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Abstract 
Our modeling fluid flow, especially if the fluid is referred to as a gas, is estab-
lished on mimicking each particle/molecule’s movement and then gathering 
that movement into macro quantities characterizing the fluid flow. It has re-
sulted in discovering a new principle of the property (mass, momentum, and 
energy) balance in space. We named it the Ballistic Principle of the Property 
Balance in Space as described earlier in our publications. This paper uses a 
different scheme of defining a net rate of total property efflux than our origi-
nal paper. Using this scheme, we formulated integro-differential forms of mass 
balance and momentum balance equations adapted to the incompressible 
fluid flow (gas flow with a mass-flow velocity less than 0.3 Ma) at the non- 
uniform temperature in the infinite gas space. We also investigated the ana-
lytical behavior of the integro-differential equations in the region bounding 
the point of singularity by applying the Taylor series expansion method to 
transform the integro-differential mass and momentum balance equations into 
the corresponding vector differential equations. Then we compared them with 
the Navier-Stokes equations of mass and momentum conservation for an in-
compressible fluid. We were surprised to find that the Navier-Stokes momen-
tum balance equation does not describe the fluid flow adequately. Particularly, 
it does not consider the momentum associated with the part of velocity ac-
quired by each gas particle during its free path traveling in the body force 
field. Also, the Navier-Stokes momentum balance equation is silent about the 
influence of the temperature non-uniformity on the momentum balance. Fi-
nally, we have demonstrated that the Navier-Stokes equations are not appli-

cable to govern fluid flow on [ )3 0,× ∞ . 
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1. Introduction 

Navier-Stokes equations are designed to govern the motion of fluids, including 
gases. Originally, they were derived based on the continuum assumption that 
considers fluids to be continuous. The equations are formulated by considering 
the mass, momentum, and energy conservations for a control volume of arbi-
trary size. The flow is considered continuous and differentiable so that the mass, 
momentum, and energy balances may be expressed as partial differential equa-
tions. However, being essential for physics and fluid dynamics, these equations 
are extremely difficult to solve. Moreover, for three-dimensional Navier-Stokes 
equations and given initial conditions, mathematicians have not yet proved that 
physically realistic smooth solutions always exist on all 3 . The Clay Mathe-
matics Institute has named this question as one of the significant obstacles con-
fronting mathematicians and physicists in the twenty-first century.  

The Navier-Stokes mass and momentum balance equations for incompressi-
ble fluid are expressed as  

0⋅ =u∇                              (1) 

and  

( ) 1 p
t

ν
ρ

∂
+ ⋅ − + = ⋅

∂
u u u g u    

∇ ∇ ∇ ∇ ,                (2) 

respectively, for 0t >  and 3∈r  . In the equations above, ρ  is the constant 
density of the fluid, ( ) 3,t ∈u r    is mass flow velocity evaluated at point 3∈r   
and at a time t, ( ) 3,p t ∈r   is the pressure field, ( ),tg r 

 is the smooth on 
[ )3 0,× ∞  external force per unit mass, and ν  is the kinematic viscosity. For 

gases, the kinematic viscosity is defined as  

v f Tk vν λ= ,                          (3) 

where fλ  is the mean free path, Tv  is the thermal velocity of a particle defined 
through the “average kinetic energy” as  

3 B
T

k Tv
m

= ,                         (4) 

where Bk  is Boltzmann constant, T is the temperature, and m is the mass of a 
particle and vk  is a numerical coefficient the value of each varies from a typical 
1/3 to 5 32 0.49π ≅  obtained via a mathematically rigorous derivation [1]. The 
initial condition on u  at time 0t =  is given by 

( ) ( )00, =u r u r   

 for 3∈r  ,                   (5) 

where 0u  is a C∞  divergence-free vector field on 3 . 
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The Fundamental Problem related to the Navier-Stokes equations is: Given the 
initial distribution of velocity ( )0u r 

 at time 0t =  and the body force ( ),tg r 

 
for 0t > , one needs to determine a unique regular solution ( ),tu r 

, ( ),p t r  to 
(1), (2), and (5) for all times 0t >  [2].  

The Clay Millennium Problem on Navier-Stokes equations for a viscous fluid 
( 0ν > ) is also presumed to be solved in the case of the breakdown of Navier- 
Stokes solutions on 3  upon the proof that “there exists no solution ( ),p u ” of 
(1), (2), and (5) on [ )3 0,× ∞  [3].  

Note: in the text, the terms “fluid flow”, which mostly relates to the Navier- 
Stokes equations, and “gas flow”, which mainly relates to the following descrip-
tion of our model, have an identical meaning.  

The Navier-Stokes equations assume that the fluid behaves as a continuous 
matter rather than discrete particles. Namely, the number of gas particles (atoms 
or molecules) within the smallest applicable region (infinitesimal material ele-
ment used for deriving governing differential equations of fluid dynamics) is 
sufficient that all fluid properties are point functions. Navier-Stokes equations 
arise from applying Newton’s second law of motion in combination with fluid 
stress (due to viscosity) and a pressure term.  

The pressure force is defined as the force transmitted across the closed surface 

cS  with the outer unit normal sn . As shown below schematically in Figure 1. 
 

 
Figure 1. Schematics of defining the pressure in the confined space, the 3D Heaviside 
step function ( )H f , and the concept the property balance in 3D gas space. The ob-

server’s Cartesian coordinate system is labeled by index 100. 
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In this schematic, the observer’s coordinate system is labeled by index “100”. 
The net surface force due to pressure p exerted by the surroundings on the con-
trol volume (CV) is  

d
c

s sS
p S= − ∫∫F n







,                      (6) 

where dsp S− n  is an external force applied on the differential surface element 
dS of the CV [4]. Using the corollary divergence theorem (gradient theorem) to 
the above gives 

d d
c c

sS V
p S p V− = −∫∫ ∫∫∫n



∇ .                  (7) 

According to the divergence theorem, the pressure gradient p∇  is defined 
only inside the CV and will have a non-zero value if the pressure is distributed 
non-uniformly over the surface cS . If the pressure p is constant on cS , then 

0p =∇  inside of the CV. From this, one can expect that the term 1 pρ∇  
should not appear in the Navier-Stokes momentum balance equation if it is ex-
panded to describe the fluid flow in the infinite space [ )3 0,cV V∞= = × ∞  and 
the ambient pressure p∞  is constant at infinity.  

The Navier-Stokes equations are derived by formulating conservation of the 
properties of fluids (mass, momentum, or energy) in a finite arbitrary volume, 
called a control volume cV  bounded by a closed surface cS . Then invoking the 
Reynolds transport theorem, an integral relation stating that the sum of the 
changes of some extensive property (mass, momentum, or energy) defined over 
the CV must be equal to the loss or gain through the boundaries or control sur-
face (CS) of the control volume and generation or loss by sources and sinks in-
side the CV. Finally, one can deduce differential equations for the mass conser-
vation, Equation (1), and the momentum conservation, Equation (2), by using 
the divergence theorem [4]. The unknowns in the Navier-Stokes equation are 
the velocity ( ),tu r 

 and the pressure ( ),p t r . Because of three dimensions, 
there are three first-order non-linear differential equations having four un-
known variables xu , yu , and zu  and pressure p Therefore, an additional equ-
ation is needed. The continuity equation 0⋅ =u∇  (Equation (1)) that describes 
the conservation of mass of the fluid will not be too much useful as an indepen-
dent equation since it has been used for deriving the Navier-Stokes Equation (2). 
The common mathematicians’ efforts to solve the problem are reduced mostly to 
prove the existence and the uniqueness of the Navier-Stokes solution.  

Mathematicians recognize that “…clearly the structure of the pressure term 
demands dependence on u or the derivatives of u. However, in fluid flow, it 
should be clear that the fluid velocity u and the pressure term p are deeply con-
nected. A fluid velocity field will produce pressure on a surface, while the pres-
sure itself must interact with the velocity field. This dance back and forth be-
tween velocity and pressure must drive every system of fluid under study [5].” 
Also, “most fluid systems must function inside some form of containment. The 
flow of fluid in a pipe, from a tank, down a river, has physical constraints that 
move a fluid along a certain path. Therefore, there must be bound on the fluid 
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velocity u, as well as the spatial derivatives Dαu  [5].”  
Given the fluid flow in the form of a non-isothermal incompressible gas flow, 

one may conclude that the temperature gradient defined in each point of the gas 
space may serve as “a bound on the fluid velocity u”. Applying operator ∇  to 
the equation of state of the ideal gas, the pressure gradient at a point inside the 
incompressible gas at the non-uniform temperature is expressed as  

Bp nk T=∇ ∇ ,                           (8) 

where n is the particle density, which, for the incompressible gas, is constant. It 
implies that, in each point of the gas space [ )3 0,V∞ = × ∞ , the pressure gra-
dient is along with a temperature gradient and is directly proportional to the 
temperature gradient. However, at the uniform temperature, the temperature 
gradient and associated with it the pressure gradient is zero, so the “bound on 
the fluid velocity u” vanishes.  

The Navier-Stokes equations originally derived solely for the bounded space 
appeared to describe fluid flow correctly. However, their expansion for describ-
ing the fluid flow in the infinite space without relying on the physically reasona-
ble model is doubtful. We explain this in the following example. Assume that, 
based on the analysis of a certain hypothetical model, someone has derived a 
differential equation by analyzing a process in a small, confined interval [0, 0.5). 
The differential equation intending to govern some physical process has the fol-
lowing form  

( ) 2 3d
1

d 2 6
f x x xx

x
 

= + + + 
 

                    (9) 

with the initial value ( )0 1f = . Is it proper to expand the application of the dif-
ferential equation for governing the physical process in the interval [ )0.5,∞ ? 
The general answer is no. While the solution of Equation (9) in the interval 
0 0.5x≤ ≤  in the form  

( )
2 3

1
2 6
x xf x x= + + +                     (10) 

is almost identical (with the relative error, let us say less than 0.2%) to the hypo-
thetical experimental function, which is extrapolated as ( ) ~ e x

expf x −  in the in-
terval 0 5x≤ ≤ , it unfits to be applied in the wider range of known hypothetical 
experimental data at 1x > . The relative error in this range is increased from 
1.8% at 1x =  to 74% at 5x = , which is unacceptable.  

