , .

sc sc

f x y z

x z x y z y
x Z z y k

x z x y y z

y z
x k y k x k z k

y z

   + − −
= + − −      − +   

+ Π − Π

     (74) 

Figure 9 shows how the trans-resistances and the van der Pauw function 
change when the size of the hole grows from zero to full size while the contacts 
positions remain constant. In the van der Pauw plane of Figure 9(a) curves 1, 3 
and 4 show that one of the two coordinates ,X Y  may increase initially before 
it decreases (the directions of growing 1r  are indicated by the arrows on the 
curves). Along the other curves, both coordinates ,X Y  decrease monotonically 
for all hole sizes 1 : 0 1r → . In the limit of infinitely thin annular regions, all 
curves end in the origin ( ) ( ), 0,0X Y = . In all cases, the van der Pauw function 
vdP  decreases monotonically versus 1r , 1 1 0X r Y r∂ ∂ + ∂ ∂ ≤ , see Figure 9(b). 
I have no rigorous proof of this conjecture. The plots in Figure 9(b) also show 
that the van der Pauw function may change only little for 1 0.95r <  in curve 3  
 

   
(a)                               (b) 

Figure 9. Six Hall-plates with different contacts positions for centered circular holes with 
increasing size 1 : 0 1r → . Curves 1, 2, 4 have identical 1 10ϕ = , 2 20ϕ = , yet 3ϕ  is 

270˚ for curve 1, 180˚ for curve 2, and 90˚ for curve 4. Curve 3 has 1 0.3 rad 17.189ϕ = = , 

2 17.349ϕ = , 3 18.859ϕ = . Curves 5  , 6   are star-configurations with 1 25ϕ = 

  

for curve 5   and 1 45ϕ = 

  for curve 6  . Curve 6   is identical to minvdP  from 

(70). (a) Representation of the six Hall-plates in the van der Pauw plane ( ),X Y  for 

1 : 0 1r → . 0 1,χ χ  are indicated for curve 1; (b) vdP -function of the six Hall-plates ver-

sus 1r . 
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or for 1 0.4r <  (see curves 1, 2, 4) or for 1 0.8r >  (see curve 6). In these cases, 
the van der Pauw function is not a very sensitive measure to detect holes. 

A distinct feature of the curves in Figure 9(a) is the angle 0χ  under which 
they start from the line 1Y X= − . Let us call it the small-hole-angle. This angle 
is between the tangent on the parametric curve ( ) ( )( )1 1,X r Y r  in 1 0r =  and 
the vector ( )T1, 1− − . It holds ( )0 2 2,χ π− π∈  with 

( )

( )( ) ( )( )
( )( ) ( )( )

0
0 2 2

00 0

1 3 2 2 3

2 2
1 3 2 2 3

d 11 1cos
d 12d d

cos 2 cos 21 ,
2 cos 2 cos 2

X
YX Y

χ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

−   
= ⋅   −  +

− − − +
=

− − + +

      (75) 

with 0 0d ,dX Y  from (16). The small-hole-angle 0χ  vanishes for 

( ) 2 3 2 3
0 3 1cos 1 cos cos ,

2 2
ϕ ϕ ϕ ϕ

χ ϕ ϕ
+ +   = ⇔ − − = −   

   
      (76) 

which has two meaningful solutions 

1 2 1 3 1

1 2 3 1 1

case 1: 0 2 ,
case 2 : 0 2 .

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

< < = − < < −

< < < = + < π−

π π

π
             (77) 

In words, if two non-neighbouring peripheral contacts lie on a straight line 
through the center of the annular Hall-plate, the curves in Figure 9(a) start per-
pendicularly from the upper envelope. This comprises all star-configurations, 
but it is more general than star-configurations. From (22) we know that for 
-configurations in the asymptotic limit of a small hole the van der Pauw function 
vdP  has the steepest decline versus hole size, as a quantity to detect small holes, 
vdP  becomes most sensitive if the contacts are in a  -configuration. There-
fore, for small 1r  the red curves 5  , 6   are below the blue curves 1, 2, 3, 4 
in Figure 9(b). If (77) is fullfilled the curves ( ) ( )( )1 1,X r Y r  start perpendicu-
larly from the upper envelope. Yet, there exist contact configurations, which are 
not  -configurations, but which still fullfill (77). Their curves ( ) ( )( )1 1,X r Y r  
also start perpendicularly from the upper envelope, but for them the slope of the 
van der Pauw function differs from (22),  

