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Abstract 
This paper is concerned with the following variable-order fractional Lapla-

cian equations ( ) ( ) ( ) ( ) ( ) 2, , in ,
0, in \ ,

q xs

N

u V x u f x u u u
u

λ µ −⋅ −∆ + = + Ω


= Ω 
,  

where 1N ≥  and ( )2 ,N s x y>  for ( ),x y ∈Ω×Ω , Ω  is a bounded do-

main in N , ( ) ( )( ), 0,1N Ns C⋅ ∈ ×  , ( ) ( )s ⋅−∆  is the variable-order frac-

tional Laplacian operator, , 0λ µ >  are two parameters, [ ): 0,V Ω→ ∞  is a 

continuous function, ( )f C∈ Ω×  and ( )q C∈ Ω . Under some suitable 

conditions on f, we obtain two solutions for this problem by employing the 
mountain pass theorem and Ekeland’s variational principle. Our result gene-
ralizes the related ones in the literature. 
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1. Introduction 

In this paper, we consider the following variable-order fractional Laplacian equ-
ations  

( ) ( ) ( ) ( ) ( ) 2, , in ,
0, in \ ,

q xs

N

u V x u f x u u u
u

λ µ −⋅ −∆ + = + Ω


= Ω 
     (1.1) 

where 1N ≥  and ( )2 ,N s x y>  for ( ),x y ∈Ω×Ω , Ω  is a bounded domain 
in N , ( ) ( )( ), 0,1N Ns C⋅ ∈ ×  , ( ) ( )s ⋅−∆  is the variable-order fractional 
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Laplacian operator, , 0λ µ >  are two parameters, [ ): 0,V Ω→ ∞  is a conti-
nuous function, ( )f C∈ Ω×  and ( )q C∈ Ω . The Laplacian operator ( ) ( )s ⋅−∆  
is defined by  

( ) ( ) ( ) ( ) ( )
( )2 ,

2 . . d ,N
s

N s x y

x y
x PV y

x y

ξ ξ
ξ⋅

+

−
−∆ =

−
∫  

for each Nx∈  and any ( )0Cξ ∞∈ Ω , where . .PV  denotes the Cauchy prin-
cipal value. 

When ( ) constants ⋅ ≡  and ( ) constantq x ≡ , ( ) ( )s ⋅−∆  becomes to the usual 
fractional Laplacian operator and problem (1.1) reduces to fractional Schrödin-
ger equation. This kind of equation is introduced by Laskin [1] [2] as a result of 
expanding the Feynman path integral from the Brownian-like to the Lévy-like 
quantum mechanical paths. The fractional Schrödinger equation is studied by 
many researchers. For example, Zhang et al. [3] investigated fractional Schrödin-
ger equation with critical exponents by using variational methods. They used 
Pohožaev identity and Jeanjean’s monotonicity trick to obtain a radially symme-
tric weak solution. Another example is [4], the multiplicity and concentration of 
solutions for fractional Schrödinger equation with concave-convex nonlinearity 
are studied by Gao et al. For more results about fractional Schrödinger equation, 
please see [5] [6] [7] and the references therein. Particularly, when ( ) 1s ⋅ ≡  and 
( ) constantq x ≡ , problem (1.1) becomes to the Schrödinger equation with con-

cave-convex nonlinearity.  
If ( ) 1s ⋅ ≡ , (1.1) becomes the following second order elliptic equation with 

variable growth nonlinearity  

( ) ( ) ( ) 2, in 
0 in \ .

q x

N

u V x u f x u u u
u

λ µ −−∆ + = + Ω


= Ω 
       (1.2) 

Some interesting phenomena can be described by this type of model. For ex-
ample, Ružička [8] showed the application in the modeling of electrorheological 
fluids involving variable exponent Laplacian operator. It happens that there is a 
similar case, Ayazoglu and Ekincioglu [9] obtained a positive solution for elec-
trorheological fluids equations with variable exponent via mountain pass tech-
nique. For other applications of these similar models, we refer the readers to [10] 
[11] [12] [13] [14]. 