Luckily, a new physically reasonable hypothetical model expanding its appli-
cation to the interval [ )0,∞  was proved. The derived governing equation  

( )d
e

d
xf x

x
=                          (11) 

with the initial value ( )0 1f =  has a physically reasonable solution ( ) exf x =  
for all 0x ≥  and a low relative error in comparison with ( )expf x . Applying 
the Taylor series expansion method to the equation above, we obtain:  
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( )
1

d
d !

k

k

f x x
x k

∞

=
= ∑                         (12) 

According to the Taylor theorem, since ex  is a C∞ , then the solutions of 
Equations (11) and (12) are identical. The range of applicability of the equation 
above is [ )0,∞  and the radius of convergence of its solution is infinity. Suppose 
the Taylor series is truncated after a few numbers of derivatives. In that case, the 
range of applicability of the truncated differential equation will be limited as well 
as the radius of convergence of its solution will not expand to infinity. If, for 
certainty, the Taylor series is truncated after the third derivative, the equation 
above will be reduced to Equation (9). Therefore, even without comparison with 

( )expf x , we may conclude that the differential Equation (9) is not applicable for 
governing the physical process in the interval [ )0.5,∞ . We report a similar 
strategy to determine whether the Navier-Stokes momentum balance equation 
can govern the fluid flow in the infinite space.  

Navier-Stokes equations result from applying Newton’s second law of motion 
to fluids. The first two left-hand terms are inertial forces, the third and fourth 
left-hand terms are external body force and the pressure force. The right-hand 
term represents viscous forces. Is this combination of the forces being exhaustive 
in the momentum balance equation? In other words, is there something missing 
in the momentum balance equation? This question may be considered unrea-
sonable because the Navier-Stokes equations have been under intense study by 
many physicists and mathematicians since 1822 [6] (this year is the 200th anni-
versary of their discovery). Therefore, it would be difficult to imagine missing 
some unknown effect. However, in this paper, we report that we found the new 
important terms associated with the Navier-Stokes momentum balance equa-
tion. One of them relates to the component of velocity acquired by each gas par-
ticle during its free path traveling in the body force field. The other is linked to 
the temperature gradient in a non-isothermal fluid system.  

Recently we proposed a new approach in the modeling of fluid dynamics 
problems. It recognizes that each gas particle moves with a probability between 
two points in space occupied by the gas and follows a ballistic trajectory go-
verned by a law of motion in free space. Each gas particle is treated as a property 
carrier transporting one or more mass, momentum, and energy between the 
points of consecutive collisions. Each point in space occupied by the l gas is both 
a sink accumulating property delivered by converging ballistic particles from the 
entire gas system and a source dispersing property by diverging ballistic particles 
[7]. Based on this approach, we formulated the Ballistic Principle of the Property 
Balance in the Space (BPPBS) occupied by the gas, which may simplify and re-
duce computations in applications dealing with modeling of fluid dynamics prob-
lems [8] [9]. In the most recent publication [10], we discuss a novel computa-
tionally efficient method of modeling rarefied gas flow in a microchannel based 
on the BPPBS. We explicitly investigated the effect of the Knudsen number on 
the gas flow in the microchannel. Moreover, we concluded that the assumption 
that the MFP varies as a function of the surface confinement (Knudsen number), 
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widely issued in the literature, is mistaken.  
This paper provides further insights into the newly discovered BPPBS and its 

application to formulate governing mass and momentum balance equations for 
incompressible gas flow in integro-differential and differential forms. Specific 
attention is paid to comparing the governing differential equations derived from 
the principles of our theory and the Navier-Stoke equations. We also paid atten-
tion to the Fundamental Problem related to the Navier-Stokes equations, which 
requires the answer whether there is a solution of the Navier-Stokes equation on 

[ )3 0,× ∞ .  
In Section 2, we describe the physical principles of the Ballistic Model (BM) 

adapted to the three-dimensional incompressible gas flow and its application to 
construct the property balances.  

Section 3 provides integro-differential forms of mass balance and momentum 
balance equations adapted to the incompressible gas flow in the infinite gas 
space.  

Section 4 presents the technique of reducing integro-differential forms of mass 
and momentum balance equations to the corresponding differential forms by the 
Taylor expansion of the integral terms.  

Section 5 signifies similarities and differences of the governing differential 
equations derived from the principles of our theory and the Navier-Stoke equa-
tions.  

Finally, in Section 6, we present the discussion and conclusions.  

2. Physical Principles of the Ballistic Model Adapted to the  
Three-Dimensional Incompressible Gas Flow 

This section describes the physical principles of the BM adapted to the three- 
dimensional incompressible gas flow at the non-uniform temperature and low 
flow velocity (with the Mach number less than 0.3). The BM is based on the 
newly discovered BPPBS occupied by the gas [7] [8]. According to the BPPBS, in 
each nonmoving point of the gas space at a given time, the net rate of property 
(mass, momentum, or energy) influx per unit volume, formed by the carrying 
the properties converging ballistic particles (each traveling along a ballistic tra-
jectory with certain survival probability) from an initial point within the space 
occupied by the gas equals to the temporal rate of property change per unit vo-
lume and the net rate of property efflux per unit volume, the efflux formed by 
the diverging particles dissipating their property in the surrounding space by 
collisions [8].  

Recognizing the unconventional nature of our approach and in the interests of 
a better understanding of our method, we provide a short introduction to the 
methodology adapted to the incompressible gas flow at the non-uniform tem-
perature in general.  

2.1. Properties and Features of the Incompressible Gas 

Here we assign the following properties to the gas, which are originally proposed 
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in [7] and [8]:  
1) The gas particles being in a constant state of mostly random motion and 

interaction by collisions participate in the transport of properties, including 
mass, momentum, and energy.  

2) Each gas-particle moves by obeying a ballistic trajectory governed by a law 
of motion in free space. It overcomes a distance between any two points of the 
ballistic trajectory with a certain survival probability.  

3) Each gas particle carries a combination of one or more properties between 
a point of initial collision and a point of ending collision.  

4) Each point within the gas space is treated as a point of collisions for con-
verging ballistic particles physically capable of simultaneously targeting the same 
ending point.  

5) Each point of collisions is treated as either a point source for diverging bal-
listic particles or a point sink for converging ballistic particles.  

6) Each ballistic particle moving from the point source to the point sink is 
treated as a property carrier created in the point source by obtaining one or 
more properties of specific values intrinsic to the gas surrounding the point 
source. It is ended in the point sink by transferring one or more properties of 
specific values in the point sink.  

7) The properties carried by the ballistic particle are conserved during the bal-
listic traveling time.  

One can note from the above that the gas properties differ from the properties 
typically assigned to the ideal gas (see in Introduction of [8]). 

2.2. Bases of Construction of the Property Balance in the  
Incompressible Gas Space 

On the microscopic scale, the incompressible gas flow is characterized by the 
group of particles of mass m, which move randomly and interact by collisions 
with effective collision cross-section cσ . In each point of gas space at a given 
time, the parameters quantifying gas flow are the particle density n, which is 
constant for the incompressible gas, the magnitude of thermal velocity Tv  and 
the vector of mass flow velocity u . Also, in the presence of external force, each 
particle is accelerated during its ballistic traveling with acceleration g .  

Based on the BPPBS [8], we expect maintenance of an overall property bal-
ance in each of the collision points within the incompressible gas system. The 
BPPBS is formulated as follows: in each nonmoving point r  at a given time t, 
the net rate of property influx per unit volume, _F

in
ΨB , formed the converging 

ballistic particles (each traveling along a ballistic trajectory with certain survival 
probability) from the gas space is equated to the net rate of property efflux per 
unit volume, _F

out
ΨB , formed the diverging ballistic particles and the temporal 

rate of property change per unit volume n t∂ ∂ Ψ . This statement is expressed 
symbolically as  

( ) ( ) ( )_ _, , ,F F
out int n t t

t
Ψ Ψ∂

+ =
∂

B r r B r  

Ψ                (13) 
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2.2.1. The Model Parameters 
The parameters associated with defining the property balance in the 3D incom-
pressible gas space are presented in Table 1 and Table 2. 
 
Table 1. The list of the model parameters associated with defining the net rate of total 
property influx per unit volume in the 3D incompressible gas space.  

Parameters Short description 

x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

i j k
  

∇  the operator of vector differentiation with respect to r  

x y z
∂ ∂ ∂′ = + +
′ ′ ′∂ ∂ ∂

i j k
  

∇  the operator of vector differentiation with respect to ′r  

t given time 

0it′  the time of the initial collision of the converging particle 

r  the ending point of the converging particle 

′r  the starting point of the converging particle 

( )0 ,it′ ′u r 

 mass flow velocity in the point ′r  at time 0it′  

( )0 ,T iv t′ ′r  
the thermal velocity of converging particle in point ′r  
at time 0it′  

( )0 ,V iZ t′ ′r  rate of collisions per unit volume at ′r  at the time 0it′  0 

( )0 , , ,it t′ ′v r r  

 the velocity vector of the converging particle in the 
ending point r  at time t 

( )0,i iQ t t′  
probability of free path traveling along the ballistic 
trajectory of the converging ballistic trajectory starting 
at time 0it′  and ending at time t 

( )0 , , ,in it t′ ′r r 

Ψ  property content delivered by the converging ballistic 
particle in the ending point r  at the given time t 

0 0i it tϕ ′= −  traveling time between an initial and ending consecutive 
collisions or the ballistic traveling time 

n gas particles density 

m gas particle mass 

cσ  the effective particle’s cross-section of collisions 

c cP nσ=  number of particles placed within a collision tube of a 
unit length 

cσ  the cross-section of collisions 

V the volume of integration over space occupied by the gas 

g  the external force that applies to a particle of a unit mass 

relv  the average velocity of the traveling particle with respect 
to a nearby passed particle 
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Table 2. The list of the model parameters associated with defining the net rate of total 
property efflux per unit volume in the 3D incompressible gas space. 

Parameters Short description 

t given time 

r  
position of the starting point of a ballistic trajectory of the diverging 
particle 

′r  
position of the ending point of a ballistic trajectory of the diverging 
particle 

0at′  time of positioning the ending point of the diverging particle 

( ),tu r   mass flow velocity in point r  at time t 

( ),Tv tr  the thermal velocity of a diverging particle in point r  at time t 

( )0 0, , at t+ ′v r 

 the velocity vector of the diverging particle at the time of 
positioning in point ′r  

( )0 0 ,aQ t t+ ′  
probability of free path traveling along the ballistic trajectory 
starting at time t and ending at time 0at′  

( )0, , ,at t′ ′r r 

Ψ  
property content carried by the diverging particle at the time 

0at′  in point ′r  

2.2.2. Important Assumptions and Approximations of the Model 
In the following, referring to [8], we examine the case of the collision-dominated 
flow regime, which implies the following assumptions and approximations: 

1) For each of the gas particles, the average value of the thermal velocity Tv , 
is much higher than the absolute value of the mass-flow velocity u , namely: 

Tvu  .                          (14) 

2) The gain/loss of the velocity because of interaction with the external field of 
force during the ballistic traveling time 0iϕ  or 0ϕ+  is insignificant in compar-
ison with the thermal velocity Tv , namely:  

0i Tvϕg   or 0 Tvϕ+g  ,                  (15) 

where 0iϕ  and 0ϕ+  are the ballistic traveling times between two consecutive 
collisions at ′r  and r  and r  and ′r , respectively. Moreover, nevertheless 
the external field of force ( ),tg r 

, such as the gravitational force, may vary in 
space and time, its change generally is very insignificant on the length scale or 
time scale of several mean free paths or mean free times, respectively (see the es-
timations by Equations (89) and (90)). Therefore, in the following, we will treat 
g  as a constant when differentiating or integrating. 