( ) ( ) ( )
( ) ( ) ( )

42
1 1 3 1 1

42
1 2 1 1 1

case 1: vdP 1 4sin 2 sin ,

case 2 : vdP 1 4sin 2 sin .

r r

r r

ϕ ϕ ϕ

ϕ ϕ ϕ

= + + +

= − − +




         (78) 

For 0 2χ = ±π  the curves ( ) ( )( )1 1,X r Y r  start tangentially from the upper 
envelope. Then it holds  

( ) 2 3 2 3
0 3 1cos 0 cos cos .

2 2
ϕ ϕ ϕ ϕ

χ ϕ ϕ
+ +   = ⇔ − − =   

   
       (79) 

This condition is fullfilled only if three or all four contacts approach infinitely 
closely. From Figure 9(a) I surmize that both trans-resistances are monotonic 
versus 1r  as long as [ ]0 4 4,χ π− π∈ . Then it holds  

( ) ( ) ( )0 1 2 3 1
1cos cos cos 0.
2

χ ϕ ϕ ϕ ϕ≥ ⇔ + + − ≤          (80) 
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Inequality (80) is fullfilled for  

( ) ( )1 2 2 3 1 1 2 20 max , min 2 , 2 ,3 .2ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ< ≤ ∧ − < < − + +π π−π π π   (81) 

For the blue curves 1, 2, 3, 4 in Figure 9(a) we get 0 72.29χ = − 
, 18.08˚, 89.74˚, 

77.33˚, respectively, whereby I define the sign of 0χ  equal to the sign of 

0 0d dX Y− , this is identical to the sign of ( ) ( )( ) ( ) ( )( )2 1 1 3sin sin sin sinϕ ϕ ϕ ϕ− + . 

3.7. The Asymptotic Limit of a Very Large Hole 

In the limit 1 1r →  the annular region of the Hall-plate degenerates to an infi-
nitely thin ring. Then the trans-resistances grow unboundedly. We use 1k →  
in (57) with (72) to compute the limit of ( ), ,f x y z . With (117) and (118) it 
follows  

( ) ( )
( )

( )( )
( )

01,23 1 3 2 1 2 3
3

sheet 1

12,30 2 1 1 3

sheet 1

2
,

ln

2
.

2 ln

R
K

R r

R
R r

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− −
= →

− +

π

π

π

−
→

π
             (82) 

Inserting (82) into (2) gives  

( )1

2

min1
1

lim vdP 2exp ,
8lnr r→

 
=   

 

π                  (83) 

which is plotted as the green curve 3 in Figure 8. Let us define  

1 1
1 11 1

lim and lim .
r r

X X Y Y
→ →

= =                  (84) 

Inserting (82) into (84) with the definitions in (2) leads to  

( )( )
( )

2 1 1 3
1 1

1 3 2

2
with : 0

2
Y X ϑ ϕ ϕ ϕ ϕ

ϑ
ϕ ϕ ϕ

− − −

−

π
= = >           (85) 

in the asymptotic case 1 1r → . This tells us at which angle the curves in the van 
der Pauw plane of Figure 9(a) approach the origin. It holds  

1

11
10

1

for 0 1
d

lim 1 for 1
d

0 for 1
X

Y X
X

ϑ

ϑ
ϑ ϑ

ϑ

−

→

∞ < <
= = =
 >

              (86) 

Let us define the angle 1χ  between the tangent on the parametric curve 
( ) ( )( )1 1,X r Y r  in 1 1r →  and the vector ( )T1, 1− − . I will call it the large-hole- 

angle. It holds { }1 4,0, 4χ −π∈ π  with  

( )
( )1

1

1 20
1 1

1 1

1
1

2 2 20
1

1 11 1cos lim
d d 121 d d

11lim .
2 1

X

X

Y XY X

X

X

ϑ

ϑ

χ

ϑ

ϑ

→

−

−→

− −   
= ⋅   − −  +

+
=

+

        (87) 