In this paper, we consider the variable-order fractional Laplacian operator 
case with variable growth. The fractional variable order derivatives are intro-
duced by Lorenzo and Hartley [15] to better describe some diffusion processes 
reacting to temperature changes. In fact, the literature involving the variable- 
order fractional Laplacian operator cases is few. Specially, Xiang et al. [16] ob-
tained multiple solutions for the following elliptic equations with variable-order 
fractional Laplacian operator involving variable exponents by using variational 
methods,  

( ) ( ) ( ) ( ) ( )2 2 in 
0 in \ ,

p x q xs

N

u V x u u u u u
u

λ α µ− −⋅ −∆ + = + Ω


= Ω 
     (1.3) 
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where ( ),p q C∈ Ω . Another example is [17], Biswas and Tiwari studied a type 
of Choquard problem with variable-order nonlocal term and variable exponents 
and obtained some results for the above mention problem by employing Hardy- 
Sobolev-Littlewood-type inequality. Very recently, Xiang et al. [18] investigated 
variable-order fractional Kirchhoff equations with nonstandard growth and ob-
tained multiple solutions for these equations by applying the Nehari manifold ap-
proach. For other results on variable-order fractional Kirchhoff equations, please 
see [19] [20] and the references therein.  

Inspired mainly by the aforementioned results, we proved the existence of so-
lutions for (1.1) with concave-convex nonlinearity. Compared to [16], we deal 
with a general case, i.e., the general nonlinearity f with variable growth condi-
tions. To show our result, we make the following assumptions first:  

(H1) ( ) ( ) ( ) ( ), ,
0 : min , : max , 1N N N Nx y x y

s s x y s s x y− +
∈ × ∈ ×

< = ≤ = <
   

.  
(H2) ( ) ( ), ,s x y s y x= , ( ), N Nx y∀ ∈ ×  .  
(H3) ( )( )1 0J int V −= ⊂ Ω  is a nonempty bounded domain and ( )1 0J V −= . 
(H4) there exists a nonempty open domain 0 JΩ ⊂  such that ( ) 0V x ≡  for 

all 0x∈Ω .  
For the nonlinearity term f and the variable exponents q, we assume that 

( )q C∈ Ω  and the following assumptions hold:  
(H5) ( ): 1, 2q Ω→ . 
(H6) ( )f C∈ Ω×  and there exist a positive constant c and a continuous 

function ( )p C∈ Ω  with ( ) ( )
22
2 ,

Np x
N s x x

< <
−

 such that  

( ) ( )( )1, 1 p xf x u c u −≤ + .  

(H7) ( ) ( ),f x u o u=  as 0u →  uniformly for x∈Ω .  
(H8) there exists 2p− >  such that ( ) ( )0 , ,p F x u f x u u−< ≤  for every  

x∈Ω , where ( ) ( )
0

, , d
t

F x t f x t t= ∫  and  

( ) ( ) ( )
22 : essinf : esssup
2 ,x x

Np p x p p x
N s x x

− +
∈Ω ∈Ω< = ≤ = <

−
. 

Let pη  and qη  be the Sobolev embedding constants which will be defined 
in the next section, set  

{ } { }max , max ,
, .

p p q q
p p q q

A B
p q

η η η η
+ − + −

− −= =  

We assume that µ  is a positive parameter satisfying the following assump-
tion:  

(H9) there holds  

( )
( )

( ) ( )

2
2 22
2 21 22 2, .