Because of the limitations shown by Equations (14) and (15), when defining 

0iϕ  or 0ϕ+ , we approximate trajectories of the gas particles forming fluxes as 
straight lines so that 

( )0
0 ,i

T iv t
ϕ

′−
≅

′ ′
r r

r

 



,                      (16) 
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and 

( )0 ,Tv t
ϕ+

′ −
≅

r r
r

 



,                       (17) 

where 0it′  is the time of the converging particle positioning in point ′r , which 
is defined as 

0 0i it t ϕ′ = − .                        (18) 

3) The relative change of any property value or any parameter characterizing 
the gas Σ is insignificant during the period between collisions ( ) 1

c relP −v  in each 
point of the gas, which is expressed: 

d
1 d 1

c rel

t
P

Σ

Σv


.                      (19) 

4) The relative change of any property value or any parameter characterizing 
the gas is insignificant on the length scale of the average distance between the 
gas particles 1

cP− , which is expressed: 

1 1
cP

Σ
Σ


∇
.                        (20) 

5) For clarity and simplicity, when applying the operator ∇ , we neglect in-
significant terms having ( )1

T
−v∇ , ( )2

T
−v∇ , or ⋅ g∇ . Therefore, 0iϕ∇  and 

0ϕ+∇  are approximated as 

( ) ( )
0 0

0 0
0

and
, ,

i
i

T i Tv t v t
ϕ ϕ +

+≅ ≅ −
′ ′

n n
r r

 

 

∇ ∇ ,            (21) 

respectively, where 0in  is the unit vector of arbitrary direction from the point 
′r , which is  

0i
′−

=
′−

r rn
r r

 



 

                        (22) 

and 0+n  is the unit vector of arbitrary direction from the point r , which is 

0+
′ −

=
′ −

r rn
r r

 



 

.                        (23) 

6) We will use analytical representations for ( )0 , , ,it t′ ′v r r  

 and ( )0 0, , ,at t+ ′ ′v r r  

 
as  

( ) ( ) ( ) ( )0 0 0 0 0, , , , , , , ,i i T i i i it t t t v t n t ϕ′ ′ ′ ′ ′ ′ ′ ′→ = + +v r r v r r r u r g          ,     (24) 

and 

( ) ( ) ( )0 0 0 0, , , , ,a Tt t v t t ϕ+ + +′ ′ = + +v r r r n u r g       

,            (25) 

respectively [8]. In the equation above, 0at′  is the time of positioning in point 
′r  of the diverging from r  particle, which is defined as 

0 0at t ϕ+′ = + .                         (26) 

7) We adapt Equation (70) of [8] to the incompressible gas flow at the non- 
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uniform temperature, we approximate ( )0 0,i iQ t t′  as 

( ) ( ) ( ) ( )( )( )0

00 0 0 0
ˆ ˆ, , ,0 exp ,0 di

i i i i i i c relQ t t Q t t Q P t t
ϕ

ϕ′ ′→ = = − ∫ v r ,   (27) 

where ( )( )ˆ,0rel tv r  is expressed by Equation (24) of [8] with some minor sym-
bolic modifications: 

( )( )

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ){ }3 3

0 0
0

ˆ,0

1 ˆ ˆ, ,0 , ,0
ˆ6 , ,0

rel

T i T T i T
T i T

v t

v t v t v t v t
v t v t

′ ′ ′ ′= + − −
′ ′

r

r r r r
r r



   

 

(28) 

and ( )ˆ,0tr  is expressed as 

( ) ( )0 0
ˆ ˆ,0 ,T i it v t t′ ′ ′= +r r r n   

                    (29) 

and t̂  varies from zero to 0iϕ .  
Similarly, we adapt Equation (72) of [8], which was approximated there as-

suming a high frequency of collisions expressed as c relP v  and non-violent gra-
dients of fluid parameters within the gas system, which yields  

( ) ( ) ( ) ( )
0

0 0 0 0
0

,0 , ,
,

i
i i i i c rel

T i

n
Q Q t t P t

v t
ϕ ′≅ −

′ ′
v r

r







∇ .           (30) 

Analogously, adapting Equation (65) of [8] to the incompressible gas flow at 
the non-uniform temperature, we approximate ( )0 ,aQ t t+ ′  as 

( ) ( ) ( )( )( )
0

0 0 0
0 ˆ ˆ, 0, exp da c relQ t t Q P t t
ϕ

ϕ
+

+ + + −
′ = = − ∫ v r ,        (31) 

where 0at tϕ+′ = + , ( )( )ˆ,0rel tv r  is expressed by Equation (24) of [8] with some 
minor symbolic modifications:  

( )( )

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ){ }3 3

ˆ,0

1 ˆ ˆ, ,0 , ,0
ˆ6 , ,0

rel

T T T T
T T

v t

v t v t v t v t
v t v t

= + − −

r

r r r r
r r



   

 

 (32) 

and ( )ˆ,0tr  is expressed as 

( ) ( ) 0
ˆ ˆ,0 ,Tt v t t += +r r r n   

                  (33) 

and t̂  varies from zero to 0ϕ+ . Similarly, assuming the high frequency of col-
lisions expressed as c relP v  and non-violent gradients of fluid parameters within 
the gas system, this yields:  

( ) ( ) ( ) ( )
0

0 0 0 00, 0, ,
,c rel

T

Q Q P t
v t

ϕ ϕ +
+ + + +≅

n
v r

r







∇ .         (34) 

At the uniform temperature, Equation (27) is reduced to 

( )0
4, exp
3i cQ P ′ ′= − − 

 
r r r r    .               (35) 

8) Also, recognizing that the magnitudes of the thermal velocity of nearby 
particles are approximately identical, we may determine the average magnitude 
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of the velocity with respect to each particle moving in an arbitrary direction (rel-
ative velocity) by substitution of ( )( ) ( )0

ˆ,0 ,T T iv t v t′ ′=r r 

 in Equation (28): 

( ) ( )0 0
4, ,
3rel i T iv t v t′ ′ ′ ′=r r  .                   (36) 

Analogously, we determine the average magnitude of the velocity with respect 
to each particle moving in an arbitrary direction (relative velocity) by substitu-
tion of ( )( ) ( )ˆ,0 ,T Tv t v t=r r 

 in Equation (32):  

( ) ( )4, ,
3rel Tv t v t=r r  .                     (37) 

At the uniform temperature or in the nearby region surrounding the singular 
point at r , Equation (27) is reduced to 

( )0
4, exp
3i cQ P ′ ′= − − 

 
r r r r                     (38) 

and Equation (31) is reduced to 

( )0
4, exp .
3 cQ P+

 ′ ′= − − 
 

r r r r                    (39) 

9) The mean free path fλ  or the average distance that a gas particle pass 
through before experiencing a collision is found by calculating the average dis-
tance traveled ρ ′= −r r 

:  

0
0 0

d 4 4 3 1d exp d
d 3 3 4

i
f c c

c

Q
P P

P
λ ρ ρ ρ ρ ρ

ρ
∞ ∞  = − = − = 

 ∫ ∫       (40) 

10) The gas pressure gradient at a point inside the incompressible gas at the 
non-uniform temperature is  

2 3 B
T

kv T
m

∇ = ∇                        (41) 

11) Using Equations (32) of [8] as the bases, we define the rates of collisions 
per unit volume in the point ′r , ( ),V iZ t′ ′r , and in point r , ( ),VZ t r , as 

( ) ( ) ( )0 0
2, , ,
3V i V i c T iZ t Z t nP v t′ ′ ′ ′ ′ ′→ =r r r                (42) 

and 

( ) ( )2, ,
3V c TZ t nP v t=r r  ,                    (43) 

respectively.  
12) Finally, we will use ( ), ′r r G , a first vector derivative of the Green func-

tion with no boundary conditions, as 

( ) 0
3 2

1 1,
4 4

i′−′ = =
π π′ ′− −

nr rr r
r r r r


 

 

   

G ,               (44) 

which has the following property: 

( ) ( ), δ′ ′⋅ = −r r r r   G∇                     (45) 
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and  

( ), 0
′≠

′⋅ =
r r

r r
 

 G∇ .                     (46) 

13) We will also use the following relationships: 
Let ( )′F r





 is a continuously differentiable vector field defined on a neighbor-
hood of the volume V confined by the closed surface 0S  defined by a function 

2 2f a′= − −r r  , where a is a constant, ( )0i−n  is inward normal to 0S , and 
( )H f  is the Heaviside step function defined as follows: 

( )
1 if 0
0 if 0

x
H x

x
≥

=  <
                    (47) 

Then 

( ) ( )

( ) ( ) ( ) ( )
0

0

, d

, d , d
V

i sV S

H f V

H f V A
∞

∞

′ ′⋅

′ ′ ′ ′= − ⋅ = ⋅

∫∫∫
∫∫∫ ∫∫

F r r

F r r F r r n



 

 

    



∇

∇
      (48) 

where 0S  is the surface of the body where 0f =  

( ) ( ) ( )
0

d d ,
V V

H f V V
∞

′ ′ ′ ′⋅ = ⋅∫∫∫ ∫∫∫F r F r
 

 

∇ ∇            (49) 

where 0V  is the region outside of 0S  where 0f > . 
14) Distribution definition: Let ( ),′Φ r r   is a scalar function given with con-

tinuous derivatives of all orders that vanishes outside some finite domain outside 
of 0V . When  

( )
0

d 0
V

V′ ′⋅ Φ =∫∫∫ F


∇ ,                   (50) 

then 

( ) ( ) ( ) ( )
0 0

, , d , , d
V V

V V′ ′ ′ ′ ′ ′ ′ ′− Φ ⋅ = Φ ⋅∫∫∫ ∫∫∫r r F r r r r F r r
 

       

∇ ∇      (51) 

15) Divergence theorem for 0V :  

( ) ( ) ( )
0 0

0, d , di sV S
V A′ ′ ′ ′⋅ = ⋅∫∫∫ ∫∫F r r F r r n

 

    



∇ .           (52) 

Applying the divergence theorem for the arbitrary volume containing point 
r  we find 

( ) ( ) ( )0, d , d sV S
V A

∞ ∞
+′ ′ ′⋅ = ⋅∫∫∫ ∫∫F r r F r r n

 

    



∇ .          (53) 

16) The following relationships will also be useful for mathematical pro- 
cessing.  

