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Abstract 
In this paper, the nonlinear first order ordinary differential equation will be 
considered. Three simplest numerical stencils are presented to solve this equ-
ation. We deduce that the numerical method of Trapezoidal is a good tech-
nique, which helped us to find an approximation of the exact solution with 
small error. 
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1. Introduction 

Consider the nonlinear first order ordinary differential equation 

( )( ) ( )( ), .D y x f x y x=                       (1) 

Ordinary differential equations occur in many scientific disciplines, including 
physics, chemistry, biology, and economics. In mathematics, an ordinary diffe-
rential equation (ODE) is a differential equation containing one or more func-
tions of one independent variable and the derivatives of those functions. Ordi-
nary differential equations (ODEs) arise in many contexts of mathematics and 
social and natural sciences. Mathematical descriptions of change use differentials 
and derivatives. Various differentials, derivatives, and functions become related 
via equations, such that a differential equation is a result that describes dynami-
cally changing phenomena, evolution, and variation. Some ODEs can be solved 
explicitly in terms of known functions and integrals. When that is not possible, 
the equation for computing the Taylor series of the solutions may be useful. For 
applied problems, numerical methods for ordinary differential equations can 
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supply an approximation of the solution. In addition, some methods in numeri-
cal partial differential equations convert the partial differential equation into an 
ordinary differential equation, which must then be solved. Euler method (also 
called forward Euler method) is a first-order numerical procedure for solving 
ordinary differential equations (ODEs) with a given initial value. It is the most 
basic explicit method for numerical integration of ordinary differential equa-
tions and is the simplest Runge-Kutta method [1] [2] [3]. The backward Euler 
method (or implicit Euler method) is one of the most basic numerical methods 
for the solution of ordinary differential equations, the backward Euler method 
has order one. This means that the local truncation error (defined as the error 
made in one step) is ( )2O h . The error at a specific time t is ( )O h . It is similar 
to the (standard) Euler method, but differs in that it is an implicit method. This 
differs from the (forward) Euler method in that the latter uses ( ),k kf t y  in 
place of ( )1 1,k kf t y+ + . The backward Euler method is an implicit method: the 
new approximation 1ky +  appears on both sides of the equation, and thus the 
method needs to solve an algebraic equation for the unknown 1ky + . For non-stiff 
problems, this can be done with fixed-point iteration [4] [5] [6] [7]. This paper 
is organized as follows: In Chapter 2 we presented three simplest numerical 
stencils. In Chapter 3 we introduce a numerical formulation of ODE and apply 
examples. 

2. Three Simplest Numerical Stencils 
2.1. Forward Euler Stencil 

The purpose of this paper is to derive the three simplest numerical stencils to 
solve the first order equation 

( )( ) ( )( ), .D y x f x y x=                      (2) 

In this expression, f is assumed to be a known function of the independent va-
riable x and the function that we are trying to solve for ( )y x . The simplest nu-
merical stencils to solve this equation will give us an approximation to y at some 
point x X h= +  given some knowledge of y at x X= . All of these stencils are 
based on the Taylor series approximation for ( )y x  about x X=  to linear 
order:  

( ) ( ) ( )( )( ) ( )( )2 .y x y X D y X x X O x X= + − + −           (3) 

Let us define h as the difference between x and X, and then get rid of x in the 
above expression:  

h x X= −  

( ) ( ) ( )( ) ( )2 .y h X y X D y X h O h+ = + +              (4) 

Now, we can remove the first derivative of y by making use of the differential 
equation:  

( )( ) ( )( ),D y X f X y X=  
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( ) ( ) ( )( ) ( )2,y X h y X f X y X h O h+ = + +              (5) 

The forward Euler algorithm involves discarding the terms of order h2 and 
higher in this expression and hence obtaining an approximation to ( )y X h+  
in terms of ( )y X . We can accomplish this by converting the above series into a 
polynomial using the convert/polynom command. Also, we can take iX x=  as 
the ith point on an evenly spaced lattice 0ix x ih= + , where h is the lattice spac-
ing and i is an integer; it then follows that “ 1iX h x ++ = ”. Furthermore, we label 
the numeric approximation of ( )y x  at ix x=  a “ iy  and approx; ( )iy x ”. 
Implementing these steps and notational changes:  

( ) ( ) ( )( ),y h X y X f X y X h+ = +  

( ) ( )1, ,i i iy h X y y X y X x++ = = =    

( )1 ,i i i iy y f x y h+ = +                       (6) 

The last expression is the forward Euler stencil for solving ode. It is called an 
explicit algorithm because the quantity we wish to calculate 1iy +  is given expli-
citly in terms of iy . 