2 2 2

q
p p qq qc

Ac p q B p q A p qε
ε

η ε η ε
µ

+

+
−

+ +−+ +

+ + + + + +

  − + −− − < ≤
 − − − 

 

where cε  is a positive constant depending on ε .  
Based on the hypothesis (H2), we can give the following definition of weak 
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solutions for problem (1.1). 
Definition 1.1. We say that u Eλ∈  is a (weak) solution of problem (1.1), if 

for any v Eλ∈ , there holds  

( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( )( )
2 2 ,

2

d d d

, d ,

N N s x y

q x

u x u y v x v y
x y V x uv x

x y

f x u v u uv x

λ

µ

+ Ω

−

Ω

− −
+

−

= +

∫∫ ∫

∫


 

where Eλ  is a variable exponent Banach space which will be defined in the next 
section. 

Theorem 1.2. Suppose (H1)-(H9) hold. Let 2N s+> , then problem (1.1) 
admits at least two distinct solutions for all 0λ > . 

Remark 1.3. In fact, the multiple solutions for variable-order fractional Lap-
lacian equation involving general nonlinearity with critical growth of variable 
exponent have not been investigated. It is very interesting and full of challenge 
for us to deal with this problem. 

This paper is organized as follows. In Section 1, we give some reviews on the 
topic of variable-order fractional Lapla-cian equations and give the main result 
of this paper. In Section 2, some preliminary results are presented. In Section 3, 
we give the proof of Theorem 1.2. 

2. Preliminaries 

Some preliminary results of variable exponent Lebesgue spaces will be given in 
this section which come from [21]. 

A variable exponent is a measurable function [ ): 1,p Ω→ ∞ . The exponent p 
is said to be bounded if p+  is finite. Let 

( ) ( ) ( ) ( ) ( ) ( ){ }: is a measurable function; d ,
p xp x

p xL w w w x xφ
Ω

Ω = Ω→ = < ∞∫  

then ( ) ( )p xL Ω  is a variable exponent Banach space with the following Luxem-
burg norm  

( ) ( ) ( ) ( ){ }1inf 0 : 1 .p p xLw wθ φ θ⋅
−

Ω
= > ≤  

If p is bounded, there holds  

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }min , max , .p p p p
p p p p

pL L L Lw w w w wφ
− + − +

⋅ ⋅ ⋅ ⋅⋅Ω Ω Ω Ω
≤ ≤    (2.1) 

From (2.1), we know that the norm convergence and the convergence is 
equivalent with respect to ( )p xφ  when p is bounded. Moreover, the dual space of 

( ) ( )pL ⋅ Ω  can be written as ( ) ( )pL ′ ⋅ Ω  for bounded exponent, where  
( ) ( )1 1 1p x p x′ + = . It is obvious that ( ) ( )pL ⋅ Ω  is separable and reflexive since 

1 p p− +< ≤ < ∞ .  
The following inequality is Hölder’s inequality in variable exponent Lebesgue 

space  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1d 2 ,p p p pL L L Luv x u v u v
p p

′ ′⋅ ⋅ ⋅ ⋅− − Ω Ω Ω ΩΩ

 
 ≤ + ≤
 ′ 

∫  
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for all ( ) ( )pu L ⋅∈ Ω , ( ) ( )pv L ′ ⋅∈ Ω  and ( ) ( )1,p x ∈ ∞ . 
Next, the variational setting for problem (1.1) will be given. Let Ω  be a non-

empty open subset of N  and let ( )s ⋅  be a measurable function, there are two 
constants ( )0 1, 0,1s s ∈  with 0 1s s<  such that  

( ) ( )0 1, , , .N Ns s x y s x y≤ ≤ ∀ ∈ ×   

Set  
( ) ( ) ( ) [ ] ( ){ }2

,
: ,s

sH w L w⋅
⋅ Ω

Ω = ∈ Ω < ∞  

where  

[ ] ( )
( ) ( )

( )

1 22

, 2 ,
d d .s N s x y

w x w y
w x y

x y⋅ Ω +Ω Ω

 −
 =
 − 
∫ ∫  

Let ( ) ( )sH ⋅ Ω  be equipped with the norm  

( ) [ ] ( )( )2

1 222

,
.L sw w w

Ω Ω ⋅ Ω
= +  

Especially, ( ) ( )sH ⋅ Ω  becomes to the usual fractional Sobolev space if ( )s ⋅  
is a constant function. 