( ) ( )
( ) ( )0 0

0 0 0
0

, ,1, , T i i
T i i i

T i

v t t
v t t

v t

′ ′ ′ ′ ∂  ′ ′ ′ ′ ⋅ = − ⋅  ′∂

r u r
r u r n

  

   

∇ ,    (54) 

where ρ ′= −r r 

, 

( )
( ) ( )

( )0 0
0 0 0

0

, ,1, ,T i i
i i r i

T i

v t t
t t

v t ′

′ ′ ′ ′ ∂  ′ ′ ′ ′ ′ ′⋅ = ⋅ + ⋅
′∂

r u r
u r n u r

  

    

∇ ∇ ,   (55) 

and 
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( ) ( ) ( ) ( )
( ) ( )

0 0 0 0

0 0

, , , ,

, , ,
T i i T i i

r T i i

v t t v t t

v t t′

′ ′ ′ ′ ′ ′ ′ ′ ′   ⋅ + ⋅   
′ ′ ′ ′ ′ = ⋅  

r u r r u r

r u r

     

  

∇ ∇

∇
        (56) 

where the subscript on the “nabla” symbol ∇  indicates the variable with re-
spect to which differentiation is performed. Namely, r ′′∇  does not act on the 
dependable variable 0it′ . 

Analogously, we obtain 

( ) ( )0
0 0

0

,1, T i
T i i

T i

v t
v t

v t
′ ′∂

′ ′ = −
′∂

r
r n



 

∇ ,               (57) 

and 

( ) ( ) ( )0 0 0, , ,T i T i r T iv t v t v t′′ ′ ′ ′ ′ ′ ′ ′+ =r r r  

∇ ∇ ∇ .            (58) 

17) The integration of these three integrals, which will be often used in the 
following, is performed by converting the orthogonal coordinate system into the 
spherical having the origin in point r  followed by integration: 

2

2 2
20 0 0

1 1 4exp d
4 3

1 4 1 3 1exp d sin d d ,
4 3 4

cV

c
c

P V

P
P

ρ ρ ρ θ θ ϕ
ρ

∞

π π ∞

 ′ ′− − π ′  −

 = − = π  

∫∫∫

∫ ∫ ∫

r r
r r

 

 

       (59) 

2 2
20 0 0

1 1 4exp d
4 3

1 4 1 9 1exp d sin d d ,
4 3 16

cV

c
c

P V

P
P

ρ ρ ρ θ θ ϕ
ρ

∞

π ∞π

 ′ ′− − ′π −  

 = − = π  

∫∫∫

∫ ∫ ∫

r r
r r

 

 

       (60) 

2 2
30 0 0

1 4exp d
4 3

1 4 27 1exp d sin d d ,
4 3 32

cV

c
c

P V

P
P

ρ ρ ρ θ θ ϕ

∞

π ∞π

 ′ ′− − π  
 = − = π  

∫∫∫

∫ ∫ ∫

r r 

        (61) 

2 3
40 0 0

1 4exp d
4 3

1 4 243 1exp d sin d d .
4 3 128

cV

c
c

P V

P
P

ρ ρ ρ θ θ ϕ

∞

π ∞π

 ′ ′ ′− − − π  
 = − = π  

∫∫∫

∫ ∫ ∫

r r r r   

       (62) 

18) The following relationships from the vector analysis involving vectors and 
dyads [11] are used below  

:⋅ ⋅ =A B C CA B
    

∇ ∇                      (63) 

and 

: = ⋅B B
 

I ∇ ∇ ,                        (64) 

where A


, B


, and C


 are vector functions, and I  is the unit dyad.  

2.3. Analytical Representation of a Net Rate of Total Property  
Influx Per Unit Volume in a Nonmoving Point of Gas Space in  
the Collision-Dominated Flow Regime 

To express analytically the net rate of total property influx per unit volume in 
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the collision-dominated flow regime, which applies to a given non-moving point 
of space occupied by the gas at a given time, we will, first, define the property 
flux from the gas space in a given non-moving point r  at time t, as schemati-
cally shown in Figure 1, by adapting Equation (34) of [8] to the incompressible 
gas flow at the non-uniform temperature, which is done by substituting Equa-
tions (24), (27), (42), and applying some minor symbolic modification, which 
yields 

( )

( ) ( )
( )

( ) ( )

( )

0

0 0 0 0 0
0 0 2

0

0

, , , d

, , ,1 ,
4 ,

, , , d

V in iV

V i T i i i i
i iV

T i

in i

t t V

Z t v t t
Q t t

v t

t t V

ϕ
∞ ∞

∞

Ψ Ψ ′ ′ ′=

′ ′ ′ ′ ′ ′+ +
′=

′ ′π ′−

′ ′ ′×

∫∫∫

∫∫∫

J J r r

r r n u r g
r r r

r r

 

     



 

 

Ψ

    (65) 

In the equation above, each term confined in the square brackets is the par-
ticle flux component associated, the first, with the thermal velocity 0T iv n , the 
second, with the mass velocity u , and the third, with the velocity 0iϕg  ac-
quired by the ballistic particle because of the external field of the force. As it was 
mentioned earlier, point r  shall be excluded from integration because we are 
quantifying the total rate of the property flux in the point sink at r , which is 
originated from the surrounding point sources of the initial collisions at ′r . The 
first term in the square bracket in the equation above has a “naturally” built-up 
analytical structure such as the first vector derivative of the Green function, 
which allows vector differentiation in the singularity point and sequential ze-
roing the result (see Equation (46)).  

However, the under integral terms in the second and the third integrals do not 
reflect symbolically such important physically reasonable limitation, and there-
fore we changed them by incorporating the Heaviside step function as a test 
function such as the Heaviside step function, which yields 

( ) ( )
( )

( ) ( ) ( ) ( )

( )

0 0 0 0 0
0 0 2

0

0

, , ,1 ,
4 ,

, , , d

V i T i i i i
V i iV

T i

in i

Z t v t H f t H f
Q t t

v t

t t V

ϕ
∞ ∞

Ψ ′ ′ ′ ′ ′ ′+ +
′=

′ ′π ′−

′ ′ ′×

∫∫∫
r r n u r g

J
r r r

r r

     



 

 

Ψ

(66) 

The 3D Heaviside step function ( )H f  is defined below.  
Consider a space in which point r  is surrounded by a region bounded by a 

spherical surface 0S  of radius a, as shown in Figure 1, defined by function f:  
2 2f a′= − −r r  .                     (67) 

We expect that only the impact of particles originated from preceding colli-
sions in the volume 0V  outside of the volume confined by surface 0S  may 
participate in forming the gas particles flow. Function f is greater than zero out-
side a volume enclosed by a surface 0S  and less than zero inside the volume 
[12]. Then the unit normal to the surface 0f = , pointing out of the region, is 
given by 

https://doi.org/10.4236/jamp.2022.103052


N. Kislov 
 

 

DOI: 10.4236/jamp.2022.103052 747 Journal of Applied Mathematics and Physics 
 

0 0i
f
f+

′ ′−
= = − = −

′ ′−
r rn n
r r

 

 

 

∇
∇

.                  (68) 

Thus, using function f as an argument of the Heaviside step function, ( )H f , 
allows removing the impact of the flux from the region inside of the surface 0S  
[12].  

Then we may find the net rate of total property influx per unit volume in a 
nonmoving point of gas space by applying the divergence operator ⋅∇  as fol-
lows 

( )

( ) ( )
( )

( ) ( ) ( ) ( )

( )

_

0 0 0 0 0
0 0 2

0

0

,

, , ,1 ,
4 ,

, , , d

F
in V

V i T i i i i
i iV

T i

in i

t

Z t v t H f t H f
Q t t

v t

t t V

ϕ
∞

∞

Ψ Ψ= − ⋅

′ ′ ′ ′ ′ ′+ +
′= − ⋅

′ ′π ′−

′ ′ ′×

∫∫∫

B r J

r r n u r g
r r r

r r



     



 

 

∇

∇

Ψ

(69) 

In the equation above, we introduced the minus sign because ( )_ ,F
in tΨB r  is 

intended to be used in the right-hand of the balance equation. Finally, since the 
point r  is excluded from integration in the domain of integration Ω in which
′ ≠r r  , the operation of differentiation regarding a parameter r  is interchan-

geable with the operation of integration over some other variable, which yields: 

( )

( ) ( )
( )

( ) ( ) ( ) ( )

( )

_

0 0 0 0 0
0 0 2

0

0

,

, , ,1,
, 4

, , , d

F
in V

V i T i i i i
i iV

T i

in i

t

Z t v t H f t H f
Q t t

v t

t t V

ϕ

∞

∞

Ψ Ψ= − ⋅

′ ′ ′ ′ ′ ′+ +
′= − ⋅

′ ′ π ′−

′ ′ ′





× 


∫∫∫

B r J

r r n u r g
r r r

r r



     



 

 

∇

∇

Ψ

(70) 

2.4. Analytical Representation of a Net Rate of Total Property  
Efflux Per Unit Volume From a Nonmoving Point of Gas Space  
in the Collision-Dominated Flow Regime 

Here we use a different than in [8] scheme of defining a net rate of total property 
efflux per unit volume from a nonmoving point of gas space. Upon more de-
tailed analysis, we realized that, since each point in the gas space serves as the 
sink of the converging gas particles and the source of the diverging gas particles, 
one shall consider the exhaustive combination of the transport events in each 
point of the gas space. Each trajectory of the ballistic particle converging in point 
r  at time t (traveling from the past) is the trajectory of the same ballistic par-
ticle diverging from the point ′r  at time 0it′  (traveling toward the future rela-
tive to the time 0it′ ). Therefore, one may conclude that the balance will not be 
conserved if one ignores to consider the event of delivery of the diverging ballis-
tic particle from r  at time t to ′r  at time 0at′ .  