This gives  

1

for 0 1
0 for 1

fo

4

4 r 1

ϑ
χ ϑ

ϑ

< <
= =
− >

π

 π
                    (88) 
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whereby I define the sign of 1χ  equal to the sign of ( )( )1 11 1 d dY X− − , this is 
identical to the sign of 1 ϑ− . For the curves 1 - 6 in Figure 9(a) we get 

1 , 45 ,0 , 4545 , 45 ,0χ = − −    , respectively. In general, star-arrangements have 

1 45χ =  for 0.5X < , 1 0χ =   for 0.5X = , and 1 45χ = −   for 0.5X > . 
(For a star-configuration 0.5X <  means 1ϑ <  and 1 4ϕ > π .) The interest-
ing case 1 0χ =  corresponds to  

2 1
3 1

2 1

2 .
ϕ ϕ

ϕ ϕ
ϕ ϕ

−
+

π= +                        (89) 

This holds for a wide class of contact arrangements, including the specific 
star-configuration with 1 4ϕ = π . Inserting (89) into the first line of (16) and 
into (75) gives  

( )
( )

2 1 2 1
1

2 1
0

2 1 2

2 1

2 1 2

2 1
0

2 1
1 2

2 1

sin sin
2

2sin sin
2

22 sin sin
2

cos .

1 cos cos 2

X

ϕ ϕ ϕ ϕϕ
ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ

χ
ϕ ϕϕ ϕ
ϕ ϕ

 − − − +   +   =
 + 
   +   

 + −    +   =
 −

+ +  +

π

π


π

π
            (90) 

A numerical inspection shows that we can find solutions 1 2,ϕ ϕ  of (90) for 
arbitrary 00 1X< < . They define curves in the van der Pauw plane, which start 
from any point on the upper envelope and go towards the origin ( ) ( ), 0,0X Y =  
with 1 0χ = . An example is curve 3 in Figure 9(a), which has 0 0.1X =  and 

1 0χ = . Interestingly, in Figure 9(b) curve 3 remains at vdP 1≈  for 10 0.95r< <  
and only for very large holes 1 0.95r >  the van der Pauw function drops sharply. 
The numerical computation of curve 3 in Figure 9(a) and Figure 9(b) is tricky, 
it needs 5000 digits. 

Inserting (21) into (82) into (2) gives the large-hole approximation for star- 
configurations  

( )
( )

( )
( )

2 2

1 1

1 1

2 2
exp and exp ,

2 ln 2ln
X Y

r r

ϕ ϕ   −   → →      
 

π

 

 
          (91) 

which fails if 1ϕ
  is close to 0 or 2π . Eliminating 1ϕ

  in (91) gives the 
large-hole approximation of the lower envelope,  

( ) ( )( )
( )

2

1

1

2 ln ln
exp ,

2 ln

r X
Y

r

 
− 

→  
  
 

π 

               (92) 

which holds well for 1 0.45r >  and X and Y larger than ( )( )( )2
1exp 2ln r≈ π . 

3.8. Checks for Correctness of the Derived Formulae 

The formulae of the Section 2 are consistent with [9] for  
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( ) ( )
( ) ( )

sheet 1 1

1 2 3

exp 2 2
2 2 2,

R r hλ ϕ β α
ϕ φ ϕ γ α β ϕ δ α β

π − −
− + − +

  

  

        (93) 

where the quantities on the left hand sides of (93) are from this article and the 
quantities on the right hand sides are from [9]. 

In Figure 1 the potential 0φ  at the outer perimeter for the azimuthal coor-
dinate 2ϕ  is given by ( ) 01,231 R− ×  with 3ϕ = π , 01 1I =  A. In the limit of va-
nishing hole size, 1 0r →  it follows from (48) 4 0k ζ= →  and 2K → π . 
From (52) it follows 3 0F = . Next we use (57) and (56). With ( ) ( )sn ,0 sinu u=  
and ( )dn ,0 1u =  and ( ) ( )sc ,0 tanu u=  and  

( )( )
( )( )artanh 1 tan

sin , ,0
1

n
n

n

ω
ω

−
Π =

−
            (94) 

it follows  

( )
( )

( )
( )

2 1 2
0

0 1 2

tan 1 cos2 1artanh ln ,
tan 2 1 cos

F
F

ϕ ϕ
φ

ϕ ϕπ π

   − −
→ →      − +  

       (95) 

which is identical to (A11b) in [17]. Thus, (57) holds in the limit of singly- 
connected Hall-plates. Moreover, a series expansion of (57) for small k (small 1r ) 
leads to (17). (It is lengthy and arduous and therefore I do not report it in detail 
here.) 