The space ( ) ( )0
sH ⋅ Ω  is defined as  

( ) ( ) {
( ) [ ] ( ) }

0 \

2

: is a measurable function, 0,

and ,

N
s N

s

H w w

w L w

⋅
Ω

⋅

Ω = → =

∈ Ω < ∞

 
 

where  

[ ] ( )
( ) ( )

( )2

1 22

2 ,
: d d .Ns N s x y

w x w y
w x y

x y⋅ +

 −
 =
 − 
∫∫  

The norm on ( ) ( )0
sH ⋅ Ω  is given as  

( ) [ ] ( )( )2

1 222 .L sw w w
Ω ⋅

= +  

The following lemma implies that [ ] ( )s ⋅
⋅  is an equivalent norm of ( ) ( )0

sH ⋅ Ω . 
Lemma 2.1. [16]. The embedding ( )1

0
sH Ω ↪ ( ) ( )0

sH ⋅ Ω ↪ ( )0
0
sH Ω  are con-

tinuous. Moreover, if 02N s> , for any fixed constant exponent  

0

21,
2

Np
N s

 
∈  − 

, ( ) ( )0
sH ⋅ Ω  can be continuously embedded into ( )pL Ω . 

Using the same argument as the proof of ([22], Lemma 7), one can easily 
prove that ( ) ( ) [ ] ( )( )0 ,s

sH ⋅
⋅

Ω ⋅  is a Hilbert space. From ([22], Theorem 2.1), we 
know that the embedding ( ) ( )0

sH ⋅ Ω ↪ ( ) ( )p xL Ω  is continuous and compact. 
Moreover, there exists ( ), , , 0p N s s pη η + − += >  such that  

( ) ( )
( ) ( )0, ,p x

s
pLw u w Hη ⋅

Ω
≤ ∀ ∈ Ω                 (2.2) 

and 

( ) ( ) [ ] ( )
( ) ( )0, .p x

s
pL sw w w Hη ⋅

Ω ⋅
≤ ∀ ∈ Ω                (2.3) 
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Let  
( ) ( ) [ ] ( ) ( ){ }2 2

0 : d ,s
sE w H w V x w x⋅
⋅ Ω

= ∈ Ω + < ∞∫  

the inner product on E is defined as  

( )
( ) ( )( ) ( ) ( )( )

( )

( )

2 2 ,
, d d

d , ,

NE N s x y

v x v y w x w y
v w x y

x y

V x vw x v w E

+

Ω

− −
=

−

+ ∀ ∈

∫∫

∫

  

and the corresponding norm is ( )1 2, EEw w w= . The following inner product  

( )
( ) ( )( ) ( ) ( )( )

( ) ( )2 2 ,
, d d d ,N N s x y

v x v y w x w y
v w x y V x vw x

x yλ λ
+ Ω

− −
= +

−
∫∫ ∫

 

and the corresponding norm ( )1 2,w w w λλ
=  are also used in this paper. Ob-

viously, for all 1λ ≥ , one has 
Ew u

λ
≤ . Set ( ),E Eλ λ

= ⋅ . Moreover, for 
( ) ( )( )( )1,2 2 ,p x N N s x x∈ − , from (2.3), one has  

( ) ( )
( ) ( ) ( ) ( ){ } [ ] ( ) [ ] ( ){ }d max , max , .p x p x

p x p pp p p p
p pL L s sw x x w w w wη η

+ −+ − + −

Ω Ω ⋅ ⋅Ω
≤ ≤∫  

Evidently, problem (1.1) has a variational formulation and the corresponding 
functional is defined in Eλ  by  