Using Equation (65) as a template, we define the property flux V∞
ΨJ , which is 

originated from initial collisions in point r  and directed toward the plurality 
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of points ′r  in the space occupied by the gas, as schematically shown in Figure 1, 
by removing ( )H f  in the template Equation (because now the source at the 
point r  is included in the integration) and by switching the source location to 
the point r  and the think location to the plurality of points ′r  within the gas 
space. This procedure will automatically lead to substituting in the template eq-
uation of ( )0 0,i iQ t t′ , ( )0 ,V iZ t′ ′r , ( )0 ,T iv t′ ′r , 0in , and 0iϕ  by ( )0 00,Q ϕ+ + , 

( ),VZ t r , ( ),Tv t r , 0+n , and 0ϕ+ , respectively, which are defined in the equa-
tions above. This yields the following:  

( )
( )
( )

( ) ( ) ( ) ( )

0

0 0
0 0 02

, , , d

, , ,1 0, , , , d
4 ,

V out iV

V T
aV
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t t V

Z t v t t
Q t t V

v t
ϕ

ϕ

+ ∞

∞

Ψ Ψ

+ +
+ +

′ ′ ′=

+ +
′ ′ ′=

π ′ −

∫∫∫

∫∫∫

J J r r

r r n u r g
r r

r r r

 

     

 



 

Ψ
 (71) 

Then we may find the net rate of total property efflux per unit volume from a 
nonmoving point of gas space by applying the divergence operator ⋅∇  to the 
quantity above as follows: 

( )
( )

( ) ( ) ( ) ( )0 0
0 0 02

, , ,1 0, , , , d
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V V
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T
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r r r
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

 

∇

∇ Ψ

(72) 

Since point r  is included in integration and V+
ΨJ  exists as a continuously 

differentiable function of r  on V∞ , then the operator ⋅∇  can be applied di-
rectly to the under integral function so that  

( )
( )

( ) ( ) ( ) ( )0 0
0 0 02

, , ,1 0, , , , d
4 ,

V V

V T
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T

Z t v t t
Q t t V
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∫∫∫
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r r r
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 



 

∇

∇ Ψ

(73) 

2.5. A General Integro-Differential Form of Property Balance  
Equation in the Three-Dimensional Gas System 

The general integro-differential form of property balance equation is formulated 
by Equation (74) given below, which is obtained by substitution of Equations 
(73) and (70) in Equation (13):  

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
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0 0 0 0 0 0 0 0
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+ + + +
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

 

Ψ
Ψ ∇

Ψ
∇ dV ′



 (74) 

Remark that the integro-differential property balance equation must be formed 
for each unknown property/variable. Also, the number of equations in a system 
of balance equations is sufficient to determine each of the unknown properties 
characterizing the gas flow. In the following, we provide general governing in-
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tegro-differential forms of mass balance and momentum balance equations 
[8].  

3. Integro-Differential Forms of Mass and Momentum  
Balance Equations in the Collision-Dominated Flow  
Regime 

We consider the fluid to be an incompressible homogeneous gas described by 
continuous ( C∞ ) functions and filling the whole space 3 . The gas may be 
subjected to an external body force g  defined as a time-variant vector field 

[ )3 3: 0,× ∞ →g   . The force is assumed to be independent of the velocity field 
u . 

The following analytical representations of mass and momentum balance ap-
proximations are provided. 

3.1. Integro-Differential Form of the Mass Balance Equation of  
Incompressible Gas in the Collision-Dominated Flow Regime 

Our approach in formulating mass balance equation, as we reported earlier [8], 
is based on the hypothesis that there exists a unique combination of ballistic par-
ticles converging from the entire gas system in a given point at a given time and 
the diverging ballistic particles from the given point at the given time. Moreover, 
each of the converging ballistic particles originated from a preceding collision 
within the gas system is selected from the group of the converging ballistic par-
ticles by a ballistic trajectory governed by the law of motion, which provides an 
opportunity for the particle to enter point r  at given time t. Such a combina-
tion of converging and diverging ballistic particles capable of targeting or escap-
ing point r  at given time t is treated as an exhaustive combination. Therefore, 
from a physical viewpoint, the solution ( ),tu r 

 is unique [8]. To formulate a 
general integro-differential form of mass balance equation in a given non-moving 
point of space occupied by the model at a given time, we will modify Equation 
(74) by assigning: 

1in= =Ψ Ψ .                         (75) 

Then, upon substitution of Equations (16), (17) (42), (43), and (75) in Equa-
tion (74), we obtain the following general integro-differential form of the mass 
balance equation 

( )
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 (76) 
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Executing the vector differentiation in the equation above followed by apply-
ing substitution for 0iQ∇  by Equation (30) as well as using the functional rela-
tionships presented by Equations (37), (48), (49), (51), (53), (56), and (57), gives 

( ) ( )

( )

( )
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0 2
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           (77) 

Here we need to admit that the second right-hand term in the equation above 
is insignificant compared with the first one (see the comments to Equation (19)) 
and will be neglected in the future analysis.  

3.2. Integro-Differential Form of the Momentum Balance  
Equation in the Collision-Dominated Flow Regime 

Here we again should note that the momentum balance equation is formed by 
considering a unique combination of ballistic particles converging from the en-
tire gas system in a given point at a given time and the diverging ballistic par-
ticles from the given point at the given time [8]. Each of the gas particles carries 
the momentum with the vector components associated with the thermal velocity 

Tv  and the mass flow velocity u . Besides, each of the converging ballistic par-
ticles can target point r  at given time t and originates from an initial collision 
within the gas system earlier than time t. Such a combination of converging and 
diverging ballistic particles capable of targeting or escaping point r  at a given 
time t is an exhaustive combination. Therefore, from a physical viewpoint, the 
solution ( ),tu r 

 is unique.  
To formulate a general integro-differential form of the momentum balance 

equation in a given non-moving point of space occupied by the model at a given 
time, we may formally modify Equation (74) by assigning:  

( ) ( ) ( ) ( )0 0 0, , , , , , , ,a a Tt t m t t m v t t ϕ+ + +′ ′ ′ ′= ≅ + +  r r v r r r n u r g         

Ψ ,   (78) 

( ) ( ) ( ) ( )0 0 0 0 0, , , , , , , ,in i i T i i i it t m t t m v t t ϕ′ ′ ′ ′ ′ ′ ′ ′ = ≅ + + r r v r r r n u r g         

Ψ ,  (79) 

and 
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( ) ( ), ,t m t=r u r  

Ψ .                        (80) 

3.2.1. Defining a Net Rate of Total Momentum Influx Per Unit Volume in  
the General Non-Moving Point at the Given Time 

Substituting Equations (16), (42), (57), and (79) in Equation (65), we define the 
momentum vector flux mv

V∞
J , which is originated from impact of initial colli-

sions within entire space occupied by the incompressible gas 
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(81) 

In the equation above, each term in the square brackets is the particle flux 
component, while each the second term is the momentum carried by the ballistic 
particle.  

As it was mentioned earlier, point r  shall be excluded from integration be-
cause we are interested in calculating the total rate of the momentum flux in the 
point sink at r , which is originated from the impact of surrounding point 
sources of the initial collisions at ′r . We may note only one term in the equa-
tion above that has a “naturally” built-up analytical structure that is the first 
vector derivative of the Green function, which allow vector differentiation in the 
singularity point and sequential zeroing the result because ′ ≠r r   (see Equation 
(46)). The other terms do not reflect symbolically such important physically 
reasonable limitation and therefore need to be modified. To this aim, we 
changed these terms by incorporating in each of them a test function such as the 
Heaviside step function, ( )H f  defined above, which yields:  
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(82) 

Integration in the equation above expands over the volume V∞  from a point 
at r  to the infinity. The modified under integral terms will become “infinitely 
smooth” functions having continuous derivatives of all orders. They vanish at the 
infinity and within the volume confined by surface 0S  of radius a surrounding 
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point A positioned at r . Here we need to note that 2
Tmnv  is the pressure p in 

0in  direction on the surface normal to the 0in  direction, which is owing purely 
to the flux of momentum ( )( )0 0T i T imv nvn n 

. Now we may apply the operator 
⋅∇  to the vector distribution above, and since 

f

mv
V∞

J  exists as a differentiable 
function of r  on V∞ , then the operator ⋅∇  can be applied directly to the 
under integral function, which yields:  
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 (83) 

In the equation above, we introduced the minus sign because ( ),
f

mv
V t
∞

B r  is 
intended to be used in the right-hand of the balance equation. Executing the 
vector differentiation in the equation above followed by applying substitution 
for 0iQ∇  by Equation (30) as well as using the functional relationships pre-
sented by Equations (37), (48), (49), (51), (52), (53), (56), and (58) and neglect-
ing the terms having ( )1

Tv−∇ , ( )2
Tv−∇ , and ⋅ g∇  gives  
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3.2.2. Defining the Total Momentum Efflux Per Unit Volume at the Given  
Time from the General Non-Moving Point 

Substituting Equations (17), (42), (43), and (78) in Equation (71), we define the 
momentum vector flux mv

V +J , which is originated from initial collisions in point 
r  and directed toward the space occupied by the incompressible gas 
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( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( )( ) ( )

0 0
0 0 2

0 0 0 0
0 0 2

0 0

2

, ,2 1 0, d
3 4

,2 1 0, d
3 4

, , , ,
,2 1 0,

3 4

mv c T T

T

V V

c
V

Tc
V

v t v tmnP
Q V

v tmnP
Q V

t t t t
v tmnP

Q

ϕ

ϕ

ϕ

∞

∞

∞

+ +
+ + +

+ + + +
+ +

+ +

+
′

π ′ −

′+ − +
′+

π ′ −

′ ′−
+ + +

+
π

= ∫∫∫

∫∫∫

∫∫∫

n r u r un
J

r r

r n n r r n g gn

r r

r r r
u r u r u r g gu r

r

     

 

        

 

  

         

 ( )

2

2

2 ,
dTv t

V

−

′
′ −

r
gg

r

r r







 

 (85) 

Now we may apply the operator ⋅∇  to the vector distribution above, and 
since mv

V +J  exists as a differentiable function of r  on V∞ , then the operator 
⋅∇  can be applied directly to the under integral function, which yields:  
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(86) 

Executing the vector differentiation in the equation above followed by using 
the functional relationships presented by Equations (37) and (53) and neglecting 
the terms having ( )1

Tv− , ( )2
Tv−∇ , and ⋅ g∇  gives  
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3.2.3. Formulating the Integro-Differential Momentum Balance Equation  
in the Infinite Gas Space 

Now we formulate the momentum balance equation according to Equation (13), 
which is done by substitution of _F

out
ΨB , Ψ , and _F

in
ΨB  with 

0

mv
V +

B , mu , and 

f

mv
V∞

B  of Equations (80), (84), and (87) respectively, and normalizing all the terms 
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by mn. This yields the following: 
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 (88) 

The equation above as well as Equation (77) reveals that, at the non-uniform 
temperature, the momentum balance and mass balance between the converging 
and diverging fluxes are affected by the thermal velocity gradient Tv∇  and the 
external field of force g . Moreover, while the converging fluxes depend on the 
location ′r  and time 0it′  of the initial collisions, the diverging fluxes also de-
pend on the probability of the ballistic traveling at the advanced times following 
the given time (present). It may be explained that the spatial distribution of 
the temperature (at the advanced time) will affect the ballistic path probability 
through the relative velocity relv , which, in turn, eventually will modify the ef-
flux from point r . At the first glance, such observation may have some con-
cerns. It implies that the future is affecting the present. However, each point in 
the gas space serves as the sink for the converging gas particles and the source of 
the diverging gas particles, each trajectory of the ballistic particle converging in 
point r  at time t (traveling from the past) serves as the trajectory of the same 
ballistic particle diverging from the point ′r  and time 0it′  (traveling toward 
the future relative to the time 0it′ ). Therefore, we may conclude that the balance 
will be conserved if we count the impact of the diverging particles not at the time 
of their leaving point r  but at the time for each of them when the trajectory 
path is completed by a collision at the point ′r  and time 0at′ . 
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Here we need to admit that the second right-hand term in the equation above 
is insignificant compared with the first one (see the comments to Equation (19)) 
and will be neglected in the future analysis.  