2.2. Backward Euler Stencil 

The backward Euler stencil is obtained in a similar fashion, except we identify h, 

iy , and 1iy +  differently:  

h X x= −  

( ) ( ) ( )( )( ) ( )( )2y h X y X D y X h O h− + = − + −  

( ) ( ) ( )( ) ( )( )2,y h X y X f X y X h O h− + = − + −  

( ) ( ) ( )( ),y h X y X f X y X h− + = −  

( ) ( ) 1 1, ,i i iy h X y y X y X x+ +− + = = =  

( )1 1 1, .i i i iy y f x y h+ + += −                     (7) 

This stencil is explicit because it will not in general be possible to algebraically 
isolate what we want to calculate, i.e. ( )1 1i iy x+ += , except for very specific forms 
of f. We can rearrange the stencils to better demonstrate their geometric mean-
ing: 

( ) 1, i i
i i

y y
f x y

h
+− +

=  

( ) ( )1 1 1, .i i i if x y y y h+ + += − +                    (8) 

These forms illustrate that the forward Euler stencil (first equation) is a simple 
approximation of the first derivative of ( )y x  in the interval [ ]1,i ix x x +∈  us-
ing ode evaluated at the left hand side of the interval. Conversely, the backward 
Euler stencil uses the differential equation to evaluate the derivative at the righ-
thand side of the interval [8] [9]. 
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2.3. Trapezoidal Method 

There is another stencil we can derive that is the average of these two approach-
es:  

( ) ( ) 1
1 1

1 1, , .
2 2

i i
i i i i

y y
f x y f x y

h
+

+ +

− +
+ =                (9) 

This is called the trapezoidal method, and it uses ode evaluated at both ends of 
the interval to approximate ( )y x′ . Like the backward Euler stencil, it represents 
an implicit scheme. 

3. Numerical Formulation 

As an example, we can look at what these stencils look like for the special case of 
( ),f x y yλ= , where λ  is a constant:  

1 Forward Euleri i
i

y y
y

h
λ +− +

=  

1
1 Backward Euleri i

i
y y

y
h

λ +
+

− +
=  

1
1

1 Trapezoidal.
2

i i
i i

y y
y y

h
λ λ +

+

− +
+ =  

For this special case, we see that it is possible to isolate 1iy +  for each stencil. 
Let’s do this using a loop:  

( )1 1 Forward Euleri iy y hλ+ = +  

1 Backward Euler
1

i
i

y
y

hλ+ = −
−

 

( )
1

2
Trapezoidal.

2
i

i

y h
y

h
λ
λ+

+
= −

−
 

Now, lets go back to the general case by undefined f:  

( ) ( )1,i i i if x y y y h+= − +  

( ) ( )1 1 1,i i i if x y y y h+ + += − +  

( ) ( ) ( ) ( ) ( )1 1 1, ,1 .2 1 2i i i i i if x y f x y y y h+ + ++ = − +  

We now want to determine what the error is in each stencil. To do this, we 
need to rewrite each of them in the standard form 

( )1 1 1, , , 0i i i i i iy y h x x y y+ + +− − Φ =  

therefore, 

( )1 , 0i i i iy y f x y h+ − − =  

( )1 1 1, 0i i i iy f x y h y+ + +− − =  

( ) ( ) ( ) ( )( )1 1 11 2 1 2, , 0.i i i i i iy h f x y f x y y+ + +− ∗ + − =  

Note that these relations define our numeric stencils in these sense that they 
give exact relations between the approximations iy  and 1iy + . But if we replace 
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the approximations with the exact values of ( )y x  they are supposed to represent, 
the above will represent only approximate equalities. That is, if we make the 
changes ix x→ , 1ix x h+ → + , ( )iy y x→ , ( )1iy y x h+ → + , the left hand 
sides of the above equations will only be approximately equal to zero. We call the 
magnitude of the discrepancy the “one step error” or “local error” in the stencil. 
Hence, the one step error in the various stencils will be: 

( ) ( )1 1, , ,i i i iy y x y y x h x x x x h+ += = + = = +  

( ) ( ) ( )( )Error Forward Euler ,y x h y x f x y x h= + − −  

( ) ( ) ( )( )Error Backward Euler ,y x h y x f x y x h= + − −  

( ) ( )( ) ( )Error Trapezoidal ,y x h f x h y x h h y x= + − + + −  

To estimate the magnitudes of these errors, we expand each of the above ex-
pression as a power series about 0h =  (since we are implicitly assuming h is a 
small quantity): 

( )( ) ( )( )( ) ( )( )( )( )
( )( )( )( ) ( )