( )
( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

2

2
2

2 ,

2

1 d d d
2 2

, d d

1 , d d , .
2

N N s x y

q x

q x

u x u y
u x y V x u x

x y

F x u x u x
q x

u F x u x u x u E
q x

λ

λλ

λ

µ

µ

+ Ω

Ω Ω

Ω Ω

−
Φ = +

−

− −

= − − ∀ ∈

∫∫ ∫

∫ ∫

∫ ∫



      (2.4) 

Actually, ( )1 ,C Eλ λΦ ∈   is well-defined and  

( ) ( ) ( ) ( )2, , d , d , , .q xu v u v u uv x f x u v x u v Eλλ µ −

Ω Ω
′Φ = − − ∀ ∈∫ ∫    (2.5) 

Hence, u is a solution to problem (1.1) if u Eλ∈  is a critical point of λΦ . 

3. Proof of Theorem 1.2 

It is well known that a 1C  functional λΦ  satisfying Palais-Smale ((PS) for 
short) condition at level c if for any sequence { }nu Eλ⊂  such that ( )nu cλΦ →  
and ( ) 0nuλ′Φ → , there exists a convergent subsequence in Eλ , which is called 
a (PS)c sequence. 

First, we shall verify the mountain pass geometry of λΦ . 
Lemma 3.1. Assume that (H1) and (H3)-(H9) hold. Then for all 0λ > , the 

functional λΦ  satisfies  
1) There exists , 0β ρ >  such that ( )uλ βΦ ≥  if u

λ
ρ= ; 

2) There exists u Eλ∈  with u
λ

ρ>  such that ( ) 0uλΦ < . 
Proof. For any 0ε > , it follows from the condition (H5) and (H6) that there 

exists 0cε >  such that  
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( ) ( )2, , .
2

p xc
F x t t t t

p
εε
−≤ + ∀ ∈                 (3.1) 

Thus, from (3.1) and the fractional Sobolev inequality, one has  

( ) ( )

{ }

2

2
22

, d d d
2

max ,
, with 1.

2

p x

p p
p p p

c
F x u x u x u x

p

cC u u u E u
p

ε

ε

λλ λ λ

ε

η ηε
+ −

+

−Ω Ω Ω

−

≤ +

≤ + ∀ ∈ ≥

∫ ∫ ∫
    (3.2) 

For u Eλ∈  and 1u
λ
≥ , it follows from (2.4) and (3.2) that  

( ) ( ) ( )
( )

{ } { }

( ) { } { }

2

2
2 22

22
2

1 , d d
2

max , max ,1
2 2

max , max ,1 1 .
2

q x

p p q q
p p q qp q

p p q q
p p q qq q p q

u u F x u x u x
q x

cCu u u u
p q

c
u C u u

p q

λ λ

ε

λ λ λ λ

ε

λ λ λ

µ

η η µ η ηε

η η µ η η
ε

+ − + −

+ +

+ − + −

+ + + +

Ω Ω

− −

− −

− −

Φ = − −

≥ − − −

 
 = − − − 
  

∫ ∫

 

Let 

( ) ( ) , 0,qg t h t t t
+

= ∀ ≥  

where 

( )
2

221
.

2
q p qh t t Ac t Bε

η ε
µ

+ + +− −−
= − −  

By (H9) and an easy computation, for 
( )

1
2

* 2
2

pqt t
Ac p qε

+ −+

+ +

 − = =
 − 

, one has  

( ) ( )*

0
max 0.

t
h t h t

≥
= >  

Since 
( )
2

2
qc

A p qε

+

+ +

−
≤

−
, we have  

( )

1
2

* 2 1.
2

pqt
Ac p qε

+ −+

+ +

 − = ≥
 − 

 

Let *tρ =  and ( )*g tβ = , then (1) of Lemma 3.1 is satisfied by.  
By (3.1) and (H7), there exists 1 0c >  such that  

( ) ( ) ( )2
1, , , .pF x u c u u x u

−

≥ − ∀ ∈Ω×  

Then we choose a function 0v Eλ∈  such that  

( ) ( )
0 01 and d 0.