4. Reducing Integro-Differential Forms of Mass and  
Momentum Balance Equations to the Corresponding  
Differential Forms by the Taylor Series Expansion of the  
Integral Terms Near Point r  

Recognizing that, in the collision-dominated flow regime, the relative change of 
any property value or any parameter characterizing the gas (momentum or 
thermal velocity) is insignificant on the length scale of the average distance be-
tween the gas particles fλ  and the most significant impact in the dissipation or 
consumption of the property occurs in the nearby region surrounding the sin-
gular point at r , where the relative velocity is shown by Equation (37), we will 
simplify the integro-differential mass and momentum balance equations by us-
ing approximations for ( )0 ,iQ ′r r   and ( )0 0 ,aQ t t+ ′  as shown by Equations (38) 
and (39), respectively. But first, we verify the claim about the significance of the 
impact in the property dissipation in the nearby region surrounding the singular 
point at r  by substitution of Equation (38) in the third and the sixth left-hand 
terms of Equation (88), executing integration over the spherical volume of the 
radius R having the origin in point r , and comparing these results with the re-
sults of integration over the spherical volume of the radius of the infinity. Inte-
gration of the third left-hand term yields  
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We find that at 5 cR P= , the ratio ( ) ( )3 3 0.998J R J ∞ = . Analogously, we 
integrate the sixth left-hand term so that 
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and at 5 cR P= , the ratio ( ) ( )6 6 0.99J R J ∞ = . The above justifies the ap-
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proximations for ( )0 ,iQ ′r r   and ( )0 0 ,aQ t t+ ′  by Equations (38) and (39), re-
spectively, and validates using these approximations while integrating over the 
infinite gas space.  

4.1. Approximate Integro-Differential Form of the Mass Balance  
Equation for Incompressible Gas 

Substituting in Equation (77) 0iQ  and 0Q+  by Equations (35) and (39), re-
spectively, executing integration for the infinite space in the second left-hand 
and the first right-hand terms (see Equation (59)), neglecting the second right-hand 
term because of its minor impact on the mass balance and evaluating that the 
third left-hand term and the fourth and the fifth right-hand terms are zeroed 
(since all components of the unit vector 0in  are odd in V∞ , which is a symme-
tric set with respect to the coordinate plains of the coordinate system having the 
origin in point r ), we obtain the following: 
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2 3 3 4

c
cV

P
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∇ ∇ .   (91) 

In the equation above, we returned to the traditional representation of the 
vector differentiation ′∇  with respect to ′r  while keeping in mind that now 
′∇  does not act on the dependable variable 0it′ . 

4.2. Approximate Integro-Differential Form of the Momentum  
Balance Equation for Incompressible Gas 

Substituting in Equation (88) 0iQ  and 0Q+  by Equations (35) and (39), re-
spectively, we obtain the following: 
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  (92) 

Executing integration for the infinite space in the third and sixth left-hand of 
the equation above (see Equations (59) and (60)) and evaluating that the fourth 
and the fifth left-hand terms are zeroed (since all components of the unit vectors 

0+n  and 0in  are odd in V∞ , which are symmetric sets with respect to the coor-
dinate plains of the coordinate system having the origin in point r ), we obtain 
the following: 
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    (93) 

In the equation above, we returned to the traditional representation of the 
vector differentiation ′∇  with respect to ′r  while keeping in mind that now 
′∇  does not act on the dependable variable 0it′ . 
Let ( ) [ )( )3, 0,t C∞∈ × ∞u r    be a solution of the system of mass and mo-

mentum balance equations shown by Equations (91) and (93) with partial deriv-
atives of all orders on [ )3 0,× ∞  that holds an interior point r  and with ini-
tial condition 

( ) ( )00, =u r u r   

 for 3∈r  .                   (94) 

In the system of Equations (91) and (93), we assume that  
( ) [ )( )3, 0,Tv t C∞∈ × ∞r   and ( ) [ )( )3, 0,t C∞∈ × ∞g r    are known conti-

nuous functions with partial derivatives of all orders on [ )3 0,× ∞ . The system 
of mass and momentum vector integro-differential Equations (91) and (93) may 
be reduced to a system of three first-order non-linear integro-differential equa-
tions having three independent variables xu , yu , and zu . Each of the inde-
pendent equations has its independent initial condition from Equation (94). 
Such a system of three independent equations may have only one solution. The 
Equations (91) and (93) system does not need a pressure gradient term because 
the gas system is expanded to infinity. However, if these equations are applied to 
a confined gas space, then the surface force due to pressure exerted by the sur-
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roundings on the confined gas space shall be considered, and the pressure term 
( )1 mn p∇  needs to be added in the left-hand of Equation (93).  

Also, we note that the BPPBS assumes that each of the converging ballistic 
particles originated from a preceding collision within the gas system is selected 
from the group of the converging ballistic particles by a ballistic trajectory go-
verned by the law of motion, which provides an opportunity for the particle to 
enter point r  at given time t. Such a combination of diverging and converging 
ballistic particles capable of targeting or escaping point r  at a given time t is an 
exhaustive combination [8]. Moreover, in a hypothetical infinitely large system 
with no gravitational force, real straight-line trajectories of the particles may start 
from infinity so that each gas particle of the infinite gas system has a real chance 
to enter point r  at given time t. In turn, each gas particle diverging from the 
point r  at given time t has a real probability to reach any point within the infi-
nite gas space. It implies that the solution of the system of integro-differential 
mass and momentum balance equations shown, for the non-isothermal gas sys-
tem, by Equations (91) and (93), respectively, will be unique and physically rea-
sonable on [ )3 0,× ∞ .  

4.3. Approximating Integro-Differential Mass and Momentum  
Balance Equation Using Taylor Series Expansion of a Vector  
Field 

Returning to the system of approximate integro-differential mass and momen-
tum balance equations shown, for the non-isothermal gas system, by Equations 
(91) and (93), respectively, we may note that each of them has singularities at 
′ =r r   with the order of the pole of one or two. To investigate the analytical be-

havior of the integro-differential equations in the region bounding the point of 
singularity, we will use the Taylor series method. Taylor series expansion me-
thod is widely used for approximating the solution of integro-differential Equa-
tions (IDE) because of its efficiency [13]. Our research particularly uses the Tay-
lor series expansion method to transform the integro-differential mass and mo-
mentum balance equations shown by Equations (91) and (93), respectively, into 
the corresponding vector differential equations. More specifically, we concen-
trate on using zero through second order the Taylor series expansions and com-
paring them with the Navier-Stokes equations of mass and momentum conser-
vation for incompressible fluid shown here by Equations (1) and (2), respective-
ly.  

Definitions: Given the region of the Taylor expansion S surrounding point r , 
so that 3S ⊂  , the Taylor series for ( )′u r   about point r  in the first right- 
hand term of Equation (93) is  

( ) ( ) ( ) ( )0

1
!

n

n n
∞∞
= ′=

′ ′ ′ ′ ′= = − ⋅  ∑r r r
u r T u r r r u r

 

       

∇ ,         (95) 

where m
rT  is the Taylor polynomial of degree m around point r . We use a 

convenient vector form of the Taylor polynomial (5.109) of [14] in the equation 
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above. Similarly, we transform the other original under integral functions in the 
right-hand terms of Equations (91) and (93):  

( ) ( ) ( ) ( )0

1
!

n

n n
∞∞
= ′=

′ ′ ′ ′ ′ ′ ′ ′⋅ = ⋅ = − ⋅ ⋅          ∑r r r
u r T u r r r u r

 

       

∇ ∇ ∇ ∇ ,  (96) 

( ) ( ) ( ) ( )2 2 2
0

1
!

n
T T Tnv v v

n
∞∞
= ′=

   ′ ′ ′ ′ ′ ′ ′ ′= = − ⋅     ∑r r r
r T r r r r

 

    

∇ ∇ ∇ ∇ ,   (97) 

( ) ( ) ( ) ( )0

1
!

n

n n
∞∞
= ′=

′ ′ ′ ′ ′⋅ = ⋅ = − ⋅ ⋅          ∑r r r
uu T uu r r uu

 

       

∇ ∇ ∇ ∇ ,   (98) 

[ ] [ ]

( ) [ ]0

1 ,
!

n

n n

∞

∞

= ′=

′ ′ ⋅ + = ⋅ + 

′ ′ ′ = − ⋅ ⋅ +    ∑

r

r r

ug gu T ug gu

r r ug gu



 

      

    

∇ ∇

∇ ∇
      (99) 

( ) ( ) ( ) ( )0

1
!

n
T T Tnv v v

n
∞∞
= ′=

′ ′ ′ ′ ′⋅ = ⋅ = − ⋅ ⋅          ∑r r r
u T u r r u

 

    

∇ ∇ ∇ ∇ . (100) 

Substituting the under integral functions of Equations (91) and (93) by the 
corresponding polynomials shown by Equations (95)-(100), we obtain the fol-
lowing transforms of Equations (91) and (93) 

( )
0 2

21 4 1 1exp d
2 3 3 4

c
cV

P
P V∞ ′ ′ ′ ′⋅ = − − − ⋅    π ′  −

∫∫∫ ru r r T u r
r r



    

 

∇ ∇  (101) 

and 

( ) [ ]

( )

( )
0

0

2

2

02

2 1 1 3 1
3 2 2 8

8 4 1 1exp d
9 3 4

2 4 1 1exp d
3 3 4

2 4exp
3 3

c
T T

c T

c
c T cV

c
c i TV

c
cV

P
v v

t P v
P

P v P V

P
P v V

P
P

∞

∞

∞

∂
+ + ⋅ + ∇ + ⋅ + −

∂

 ′ ′ ′= − −  π ′  −

 ′ ′ ′− − − ⋅    π ′  −

 ′− − −


∫∫∫

∫∫∫

∫∫∫

r

r

u u uu ug gu g

r r T u r
r r

r r n T u
r r

r r





       

   

 

   

 

 

∇ ∇

∇

( )

( )

[ ]

0

0

2
2

2

1 1 d
4

2 4 1 1exp d
3 3 4

2 4 1 1 1exp d
3 3 4

T

c
cV

c
cV

T

v V

P
P V

P
P V

v

∞

∞

∞

 ′ ′ ′  π ′ −

 ′ ′ ′− − − ⋅    π ′  −

 ′ ′ ′ − − − ⋅ +   ′π − 

∫∫∫

∫∫∫

r

r

r

T r
r r

r r T uu
r r

r r T ug gu
r r









 

   

 

    

 