For hole sizes of 1 0,0.1,0.5r =  and 0.9 I computed the potential in  

2 15 ,20 , ,175ϕ =     analogous to the preceding paragraph (i.e., via 01,23R  
with 3ϕ = π ) and compared it with results of a finite element simulation with 
COMSOL Multiphysics. There I used a plane two-dimensional model in applica-
tion mode “emdc” (static conductive media). Thickness and conductivity were 
set to 1 m and 1 S/m, respectively. Due to symmetry, only the upper half of the 
annular ring was modelled with a fine mesh of 917,504 elements. All bounda-
ries were set insulating, except for the segments on the real axis, which were 
grounded to 0 V. A current of 1 A/m was extracted from contact 1C  at position 

1 10ϕ = . Figure 10 shows the potential along the perimeter for these four cases 
and the relative error between analytical and numerical results. The relative errors 
 

 

Figure 10. Potential 0φ  (full symbols) and relative error of 0φ  between analytical 
formula and FEM-simulation (open symbols) for annular Hall-regions with holes of ra-
dius 1 0,0.1,0.5,0.9r = . The current contacts are at 1 10ϕ = , and the test points are on 

the outer perimeter at azimuthal positions 2ϕ . 
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are in the order of 10−8 which is plausibly due to the finite mesh size around the 
point-sized current contact. Exemplary numbers for the potential on the unit 
circle at azimuthal position 2 25ϕ =  are  

0 1

0 1

0 1

0 1

0.2656482094 V for 0,
0.2666089269 V for 0.1,
0.3121362860 V for 0.5,
1.426586599 V for 0.9.

r
r
r

r

φ
φ
φ
φ

= =

= =

= =

= =

               (96) 

As a second numerical check I modelled the Hall-plate in the ζ -plane of 
Figure 4(c) for the case 1 0.05r = . Equation (36) gives 4 0.742879765ζ = . Po-
sition 1 80ϕ =  of contacts 0 1,C C  corresponds to 0 0.612780273ζ =  (see (37)). 

2 130ϕ =  gives 2 0.3660546310ζ = − . 3 180ϕ =  gives 3 0ζ = . From (41) it 
follows 5 1.283144683ζ =  for the stagnation points in the 01,23R -case. The fi-
nite element model (FEM) uses a handle between AB  and HJ  where cur-
rent flows from Riemann sheet #0 to sheets #1 and # (−1), respectively (see Fig-
ure 11). The handle is exactly semi-circular and has anisotropic conductivity κ  
(in radial direction it is zero, and in tangential direction it is ×106 bigger than the 
conductivity of the Hall-plate with sheet 1R = Ω ),  

2 2
short short short

2 2 2 2 2 2
, , ,ξξ ηη ξη ηξ

κ η κ ξ κ ξη
κ κ κ κ

ξ η ξ η ξ η

−
= = = =

+ + +
     (97) 

whereby { }ζ ξℜ =  and { }ζ ηℑ = . The purpose of the handle is to make a 
short between points ξ  and ξ−  for 4 1ζ ξ≤ ≤ , but not to short any two 
points inside HJ . 
 In the 01,23R -case only the right half of the symmetric geometry was modelled 

with a mesh of 1.8 million elements, see Figure 11(a). A current of 01 1 AI =  
was injected into point G and the edges at { } 0ζℜ =  were grounded. Ac-
cording to theory [17], the current through the handle should be  

( )01 11 0.5556 AI ϕ− =π , the FEM result deviates by 486 ppm. The reason 
might be insufficient meshing and insufficient shorting by the handle (in the 
FEM, points H and J are not exactly at identical potentials, they are at 68 μV 
and 8 μV). Point D is at −0.26575 V, which corresponds to ( ) 01,231 R− × , it is 
839 ppm larger than the value obtained from (48).  