p x
v v x x

λ Ω
= >∫  

By (2.4), for all 0 1t ≥ , we obtain 

( ) ( ) ( )
( )

( ) ( )

2
20

0 0 0 0 0 0 0

2
2 220 0

0 1 0 0 1 0 0 0

, d d
2

d d d .
2

q x

q
p x q xp

t
t v v F x t v x t v x

q x

t t
v c t v x c t v x v x

q

λ λ

λ

µ

µ
−

−

Ω Ω

+Ω Ω Ω

Φ = − −

≤ − + −

∫ ∫

∫ ∫ ∫
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Since 2p− >  and 1q− > , there exists 0 1t ≥  large enough such that 
( )0 0 0t vλΦ < . The proof is completed. 

Let  

[ ]
( )( )

0,1
inf max ,

t
c tλ λρ

ρ
∈Γ ∈

= Φ  

( )
[ ]

( ) ( ) ( )( )
00

0 0,1
inf max ,sHt

c tλρ
ρ⋅ Ω∈Γ ∈

Ω = Φ


 

[ ]( ) ( ) ( ){ }0,1 , ; 0 0, 1C E eλρ ρ ρΓ = ∈ = =  

and  

[ ] ( ) ( )( ) ( ) ( ){ }0 00,1 , ; 0 0, 1 .sC H eρ ρ ρ⋅Γ = ∈ Ω = =  

Notice that  

( ) ( ) ( ) [ ] ( ) ( ) ( )
( ) ( ) ( )

00 0

2
0 0

1 , d , .
2

s
q x s

H su u F x u u x u H
q xλ
µ

⋅
⋅

Ω ⋅ Ω

 
Φ = − + ∀ ∈ Ω  

 
∫  

Obviously, ( )0c Ω  is independent of λ . It is clear that the mountain pass 
geometry of ( ) ( )00

sHλ ⋅ Ω
Φ  is proved by Lemma 3.1. Since ( ) ( )0 0

sH Eλ
⋅ Ω ⊂  for all 

0λ > , we have ( )00 c cλ≤ ≤ Ω  for all 0λ > . Evidently, for all [ ]0,1t∈ , 
te∈Γ . Hence, it follows from 2p− >  that there exists 0 0C >  such that  

( )
[ ]

( )0 00,1
max .
t

c te Cλ∈
Ω ≤ Φ ≤ < ∞  

Then, for all 0λ > , we have  

( )0 00 .c c Cλβ< ≤ ≤ Ω <                    (3.3) 

By Lemma 3.1 and the mountain pass theorem, we derive that there exists 
{ }k k
u Eλ⊂  such that  

( ) ( )0 and 0, as .k ku c u kλ λ λ′Φ → > Φ → →∞            (3.4) 

Lemma 3.2. Assume that (H1) and (H3)-(H9) hold. Then the (PS)c sequence 
{ }k k
u Eλ⊂  given in (3.4) is bounded for all 0λ > .  
Proof. By (2.4), (2.5), (3.4) (H7) and the Hölder inequality, one obtains  

( ) ( ) ( )

( ) ( )

( )
( )

( )

{ }

2

2

2

11 ,

1 1 1 , , d
2

1 1 d

2 1 1 d
2

2 1 1 max , .
2

k k k

k k k k

q x
k

q x
k k

q qq q
k q k q k

c o u u u
p

u f x u u F x u x
p p

u x
q x p

p u u x
p q p

p u C u C u
p q p

λ λ λ

λ

λ

λ

µ

µ

µ
+ −+ −

−

− −Ω

−Ω

−

− − − Ω

−

− − −

′+ ≥ Φ − Φ

   
= − + −   
   

 
− −  

 
 −

≥ − − 
 
 −

≥ − − 
 

∫

∫

∫

  (3.5) 