∇

∇

∇

  (102) 

respectively. These equations become vector differential mass and momentum 
balance equations, respectively. Since all the polynomials of the infinite order in 
the vector differential mass and momentum balance Equations (101) and (102) 
are identical to the corresponding original functions in the vector integro- 
differential mass and momentum balance Equations (91) and (93), then, ac-
cording to Taylor’s theorem, the solution of the system of Equations (101) and 
(102), ( ),d tu r 

, and the radius of expansion 3
d  shall be identical to the solu-

tion of the vector integro-differential mass and momentum balance Equations 
(91) and (93) and the radius of expansion [ )3 0,× ∞ , namely: 
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( ) ( ), ,d t t≡u r u r   

 and [ )3 3 ,d ≡ × ∞r  .            (103) 

However, it will be impossible to solve the system of Equations (101) and (102), 
where each has an unlimited number of terms. Therefore, the number of mea-
ningful terms in the equations is limited for practical purposes. Fortunately, the 
Taylor series expansions method allows, in general, to limit the expansion to a 
few terms, which will result in an approximation that may be sufficiently close to 
the true value. Since we investigate gas flow in the collision-dominated flow re-
gime, in which the relative change of the property value or any parameter cha-
racterizing the gas, such as momentum, is insignificant on the length scale of 
the average distance between the gas particles 1 cP  and the most significant 
impact in the dissipation or consumption of the property occurs in the nearby 
region surrounding the singular point at r  (see Equations (89) and (90) and 
the comments to them), in the Taylor expansions for the under integral original 
functions in Equations (91) and (93), we will use only terms associated with the 
zero, first, and second order terms in the Taylor expansion. A second order 
Taylor series expansion of a vector-valued function of three variables can be 
written as 

( ) ( ) ( ) ( )

( )( ) ( ) ( )2
, 2

1 ,
2 n

′=

=
′′=

′ ′ ′ ′= + − ⋅   

 ′ ′ ′+ − ⋅ +  

r r

r
r r

u r u r r r u r

r r u r R u

 



 

       

    

∇

∇
        (104) 

where 

( ) ( ), 2 3

1
!

n
n n

∞
= ′=

′ ′ ′= − ⋅  ∑r r r
R r r u r

 

   

∇ .             (105) 

4.3.1. Applying the Taylor Series Expansion Method to Derive a  
Differential Form of the Mass Balance 

Now, using Equation (104) as a template, we approximate in Equation (91) 
( )′′ ′⋅r u r ∇  by second order Taylor series expansion. Then we have:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), 1

1
2

1
2 n=

′ ′ ′⋅ = ⋅ + − ⋅ ⋅

′ ′+ − ⋅ ⋅ ⋅ − + ⋅r

u r u r r r u

r r u r r R u

      

     

∇ ∇ ∇ ∇

∇∇ ∇ ∇
      (106) 

Ignoring the error term in Equation (106) for a moment and substituting Eq-
uations (106) in Equation (91), we obtain 

( )

( )
0

2

0

0 0

21 4 1 1exp d
2 3 3 4

2 4 1exp d
3 3 4

2 4 1exp d
3 3 4

c
cV

c i
cV

c
c i iV

P
P V

P
P V

P
P V

∞

∞

 ′ ′⋅ = − ⋅ − −  π ′  −

 ′ ′− ⋅ ⋅ − −  ′π − 

 ′ ′− − − ⋅ ⋅ ⋅  π 

∫∫∫

∫∫∫

∫∫∫

u u r r
r r

n
u r r

r r

r r n u n

   

 



  

 

    

∇ ∇

∇ ∇

∇∇ ∇

   (107) 

4.3.2. Applying the Taylor Expansion Method to Derive a Differential  
Form of the Momentum Balance 

First, using Equation (104) as a template, we approximate vector functions ( )′u r  , 
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2
Tv′∇ , ( )′ ⋅ uu ∇ , ( )′ ⋅ +ug gu  

∇ , and ( )Tv′ ⋅ u∇  in Equation (93) by second or-
der Taylor series expansions. Then we have:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), 2

1
2

1
2 n=

′ ′= − − ⋅∇

′ ′+ − ⋅ ⋅ − + r

u r u r r r u r

r r u r r r R u

       

      

∇∇
          (108) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

2 2 2

2 2
, 2

1
2

T T T

T n T

v v v

v v=

′ ′ ′= − − ⋅

′ ′+ − ⋅ ⋅ − + r

r r r

r r r r R

  

   

∇ ∇ ∇∇

∇∇∇ ∇
      (109) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ), 2
1
2 n=

′ ′⋅ = ⋅ − − ⋅ ⋅

′ ′+ − ⋅ ⋅ ⋅ − + ⋅r

uu uu r r uu

r r uu r r R uu

       

       

∇ ∇ ∇∇

∇∇∇ ∇
     (110) 

[ ] ( ) ( ) ( )

( ) ( ) ( )

( )( ), 2

1
2

n=

′ ′⋅ + = ⋅ + − − ⋅ ⋅ +

′ ′+ − ⋅ ⋅ + ⋅ −  

+ ⋅ +r

ug gu ug gu r r ug gu

r r ug gu r r

R ug gu

           

      

  

∇ ∇ ∇∇

∇∇ ∇

∇

       (111) 

and 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ), 1
1
2

T T T

T n T

v v v

v v=

′ ′⋅ = ⋅ − − ⋅ ⋅

′ ′+ − ⋅ ⋅ ⋅ − + r

u u r r u

r r u r r R u

    

     

∇ ∇ ∇ ∇

∇∇ ∇
     (112) 

Ignoring the error terms in Equations (108), (109), (110), (111), and (112) for 
a moment and substituting these equations in Equation (93), we obtain 

( ) ( ) [ ]2
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    (113) 

We may expect that the truncation error decreases by adding terms to the 
Taylor series. Similarly, we may assume that, for a selected fixed truncation er-
ror, the addition of terms in the Taylor series will increase the interval of the 
Taylor series expansion with the acceptable tolerance.  

5. Comparison of the Derived Differential Forms of Mass and 
Momentum Balance Equations with the Corresponding  
Navier-Stokes Equations 

To gain insight into the formation of the mass and momentum balance in the 
point of singularity at r  as well as to provide an estimate of the impact of the 
most significant terms in the mass balance Equation (107) and the momen-
tum-balance Equation (113), we assemble zero-order and the second-order Tay-
lor series approximations separately. 

5.1. Zero-Order Polynomial Approximations of Integrals in the  
Mass and Momentum Balance Integro-Differential Equations 

The balance by zero-order approximation only generates the most significant 
impact in the mass and momentum balances. For the mass balance equation, 
executing integration for the infinite space in the first right-hand term of Equa-
tion (107) (see Equation (59)), neglecting the second and the third right-hand 
terms, and rearranging the rest of the terms, we obtain the following 

0⋅ =u∇ .                         (114) 

We may note that the equation above, in fact, is the zero-order term of the 
vector differential mass balance Equation (101) that has an infinite number of 
the differential terms.  

For the momentum balance equation, first, we select in the right-hand of Eq-
uation (113) the first, fourth, seventh, tenth, and thirteenth terms (zero-order 
approximation) and neglect the rest of the right-hand terms. Second, we execute 
integration for the infinite space in first, seventh, tenth, and thirteenth by ap-
plying Equations (59) and (60). Third, we evaluated that the fourth right-hand 
term is zeroed (since all components of the unit vector 0in  are odd in V∞  that 
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is a symmetric set with respect to the coordinate plains of the coordinate system 
having the origin in point r ). Finally, upon rearranging the terms, we obtain: 

( ) [ ]2 3 1 0
4T

c T

v
t P v
∂

+ ⋅ − + + ⋅ + =
∂

u uu g ug gu      

∇ ∇ ∇ .        (115) 

We may see that the equation above is the zero-order term of the differential 
momentum balance Equation (102) that has an infinite number of the differen-
tial terms.  

Solving a system of the mass balance and the momentum balance Equations 
(114) and (115), and using in the resulting equation the relationships shown by 
Equation (41), we obtain  

3
0fB

T

k T
t m v

λ∂
+ ⋅ − + + ⋅ =

∂
u u u g g u     

∇ ∇ ∇ .           (116) 

The equation above is valid to describe the momentum balance only at the 
point r . Comparing the equation with Equation (2), one may note that the first 
three left-hand terms in the equation above and the first three left-hand terms in 
Equation (2) appear identical.  

Remarkably, the zero-order Taylor series expansion of the integro-differential 
equation formulated by applying the BPPBS revealed two new terms. One of 
them, the fourth term, is the temperature gradient, and the other, the fifth term, 
is associated with the interaction of the external force field and the mass-flow 
velocity. These new terms may significantly impact the momentum balance at 
certain conditions, but they are absent in the Navier-Stokes momentum balance 
equation. We will explain their appearance in the next section while analyzing 
the second order of the Taylor series expansion of the differential momentum 
balance equation.  

5.2. Second-Order Polynomial Approximations of Integrals in the  
Mass and Momentum Balance Integro-Differential Equations 

The second order of the Taylor series expansion would improve the approxima-
tion by increasing an interval with desired tolerance. The desired tolerance level 
will be acceptable if we reveal the Taylor series expansion terms associated 
with the gas viscosity. We estimate the impact of the first- and second-order ap-
proximation terms in the mass balance Equation (107) and the momentum- 
balance Equation (113).  

5.2.1. Non-Isothermal Fluid System 
For the mass balance equation, we add not yet used terms of Equation (107), 
namely, the second and the third right-hand terms, to the right-hand of Equa-
tion (114). One may evaluate that the second right-hand term vanishes (since all 
components of the unit vector 0in  are odd in V∞ , which is a symmetric set 
with respect to the coordinate plains of the coordinate system having the origin 
in point r ). Applying the vector analysis rules shown in Equations (63) and 
(64) to the third right-hand term followed by integration for the infinite space in 
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all right-hand (see Equation (61)), we finally obtain the following: 

( ) ( )216 0
9 cP⋅ ⋅ + ⋅ =u u 

∇ ∇ ∇ ∇                  (117) 

The equation above is a Helmholtz type equation. Its solution is a com-
plex-valued wave function. The only real-valued solution of Equation (117) is 

0⋅ =u∇ .                         (118) 

For the momentum balance equation, we add not yet used terms in the right- 
hand of Equation (113), namely, the second, fifth, eighth, eleventh, and four-
teenth, a group of the first-order terms of the Taylor expansion, and the third, 
sixth, ninth, twelfth, and fifteenth, a group of the second order terms of the 
Taylor expansion. One may evaluate that, in the group of the first order terms of 
the Taylor expansion, all terms except the fifth vanish (since all components of 
the unit vector 0in  are odd in V∞ , which is a symmetric set with respect to the 
coordinate plains of the coordinate system having the origin in point r ). Ap-
plying the vector analysis rules shown in Equations (63) and (64) to each of the 
group of the second order terms of the Taylor expansion followed by integration 
for the infinite space in all survived terms (see Equations (59), (60), (61), and 
(62)), we finally obtain the following: 

( ) [ ]

[ ]( )

( ) ( ) [ ]
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2
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3 1
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 
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 
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 
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∇ ∇ ∇ ∇ ∇

      (119) 

Solving a system of the mass balance and the momentum balance Equations 
(118) and (119), using in the resulting equation the relationships shown by Equ-
ations (40) and (41), and rearranging the terms, we finally obtain  

( )
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2 2

31 3
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 
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∇ ∇ ∇

∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇

           (120) 

In this interpretation, the fourth left-hand term can be expressed by applying 
Equation (8) as the gas pressure gradient associated with the temperature gra-
dient at a point inside the incompressible gas. It may serve as “bound on the 
fluid velocity u, as well as the spatial derivatives Dαu  [5].”  