 In the 12,30R -case the full geometry was modelled with a mesh of 1.1 million 
elements, see Figure 11(b). A current of 1 A was injected at point C and ex-
tracted at point D. Point D was also grounded to 0 V. According to the 
theory in [17], the current through the handle should be  

( ) ( )2 11 A 2 0.13889 Aϕ ϕ π× − = , the FEM result deviates by 1120 ppm. Again 
the handle did not short perfectly: the potential at point B was 2.56193 V, 
whereas it was 39 μV lower at point H; the potential at point A was 2.48041 V, 
and it was 2.3 μV lower at point J. The FEM-results for the potentials in point 
E and G were 2.26454 V and 2.44880 V, respectively. This gives 

12,30 0.1842613R = Ω , which is 462 ppm larger than the result from Formula 
(48).  
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(a) 

 
(b) 

Figure 11. Hall-plate in the ζ -plane with potentials and current streamlines in two op-
erating conditions for 01,23R  and 12,30R , respectively. The geometry corresponds to 

1 0.05r = , 1 80ϕ = , 2 130ϕ = , and 3 180ϕ = . (a) 01,23R : Zoom into the region near 

the short-circuit handle (only the right half is modelled). Vertical edges at left side are 
grounded. 1 A current is injected into point G; (b) 12,30R : Zoom into the region near the 

short-circuit handle. 1 A current is injected into C and extracted at D. D is grounded. 
Current streamlines inside the handle are not drawn. 
 

The analytical formulae give 3vdP 1 5.389 10−= − ×  and the FEM-simulation 
gives 3vdP 1 5.543 10−= − × . The large vdP-value is due to the small hole, yet for 
larger holes the point contacts are closer to the handle and the numerical accu-
racy of the FEM gets even more challenging. This is also a strong indication that 
in reality the validity of point-sized contacts has to be questioned. 

As a by-product of this paper we get a closed form expression of the infinite 
product  

( )
( )

( )

( )

1

cos
1

cosh

1 3exp , , , ,
4 4 4 2 2 22 sin 2

with , for 0 0 .
2

h

K Kf K f K K K

hK K k k L h

φ

φ φ φ
φ

φ

∞

=

 
−  

 
 − + − − π π π

π π π

π
π

   = −    
    

 = = ≥ ∧ ≤ ≤ 
 

∏




  (98) 
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Equation (98) follows from a comparison of the first lines of (27) and (57). It 
also relates to the prime function of the annular Hall region, see [15]. 

4. The Hall-Plate at Applied Magnetic Field 

As it was shown in [17] the current density does not change when magnetic field 
is applied, whereas the potential indeed depends on the magnetic field. Thus we 
can compute the potential at zero magnetic field, 0φ , derive its current density 

0J  and its stream function ψ , and compute the potential  
( )( )0 groundtan Hφ φ θ ψ ψ= − −  at arbitrary Hall angle Hθ . Furthermore, in [17] 

it is derived that the Hall potential is constant along a current streamline (the 
Hall potential is the difference in electric potential at positive and negative ap-
plied magnetic field, it comprises only terms of odd order of the magnetic field). 
Because of the point-contacts the potential comprises only linear terms of the 
applied magnetic field, there are no even order terms of the magnetic field (no 
magneto-resistance terms). Since a current streamline flows from the input con-
tact 0C  to the output contact 1C  along the insulating outer boundary via both 
voltage contacts 3 2,C C  it follows that the voltage between 3 2C C−  does not 
depend on the magnetic field. Thus the trans-resistance 01,23R  does not depend 
on the applied magnetic field. The same holds for 12,30R , regardless if there is a 
hole or not. Therefore, Equations (3) and (4) still hold if magnetic field is ap-
plied to the Hall-plate. The situation changes if current flows between the hole 
boundary and the outer boundary or if there is an extended contact on a boun-
dary, but this goes beyond the scope of this paper. 