Arguing indirectly, we assume that { }k k
u  is not bounded in ( ) ( )0

sH ⋅ Ω . Then 
there exists a subsequence still denoted by { }k k

u  such that ku
λ
→ ∞  as 
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k →∞ . Then, by (3.5), we obtain  

( ) { }2 2
2

1 2 max , ,
2

q qq q
q k q k

k

c o p C u C u
pu

λ

λ

+ −+ −
−

− −

−

+ −
≥ −           (3.6) 

which contradicts to 2p− > . Hence, the boundedness of { }k k
u  in Eλ  is ob-

tained for all 0λ > .  
Lemma 3.3. Assume that (H1) and (H3)-(H9) hold. Then λΦ  satisfies the 

(PS)c condition in Eλ  for all c∈  and 0λ > .  
Proof. Let { }k k

u  be a (PS)c sequence with 0c C< . From Lemma 3.2, we know 
that { }k k

u  is bounded in Eλ  and there exists 0C >  such that ku C
λ
≤ . 

Hence, there exists a subsequence of { }k k
u  still denoted by { }k k

u  and 0u  in 
Eλ  such that  

( ) ( ) ( ) ( )

0

0

2 2
0 0

 weakly in ,
 a.e. in ,

 weakly in .

k

k

p x p x p x
k k

u u E
u u

u u u u L

λ

− − ′

→

Ω






            (3.7) 

Now we prove that 0ku u→  in Eλ . From ([22], Theorem 2.1), we have 

0ku u→  in ( ) ( )p xL Ω  and ( ) ( )q xL Ω , respectively. Hence,  
( )

0lim d 0.q x
kk

u u x
Ω→∞

− =∫                     (3.8) 

By (H5) and (H6), we have  

( )( )
( )( )( )
( )( )

0 0

1
0 0 0

2
0 0

, d

d

d

k k

p x
k k k

p x
k k

f x u u u u x

u u c u u u u x

u u c u u x

ε

ε

ε

ε

Ω

−

Ω

Ω

− −

≤ − + − −

= − + −

∫

∫

∫

 

Thus,  

( )( )0 0lim , d 0.k kk
f x u u u u x

Ω→∞
− − =∫               (3.9) 

It follows from (2.5) and (3.4) that  

( ) ( ) ( )
( ) ( )( )

( ) ( )( )( )

0 0

0 0 0 0

2 2
0 0 0

1 ,

, , d

d .

k k

k k k k

q x q x
k k k

o u u u u

u u u u f x u u u u x

u u u u u u x

λ λ

λ

µ

Ω

− −

Ω

′ ′= Φ −Φ −

= − − − − −

− − −

∫

∫

      (3.10) 

By (3.8), (3.9) and (3.10), we have  

0lim 0.kk
u u

λ→∞
− =  

The proof is complete.  
Proof of Theorem 1.2. By Lemmas 3.1 - 3.2 and the mountain pass theorem, 

for all 0λ > , there exists a ( )cPS
λ

 sequence { }k k
u  for λΦ  on Eλ . From 

Lemma 3.2 and ( )0 00 c c Cλ< < Ω < , there exists a subsequence of { }k k
u  still 

denoted by { }k k
u  and 0u Eλ λ∈  such that 0

ku uλ→  in Eλ . Moreover,  
( )nu cλ λ βΦ = ≥  and 0uλ  is a solution to problem (1.1).  
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Next, we verify that problem (1.1) has another solution. Let  

( ){ }inf : ,c w w Bλ λ ρ= Φ ∈  

where { }:B w E wρ λ λ
ρ= ∈ <  and 0ρ >  is given by Lemma 3.1. Then 

0cλ <  for all 0λ > . Let ( ) ( )0 0
sw H ⋅∈ Ω  such that ( )

0 0q xw
Ω

>∫ . By (2.4), (H7) 
and (H8), one has that  

( ) ( ) ( )
( )

( ) ( )