2 2

3 3 4

Error Forward Euler

1 6

2, 1f x y x D y x h D y x h

D y x h O h

= − + +

+ +
 

( )( ) ( )( )( ) ( ) ( )2 4
1 2 3Error Backward Euler ,f x y x D y x h h O hα α α= − + + + − +  

where, 
( )( )( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )2

1 1 2,1 2 ,D y x D f x y x D f x y x D y xα = − −  

( )( )( )( ) ( )( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( )( )( )

23
2 2,2

2
2

,1 1 2

1 2 ,

6 D y x D y x D f x y x

D f x y x D y x

α = −

−
 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) 3
3 1,2 1,1, ,1 2D f x y x D y x D f x y x hα = −  

( ) ( ) ( ) ( )2 3 4
1 2 3 4Error Trapezoidal h h h O hβ β β β= + + − +  

where, 

( )( ) ( )( )1 ,f x y x D y xβ = − +  

( )( )( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )2
2 1 2,1 2 1 1 ,2 2D y x D f x y x D f x y x D y xβ = − −  

( )( )( )( ) ( )( )( ) ( )( ) ( )( )23
3 2,2 ,1 6 1 4D y x D y x D f x y xβ = −  

( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

2
4 2 1,2

1,1

, ,

,

1 4 1 2

1 .4

D f x y x D y x D f x y x D y x

D f x y x

β = −

−
 

Notice that first, second and third derivatives of y appear explicitly in these 
expressions. The first derivative terms can be removed by making use of ode. 
The second derivative can also be removed by examining the derivative of ode: 

( )( )( )( ) ( ) ( )( ) ( ) ( )( ) ( )2
1 2

d, ,
d

D y x D f x y x D f x y x y x
x

= +  
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and 

( ) ( )( )d ,
d

y x f x y x
x

=  

( )( )( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )2
1 2, , , .D y x D f x y x D f x y x f x y x= +  

Similarly, the third derivative can be removed 
( )( )( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )

3
1,1 1,2

1,2 2,2

2 1 2

, , ,

, , , ,

, , , , .

D y x D f x y x D f x y x f x y x

D f x y x D f x y x f x y x f x y x

D f x y x D f x y x D f x y x f x y x

= +

+ +

+ +

 

We now substitute our formulae for the derivatives of y into the error expres-
sions:  

( ) ( ) ( ) ( )2 3 4
1 2 3 4Error Forward Euler O h O h O hγ γ γ γ= + + + +      (10) 

where, 

( ) ( )( ) ( ) ( )( ) ( )( )( )1 1 21 2 , 1 2 , ,D f x y x D f x y x f x y xγ = +  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )2 1,1 1,21 6 , 1 6 , ,D f x y x D f x y x f x y xγ = +  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )3 1,2 2,21 6 , , , ,D f x y x D f x y x f x y x f x y xγ = +  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )4 2 1 21 6 , , , ,D f x y x D f x y x D f x y x f x y xγ = +  

( ) ( ) ( )2 3 4
5 6 7 8 9Error Backward Euler h h O hγ γ γ γ γ= + + − − +      (11) 

where, 

( ) ( )( ) ( ) ( )( ) ( )( )( )5 1 21 2 , 1 2 , ,D f x y x D f x y x f x y xγ = − −  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )6 1,1 1,21 3 , 5 6 , ,D f x y x D f x y x f x y xγ = − −  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )7 1,2 2,21 6 , , , ,D f x y x D f x y x f x y x f x y xγ = +  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )8 2 1 21 3 , , , ,D f x y x D f x y x D f x y x f x y xγ = +  

( )( )( ) ( )( ) ( )( )2

9 2,21 2 , ,f x y x D f x y xγ =  

( ) ( )3 4
10 11 12 13Error Trapezoidal h O hγ γ γ γ= + − − +          (12) 

where, 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )10 1,1 1,21 12 , 1 3 , ,D f x y x D f x y x f x y xγ = − −  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )11 1,2 2,21 6 , , , ,D f x y x D f x y x f x y x f x y xγ = +  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )12 2 1 21 12 , , , ,D f x y x D f x y x D f x y x f x y xγ = +  

( )( )( ) ( )( ) ( )( )2

13 2,21 4 , , .f x y x D f x y xγ =  

We see that the local error for the forward and backward schemes is ( )2O h . 
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Furthermore, the leading order terms for those stencils are the negative of the 
other one. Since the trapezoidal scheme is the average of the forward and back-
ward algorithms, this explains why the leading order error for the trapezoidal 
scheme is ( )3O h . In other words, the trapezoidal scheme is more accurate than 
the other two. Note that if all we are after is the magnitude of the leading order 
terms in the errors, we can just expand the above in a low order series: 