5. Singly-Connected Hall-Plate with Extended Contacts in  
Star-Configuration 

If a Hall-plate has no hole and if its contacts have finite size the van der Pauw 
function also deviates from 1. Thereby the extra degree of freedom from the hole 
is replaced by the additional parameters for the finite sizes of the contacts. For 
the simplified case of a star-arrangement of contacts (also called odd symmetry 
in [25]) at zero magnetic field closed analytical formulae are available in the lite-
rature (combine [25] with (C24), (C25) in [26]),  

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

01,23 12,30

sheet 1 sheet 2

1 2 2 1
1 2

1 2 2 1

1 2 1 2

1 21 2

1 1 1 1, ,
4 4

sin cos sin cos
, ,

sin cos sin cos

tan tan1 ,
4 tan tan

x x

x

R R
R R

K K
K K

K L L K
KK L L

λ λ λ λ

α α α α
λ λ

α α α α

λ λ α α
λ α αλ λ

= − = −

′ ′
= =

= =
′′

      (99) 

whereby the angles 1 2,α α  are defined in Figure 12(a). It follows 

odd
1 2

1 vdP exp exp exp 2,
4 xλ λ λ

      − −
≤ = + ≤      

      

π



π π         (100) 
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(a)                             (b) 

Figure 12. Hall-plates with no hole and with extended symmetric contacts. (a) Star- 
arrangement of extended contacts (=odd symmetry, [25]); (b) Complementary star- 
arrangement of extended contacts (=even symmetry, [25]). 
 
for all 1 20, 0λ λ> > . This is readily proven by plotting vdP  versus its two va-
riables 1 2,λ λ  or versus 1 2,α α . The limits are found by the asymptotic limits 

( )0K k →  and ( )1K k → . For small contacts vdP 1→ , which is consistent 
with (3). For large contacts vdP 2→ . 

Swapping contacts and isolating boundaries gives the complementary star- 
configuration (also called even symmetry in [25]), see Figure 12(b). There it 
holds  

01,23 12,30 1 2

sheet sheet

1 2
even

4
,

4
4

1 vdP 2exp 2,
4

x

x

R R
R R

λ λ λ

λ λ λ

+ −
= =

+ − ⇒ ≤ = − ≤ 
 

π

           (101) 

with 1 2, , xλ λ λ  from (99). 1 2,λ λ  have the following physical meaning: In Fig-
ure 12(b) the resistance between contacts 0 2C C− , with 1 3,C C  not connected, 
is equal to 1 sheetRλ . The resistance between contacts 1 3C C− , with 0 2,C C  not 
connected, is equal to 2 sheetRλ . Again, for small contacts vdP  tends to 1, and 
for large contacts it tends to 2. 

In summary, large contacts increase the van der Pauw function (at least for 
the symmetric cases of Figure 12), whereas a hole reduces it. 

6. Conclusions and Suggestions 

In this paper, I studied the case of an annular Hall-plate with insulating bounda-
ries and four point-contacts on the perimeter. A conformal transformation 

1z r z′ =  maps the ring-domain onto itself, thereby swapping inner and outer 
boundaries. All resistances remain constant under conformal mapping. Hence, 
upper and lower envelopes also hold if all contacts are on the boundary of the 
hole. 

In practice, one may equip a sample with several point-sized contacts. Four 
contacts of a first group should be close together, four contacts of a second 
group should be spaced equidistantly along the full outer boundary. With the 
first group, one can measure the local sheet resistance via van der Pauw’s origi-
nal method (3). Using this value for the sheet resistance one can use the second 
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group of contacts to determine their respective trans-resistances, from which 
one can derive vdP  with (2). If this value is close to 1 it means that the sample 
has homogeneous conductivity without hidden holes. If the value obtained for 
vdP  differs markedly from 1, the conductivity is strongly inhomogeneous and 
there should be at least one hole inside the sample. With Figure 8 we can assess 
a lower bound for the size of this hole. 