2
2

0 0 0 0

2
2 22 0

0 1 0 1 0 0

, d d
2

d d d
2
0

q x

q
p x q xp

ttw w F x tw x tw x
q x

tt w c t w x c t w x w x
q

λ λ

λ

µ

µ
−

−

Ω Ω

+Ω Ω Ω

Φ = − −

≤ − + −

<

∫ ∫

∫ ∫ ∫  (3.11) 

for ( )0,1t∈  small enough.  
Hence, there is 0w Eλ∈  such that ( )0 0twλΦ <  for all 0t >  small enough.  
It follows from Lemma 3.1 and the Ekeland’s variational principle that there 

exists a sequence { }k k
u  such that  

( ) 1 ,kc u c
kλ λ λ≤ Φ ≤ +                       (3.12) 

and  

( ) ( ) , .k
k

u v
v u v B

k
λ

λ λ ρ

−
Φ ≥ Φ − ∀ ∈              (3.13) 

Now we should show that ku
λ

ρ<  for k large enough. Indirectly, we sup-
pose that ku

λ
ρ=  for infinitely many k. Without loss of generality, one may 

assume that ku
λ

ρ=  for any k ∈ . By Lemma 3.1, one has  

( ) 0.kuλ βΦ ≥ >                        (3.14) 

From (3.12) and (3.14), we have 0cλ β≥ > , which contradicts to 0cλ < . 
Now we prove that ( ) 0kuλ′Φ →  in *Eλ . Let  

1, ,k kw u tv v B= + ∀ ∈  

where { }1 : : 1B v E vλ λ
= ∈ = , 0t >  is small enough such that  

22 22 0ku t t
λ

ρ ρ− − − ≥  for fixed k large. Thus  
2 2 22 2 22 , 2 ,k k k kw u t u v t u t t
λ λ λ λ

ρ ρ ρ= + + ≤ + + ≤  

which implies that kw Bρ∈ . Hence, from (3.13), one has  

( ) ( ) ,k k k k
tw u u w
nλ λΦ ≥ Φ − −  

that is,  

( ) ( ) 1 .k ku tv u
t k

λ λΦ + −Φ
≥ −  

Letting 0t +→ , one has ( ) 1,ku v
kλ′Φ ≥ −  for any fixed k large. Similarly, 

by repeating the process above, choosing 0t <  and t  small enough, one gets  
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( ) 1, , for any fixed  large.ku v k
kλ′Φ ≤  

Hence, we obtain  

( )
1

lim sup , 0,kn v B
u vλ→∞ ∈

Φ =  

which implies that ( ) 0kuλΦ →  in *Eλ  as k →∞ . Thus, { }n n
u  is a ( )cPS

λ
 

sequence for the functional λΦ . Using the same argument as Lemma 3.3, there 
exists ( )2uλ  such that ( )2

nu uλ→  in Eλ . Hence, one obtains a nontrivial solu-
tion ( )2uλ  of (1.1) satisfying  

( )( ) ( )2 20 and .u uλ λ λ λ
ζ ρΦ ≤ < <  

Hence, we conclude that  
( )( ) ( )( )2 10 , 0,u c c uλ λ λ λ λ λζ β λΦ = ≤ < < < = Φ ∀ >  

which completes the proof.  

4. Conclusion 

This paper considers the existence of solutions for a kind of variable-order frac-
tional Laplacian equations. By employing the mountain pass theorem and Ekel-
and’s variational principle, two solutions are obtained under some suitable con-
ditions on f. Specially speaking, we first prove the mountain pass geometry of 
the function for this kind of variable-order fractional Laplacian equations. Se-
condly, we verify the boundedness of (PS)c sequences. Finally, we prove that 

λΦ  satisfies the (PS)c condition in Eλ  for all c∈  and 0λ > . The result 
obtained in this paper generalizes the related ones in the literature, which can be 
used in similar kinds of variable-order fractional Laplacian equations. We hope 
that this result can be widely used in variable-order fractional Laplacian equa-
tions and other systems. 
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