( )2Error Forward Euler O h=                    (13) 

( )2Error Backward Euler O h=                   (14) 

( )3Error Trapezoidal .O h=                     (15) 

We now turn our attention to actual numerical algorithms employing these 
stencils. Since the forward Euler scheme is explicit, it is particularly easy to de-
velop some code for it that works for arbitrary functions f. It is useful to rewrite 
the stencil with 1iy +  isolated on the LHS:  

( )1 ,i i i iy y f x y h+ = +  

Now we can transcribe this as a mapping that takes the step size and the old 
values of iy  and ix  and returns the new value 1iy +   

( ) ( )new old old old old old: , , ,y h x y y f x y h= → +  We could have equivalently accom-
plished this by using the unapply command, which converts expression into 
mappings without having to re-write them manually:  

( ) ( )2 3 3 2 3
new : , , ,y h y y y f y y h= → +  Here is a procedure that calculates the 

numerical solution of ode in the interval [ ]0,1x∈  once the form of ( ),f x y  
has been fixed. Its arguments are initial data in the form ( ) 00y y=  and the 
number of steps N. The output is a list of points, which we compare in the plot 
to the output generated by numeric for the same problem. 

Example: Solve the equation ( ) 2: , 2f x y y x= → − +   

( )( ) ( )( ) ( )2
2 , 0 : 2, : 15D y x y x x y N= − + = =  

Solution: 

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

data : 0,2 , 0.06666666667,1.733333333 ,

0.1333333333,1.541925926 , 0.2000000000,1.401201333 ,

0.2666666667,1.296976988 , 0.3333333334,1.220389256 ,

0.4000000001,1.165543705 , 0.4666666668,1.128310896 ,

=

 

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

0.5333333335,1.105660753 , 0.6000000002,1.095272817 ,

0.6666666669,1.095297981 , 0.7333333336,1.104208359 ,

0.8000000003,1.120701063 , 0.8666666670,1.143636338 ,

0.9333333337,1.171998289 , 1.000000000,1.204870734

 

Of course Figure 1 it is really comparing the results of two numeric approxi-
mations to the true solution of the problem. It is also useful to compare numeric 
answers to analytic results (if available). For the above choice of ( ),f x y  there 
is an analytic solution in terms of Airy functions: 
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Figure 1. Comparison between forward euler and dsolve numeric. 
 

( )

( )

1
313

2

33

4

2 1, 2
Analytical solution :

2

AiryBi x

AiryBi x

ξ
ξ
ξ
ξ

 
− + 
 =
− +

          (16) 

where 

( ) ( )( ) ( ) ( )( )
1

2 25 6 2 3 1 3 1 6 1 3 1 33
1 1, 2 4 3 3 2 3 3 2 3 3 2 3 2 4 3AiryAi xξ

 
= − π− Γ Γ + π  

 
 

( )( )2 36 3
2 3 3 2 3 2 4 3ξ = Γ + π  

( ) ( )( )( ) ( )25 6 2 3 3 3
3 4 3 3 2 3 3 2 2AiryAi xξ = π− Γ  

( )( )2 36 3
4 3 3 2 3 2 4 3.ξ = Γ + π  

Here is some code that generates a movie comparing how the numerical solu-
tion converges to the analytic solution as the number of cells is increased: 

We would also like to examine the performance of the backward and trape-
zoidal stencils see Figure 2, so let’s make a simple choice of ( ),f x y  that ad-
mits an analytic solution allows each stencil to be solve for 1iy +  explicitly:  

( ) ( ) 0: , , 0 :f x y y y yλ= → =  

( )( ) ( )D y x y xλ=  

( )Analytic Solution : 0 e xy λ=  

1Forward Euler : i i iy h y yλ+ = +  

1Backward Euler :
1

i
i

y
y

hλ+ =
− +  
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Figure 2. Comparison between backward and trapezoidal and dsolve numeric. 
 

1
1 2

Trapezoidal : .
1 1 2
i i

i
y h y

y
h
λ
λ+

+
=

−
 

As for the above code, it will be useful to realize each stencil as a mapping 
with arguments ,h λ  and iy . We can do this using a loop and the unapply 
command: 

( )1 3 3 3stencil : , ,h y h y yλ λ= → +  

( ) 3
2 3stencil : , ,

1
y

h y
h

λ
λ

= →
− +

 

( ) 3 3
3 3

1 2
stencil : , , .