The main results of this article are new proofs of the upper and lower enve-
lopes and closed form expressions for the trans-resistances and the lower envelope 
in van der Pauw’s measurement. This simple geometry of a circular annulus led 
to a surprisingly complicated Formula (48) for the trans-resistances. Asymptotic 
limits were derived for small and large holes and specific properties of symme-
tric contact arrangements were highlighted. The new concepts of contraction and 
expansion were introduced as well as the small-hole-angle 0χ  and the large- 
hole-angle 1χ . Yet, several questions are still open for future inquisitions: Is van 
der Pauw’s function vdP  monotonously falling with the size of the hole for ar-
bitrary contacts positions? How the general behavior of the trans-resistances 
versus hole size is? What happens, if not all contacts are on the same boundary? 
Is there a qualitative difference for contacts of finite size? What happens if the 
hole boundary is conducting such that the hole is short instead of a void? And 
finally, what happens if the Hall-plate has more than one hole? 
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Appendix A 

The geometric series is  
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With (102) it follows  
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whereby 1r α< ∧ ∈  or 1 2 ,r α π= ∧ ≠ ∈   . We can integrate the very left 
and right sides of (103), whereby the series on the left side can be integrated 
term-wise, because integration improves the convergence. This gives  
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for 1x α< ∧ ∈  or 1 2 ,x α π= ∧ ≠ ∈   . With (104) it holds  
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for ( ) 21 ,x α β< ∧ ∈  or 1 2 ,x α β= ∧ ± ≠ ∈π   . 

Appendix B  

Definition of the incomplete elliptic integral of the first kind  

( ) ( )arcsin

0 02 2 2 2 2

d d,
1 1 1 sin

u uxF u k
x k x k

α

α
= =

− − −
∫ ∫       (106) 

with 1 1 1 1u k− ≤ ≤ ∧ − ≤ ≤ . [ ] 2EllipticF ArcSin ,u k    is the Mathematica no-
tation of ( ),F u k . This function is strictly monotonic in u and k. The complete 
elliptic integral of the first kind is ( ) ( )1,K k F k= . Its Mathematica notation is 

2EllipticK k   . The complementary elliptic integral of the first kind is denoted 
by a prime ( ) ( )21K k K k′ = − . For 1 1u k≤ ≤  Equation (106) gives  
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( )
2 2

2
21 2 2 2

d 1 , 1 .
11 1

u x k uK k F k
kx k x

 −′  = − −
 −− −  

∫       (107) 

For 1u k=  this gives 

( ) 1

1 2 2 2

d .
1 1

k xK k
x k x

′ =
− −

∫                  (108) 

The incomplete elliptic integral of the second kind is  

( )
2 2 arcsin 2 2

0 02

1, d 1 sin d ,
1

u uk xE u k x k
x

α α−
= = −

−
∫ ∫         (109) 

with 1 1 1 1 0u k k− ≤ ≤ ∧ − ≤ ≤ ∧ ≠ . The complete elliptic integral of the second 
kind is ( ) ( )1,E k E k= . The Mathematica notations of ( ),E u k  and ( )E k  
are [ ] 2EllipticE ArcSin ,u k    and 2EllipticE k   , respectively. Definition of 
the incomplete elliptic integral of the third kind  

( )
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∫

∫
         (110) 

with 1 1 1 1u k− ≤ ≤ ∧ − ≤ ≤  with 21n u< . The complete elliptic integral of the 
third kind is ( ) ( ), 1, ,n k n kΠ = Π . [ ] 2EllipticPi ,ArcSin ,n u k    and  

2EllipticPi ,n k    are the Mathematica notations of ( ), ,u n kΠ  and ( ),n kΠ , 
respectively. The Jacobi-zeta function is  

( ) ( ) ( )
( ) ( ), , , ,

E k
Z u k E u k F u k

K k
= −               (111) 

with the Mathematica notation [ ] 2JacobiZeta ArcSin ,u k   . Frequently we are 
interested in aspect ratios of rectangles from conformal maps of Hall-plates. 
Then the ratio ( ) ( )y K k K k′=  shows up. This function is monotonic. Thus, 
its inverse exists, this is the modular lambda elliptic function ( )L y  [27].  

( )
( )

2 for 1 1
K k

L k k
K k
′ 

= − ≤ ≤  
 

               (112) 

The Mathematica notation is [ ] ( )ModularLambda iy L y= . Several properties 
of ( )L y  are explained in [25]. 