1 1 2
y h y

h y
h
λ

λ
λ

+
= →

−
 

Conversely, we could have accomplished the same thing in one line by using 
the map command, which applies the same mapping onto each element of a list 
(in this case we are applying operations onto each element of Stencils to generate 
a new list stencil): 

( ) ( )3 3 3stencil : , , ,h y h y yλ λ= → +  

( ) 3
3, , ,

1
y

h y
h

λ
λ

→
− +

 

( ) 3 3
3

1 2
, , .

1 1 2
y h y

h y
h
λ

λ
λ

+
→

−
 

It is interesting to note that even though each of the stencils give different ex-
pressions for 1iy + , they actually agree with one another to order ( 2h ). To see 
this, let’s perform some Taylor series expansions: 

1ForwardEuler i i iy h y yλ+ = +  

( )2
1BackwardEuler i i iy y h y O hλ+ = + +  
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( )2
1Trapezoidal .i i iy y y h O hλ+ = + +  

Now, here is a procedure Euler solution that calculates a numeric solution for 
( )y x  for [ ]0,1x∈  using N cells and assuming ( ) 00y y=  and a given value 

of λ . The value of choice dictates which stencil is used: 1 for forward Euler, 2 
for backward Euler, and 3 for trapezoidal. Here is a plot of the numeric output 
for each stencil compared to the actually solution (because we are going to plot 4 
curves on our graph). It seems as if the trapezoidal method performs much bet-
ter than the other two. : 15N = , 0 : 2y = , : 4λ = − . 

We can quantify exactly how well the various stencils are doing by comparing 
the numeric and actual values for y at some fixed value of x, say 1x = . We call 
this the global error in the numeric solution at 1x = , which we denote by ε  
In this procedure, note that the [ ][ ]1 2N +  suffix after Euler solution ( )0 , ,y N λ  
has the effect of picking out the last element of the list (which is itself a list of 2 
quantities), and then picking out the second element of that sub-list (which is 
the numerical answer for ( )1y . We now generate a log-log plot of the global 
errors for each stencil as a function of N. 

For 100N ≥ , the error curves look linear on this log-log plot. This implies 
that above some threshold number of steps, the errors obey an approximate 
power law baNε   where a and b are constants. We can determine the values 
of these parameters by fitting a power law to our error data using statistics. Fig-
ure 3 and Figure 4 illustrate four solutions Forward Euler, Backward Euler, 
Trapezoidal and analytic solution and their errors. 

(PowerFit). We first need to regenerate our data for 100N ≥ , the range for 
which we believe a power law ought to be valid. Then, we use the Statistics (Po-
werFit) command to perform the fit. Note that this function requires the input 
to be a matrix, which is why we use the convert Matrix structure. The raw output  
 

 

Figure 3. Four solutions forward euler, backward euler, trapezoidal and analytic solution and dsolve numeric. 

https://doi.org/10.4236/jamp.2022.103059


M. A. Elamin, S. H. Altoum 
 

 

DOI: 10.4236/jamp.2022.103059 875 Journal of Applied Mathematics and Physics 
 

 

Figure 4. For 100N ≥ , the error curve and dsolve numeric. 
 
of the fitting algorithms is shown for each stencil, as well as the value of b in the 
power-law baNε  . 

0.995851778662443

1.256439840073940.284665679953286Forward Euler : , ,
0.995851778662443N

 −  
=   −  

 

0.995851778662443b = − .  

1.00397729890028

1.199509575873350.301341961047440Backward Euler : , ,
1.00397729890028N

 −  
=   −  

 

1.00397729890028b = − .  

2.00065878415391

1.628702163939260.196184023674760Trapezoidal : , ,
2.00065878415391N

 −  
=   −  

 

2.00065878415391b = − . 

We see that for asymptotically large numbers of steps 1N  , the global er-
rors are ( ) ( )1O N O h− =  for the forward and backward Euler stencils, and 

( ) ( )2 2O N O h− =  for the trapezoidal method. This confirms the general expec-
tation that for a stencil with one step error ( )pO h , we expect the global error to 
obey 

( ) ( )
( ) ( ) ( ) ( )1 1

global error number of steps one-step error for each step

.p p pN O h O h O h O h− −

×

= × = × =



 

Recall that we showed in (13, 14, 15) above that 2p =  for forward and 
backward Euler, and 3p =  for the trapezoidal algorithm. 

4. Conclusion 

In this paper, we have investigated the solution of ODEs using three approaches. 
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The first one, is the Forward Euler method, the second is Backward Euler me-
thod and the third one is a numerical method based on Trapezoidal method. In 
general, we find the numerical method of Trapezoidal method, is a good tech-
nique that helped us to find an approximation of the exact solution with small 
error. In the last, we note the Trapezoidal method. 
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