Inversion of (106) gives the Jacobi-sn function and the Jacobi amplitude  

( )( ) ( ) ( )( )sn , , and arcsin am , , .u F u k k u F u k k= =      (113) 

The Mathematica notation is ( )2JacobiSN , sn ,u k u k  =  . Thus it holds 
( ) ( )( )sn , sin am ,u k u k=  with further Jacobi functions like  
( ) ( )( )cn , cos am ,u k u k=  and ( ) ( )2 2dn , 1 sn ,u k k u k= − . Like ( ),F u k  also 
( )sn ,u k  is odd in u and even in k and strictly monotonic in u and k as long as 
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( ) ( )K k u K k− ≤ ≤  and 1 1k− ≤ ≤ . It follows  

( ) ( )( )sn 0, 0 and sn , 1.k K k k= ± = ±            (114) 

Yet, for ( )u K k>  the Jacobi-sn function has a real-valued period ( )4K k  
and a half-period ( )2K k .  

( )( ) ( ) ( )( ) ( )sn 2 , sn , and sn 4 , sn , .u K k k u k u K k k u k+ = − + =  (115) 

It holds  
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It also holds  
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for 1 1u− < <  and 20 1n u< < . From (111), (117), and (113) it follows  
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      (118) 

Appendix C 

An alternative proof of (66) is by direct computation of the partial derivatives 
( ) ( )1,0,0 0,1,0,f f . Thereby ( )1,0,0f  is a long expression, which is most conveniently 

computed with an algebraic program like e.g. Mathematica. It comprizes ellip-
tic-Pi functions, ( ) ( )( )2

0 0sn ,sn ,x K x k−Π −  and ( )( )2
01 dn ,x kΠ − , which are 

multiplied by terms that can be shown to vanish. There is also a term ( )2
0dn x , 

which is multiplied by ( ) ( )( )( )0 0sn ,K k x F x K k k− + − , which also vanishes, 
since F is the inverse function of sn . The remainder is  
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(119) 

( ),E z k  and ( )E k  are incomplete and complete elliptic integrals of the 
second kind (see Appendix B). For the other partial derivative one gets  

( ) ( )

( )
( )

( )
( )

( )( )
( )

0,1,0
0 0 0

22 2
00 0

2 4
0 0

, ,

1 dn ,dn 1 dn
.

sc 1 dn

f x x K K x

x kx k x
x K kk x

− −

 Π −− + = −
 − + 

         (120) 

https://doi.org/10.4236/jamp.2022.103066


U. Ausserlechner 
 

 

DOI: 10.4236/jamp.2022.103066 998 Journal of Applied Mathematics and Physics 
 

We use the following identities  
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x x
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x
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= + −

− = −

− = − −

   (121) 

The first equation can be found in [21]. The other two equations follow from 
the addition formulas for elliptic F- and E-functions [28] [29], and for the Jaco-
bi-sn function [30]. Equations (121) are at least valid in 00 x K≤ < . Finally we 
subtract twice (120) from (119) and insert (121). Then all terms cancel out, 
which completes the proof of (66). 

Appendix D 

Table A1. Notation list of all the variables of this work. 

0 3, ,C C  contacts of the Hall-plate 

( ), ,f x y z  special function expresses the trans-resistances of the Hall-plate 

1r  radius of the hole in the unit disk 

,k mnR


 trans-resistances of the Hall-plate 

sheetR  sheet resistance of the Hall-plate 

vdP  van der Pauw function 

,X Y  coordinates in the van der Pauw plane 

0 0,X Y  ,X Y  for Hall-plates without a hole 

1 1,X Y  ,X Y  for Hall-plates in the limit of a very large hole 

0 1,χ χ  angles in the van der Pauw plane 

0φ  electric potential at zero magnetic field 

1 3, ,ϕ ϕ  general azimuthal coordinates of the contacts 

,ξ ηκ  Cartesian components of the conductivity tensor in the ζ -plane 

ϑ  exponent used in the large hole approximation 

0 5, ,ζ ζ  specific locations in the ζ -plane 

  denotes parameters for a star-configuration of the contacts 

, , , ,K E K E′ ′Π  elliptic integrals and complementary ones 
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Continued 

Z Jacobi-zeta function 

L modular lambda elliptic function 

am,sn,cn,dn,sc  Jacobi functions 
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