5.2.2. Isothermal Fluid System 
We also formulate the momentum balance equation at the uniform temperature 
by assigning 0Tv =∇  and 0p =∇  in Equation (120). Then we have: 
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21 1 3
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         (121) 

5.3. Revealing an Unknown Effect Associated with the Interaction  
of the External Field of Force and the Mass-Flow Velocity,  
Which Is Missed in the Navier-Stokes Momentum Balance  
Equation 

The fourth identical left-hand term of Equations (120) and (121), mentioned 
above, quantifies the interaction of the mass flow velocity u  with the vector 
field of force g . The expression f Tvλ g  is the added velocity gained by a gas 
particle during its free traveling time and ⋅g u 

∇  is the directional derivative of 
u  in the direction of g . This new term may significantly impact the momen-
tum balance at the high external force field and lower gas density and the tem-
perature.  

5.4. Revealing an Unknown Effect Associated with the  
Temperature Gradient at the Non-Uniform Temperature 

Contrary to the Navier-Stokes theory, according to which only the viscosity coeffi-
cient has some temperature dependence, we admit that the derived momentum 
balance equation governing the gas flow in a non-isothermal gas system has addi-
tional five temperature-dependent terms in the equation. We show this by subs-
tituting Equations (3) and (4) in Equation (120), which yields: 

( )
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31 3
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 
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∇ ∇
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         (122) 

The most significant temperature effect on the momentum balance is expected 
from the fourth left-hand of the equation above. In physics, the effect of the 
temperature gradient on the gas flow is known as the thermo-osmotic transport 
phenomenon [15]; however, the underlying molecular mechanism of the trans-
port is mostly still unexplored. We are surprised to discover this term in the 
momentum balance equation. However, its appearance in the momentum bal-
ance at the non-uniform temperature seems reasonable. 

5.5. The Evidence of the Inapplicability of the Navier-Stokes  
Equations to Govern Fluid Flow in the Infinite Space 

Here we shall admit the following. We may note here that the second order 
truncation of Equation (102) shown by Equation (120) is a significant improve-
ment over the zero-order truncation shown by Equation (116) since it reveals 
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the viscous term and the other two terms associated with the momentum ex-
change in the region surrounding point r . However, the radius of convergence 
or the radius of the zone with given tolerance 2tR  for the differential Equation 
(120) is limited. In other words, while the solution of Equation (102) is ( ),d tu r 

 
for [ )3 3 0,d ≡ × ∞  , the solution of Equation (120), which is the second order 
truncation of Equation (102), is ( )2 ,d tu r 

 for [ )3 3
2 20,d tR≡ ×  . Considering 

the fact that all the terms of the Navier-Stokes Equation (2) are built-in Equation 
(120), we may conclude that, for the solution of the Navier-Stokes Equation 
(120) ( ),NS tu r 

 for [ )3 3 0,NS NSR≡ ×  , the radius of the zone NSR  with the 
same tolerance as for the solution of Equation (120) will be equal to or less than 

2tR . Symbolically, the above is reflected by the following inequality: 

2NS tR R≤ < ∞ .                       (123) 

Thus, we have shown that there exists no solution of the Navier-Stokes equa-
tions in [ )3 0,× ∞ .  

We may conclude from the discussion above that Equations (121) and (122) 
may be applied only to a confined gas space. Therefore, the surface force due to 
pressure exerted by the surroundings on the confined gas space shall be consi-
dered (see the comments to Equation (7) in Introduction), and Equations (121)  

and (122) are modified by introducing the pressure term 1 p
mn

∇  in the left-hand 

of these equations as follow: 
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and 

( )
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       (125) 

Comparing Equations (124) and (125) with Equation (2), one may note that 
the first four left-hand terms in Equations (124) and (125) and the left-hand 
terms in Equation (2) are identical. Also, the first right-hand terms of Equations 
(124) and (125) are identical to the viscous right-hand term of Equation (2). Our 
derivation produces the numerical coefficient 0.5vk =  (see Equation (3)), 
which is remarkably close to 0.49 obtained in [1]. However, we revealed the ad-
ditional two left-hand terms and four right-hand terms in Equations (125) that 
are not detected in the derivation originally developed by Stokes [16] [17] and 
many other alterations since then. Similarly, we have one left-hand term and two 
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right-hand terms in Equations (124) absent in the Navier-Stokes momentum 
balance equation. 

6. Discussion and Conclusions 
6.1. Approach in the Modeling Gas Flow 

Our approach in the modeling gas flow is established on mimicking the move-
ment of each particle/molecule composing the gas and then gathering that move-
ment into macro quantities characterizing the fluid flow. It has resulted in dis-
covering a new principle of the property (mass, momentum, and energy) balance 
in space, which we have named the Ballistic Principle of the Property Balance in 
Space. The BPPBS is based on recognizing that each particle composing the gas 
follows its ballistic trajectory governed by a law of motion in free space and 
moves with a probability between any of two points in space occupied by the gas. 
Each ballistic particle is treated as a property carrier transporting one or more 
mass, momentum, and energy between the points of consecutive collisions. Each 
point in space occupied by the gas is a sink accumulating property delivered by 
converging ballistic particles from the entire gas system and a source dispersing 
property by diverging ballistic particles.  

In this paper, we use a different than in our original paper [8] scheme of de-
fining a net rate of total property efflux per unit volume from a nonmoving 
point of gas space. We realized that each point in the gas space serves as the sink 
of the converging gas particles and the source of the diverging gas particles. 
Therefore we shall consider the exhaustive combination of the transport events 
in each point of the gas space. As a result, we consider the balance by taking into 
account the events of delivery of the diverging ballistic particle from the point 
source at r  at time t to the point sink at ′r  within the fluid system. Then we 
formulated integro-differential forms of mass balance and momentum balance 
equations adapted to the incompressible gas flow at the non-uniform tempera-
ture in the infinite gas space. To investigate the analytical behavior of the inte-
gro-differential equations in the region bounding the point of singularity, we 
used the Taylor series method. We concentrated on using zero through second 
order the Taylor series expansions and comparing them with the Navier-Stokes 
mass and momentum balance equations for incompressible fluid shown here by 
Equations (1) and (2).  

6.2. Comparative Analysis of the Navier-Stokes Momentum  
Balance Equation and the Derived in Present Work  
Non-Isothermal and Isothermal Differential Momentum  
Balance Equations 

Navier-Stokes equations have been known by mathematicians and engineers 
exactly for two hundred years. This paper's main innovation is finding that the 
Navier-Stokes momentum balance equation does not describe the fluid flow 
adequately. Particularly, it does not consider the momentum associated with the 
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interaction of the external field of force and the mass-flow velocity and with the 
significant temperature dependence. These effects, which are not considered in 
the Navier-Stokes equations, may significantly diminish the accuracy and pre-
dictability of computer simulations in various engineering and fundamental ap-
plications under certain conditions. 

Applying the BPPBS, our derivation generates all terms associated with the 
Navier-Stokes equations. It also has led to discovering the unknown effect asso-
ciated with the part of velocity acquired by each gas particle during its free path 
traveling in the body force field. Furthermore, we discovered a significant effect 
of the temperature non-uniformity on the momentum balance. In addition, our 
derivation produces the numerical coefficient 0.5vk =  in the equation for the 
kinematic viscosity for gases (see Equation (3)) that is remarkably close to 0.49 
obtained via a mathematically rigorous derivation [1], which may also be sup-
plemental support of the BPPBS [8].  

We also investigated the analytical behavior of the integro-differential equa-
tions in the region bounding the point of singularity by applying the Taylor se-
ries expansion method to transform the integro-differential mass and momen-
tum balance equations into the corresponding vector differential equations. Our 
analysis has demonstrated that the Navier-Stokes equations are not applicable to 
govern fluid flow on [ )3 0,× ∞ . Therefore, we have concluded that the derived 
momentum-balance Equation (121) or (122), as well as the Navier-Stokes mo-
mentum balance Equation (2), can be applied only to a confined gas space.  

6.3. Conclusions 

From the above, we may conclude the following: 
1) We derived integro-differential forms of the mass balance and momentum 

balance equations adapted to the incompressible non-isothermal gas flow in the 
infinite gas space. Since both the mass balance and momentum balance are for-
mulated by considering an exhaustive combination of diverging and converging 
ballistic particles capable of targeting point or escaping point r  at a given time t, 
we concluded that the solution of the system of integro-differential mass and 
momentum balance equations is unique and physically reasonable on [ )3 0,× ∞ .  

2) While deriving the balance equations, we determined that the balance is 
conserved only if we count the impact of each of the diverging particles upon 
completion by each of them a trajectory path ending at ′r  but not upon the 
start of the trajectory at r .  

3) We used the Taylor series expansion method to investigate the analytical 
behavior of the integro-differential equations in the region bounding the point 
of singularity. Particularly we applied the Taylor series expansion method to 
transform the integro-differential mass and momentum balance equations into 
the corresponding vector differential equations. We found that the transformed 
differential form of the incompressible mass balance equation is identical to the 
corresponding Navier-Stoke counterpart, which supports the validity of the BPPBS 
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claimed in our previous publications.  
4) We derived the following vector differential forms of the momentum bal-

ance equation, which apply to a confined incompressible fluid flow at the non- 
uniform temperature 
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and at the uniform temperature 
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We found that the derived vector differential forms of the momentum balance 
equation include the corresponding Navier-Stokes momentum balance equation 
terms in full. Namely, the first four left-hand terms and the first right-hand 
terms are identical to the corresponding terms of the incompressible Navier- 
Stokes momentum balance equation).  

5) We have demonstrated that the Navier-Stokes momentum balance equa-
tion does not adequately describe the fluid flow.  

a) It does not consider the momentum associated with the part of velocity ac-
quired by each gas particle during its free path traveling in the body force field. 
This effect may significantly modify gas flow at low temperature and a high val-
ue of the external field of force, such as the gravitational force.  

b) It ignores the influence of the temperature non-uniformity on the momen-
tum balance. This effect may significantly modify gas flow at high-temperature 
gradients. 

6) We have shown that: 
a) The Navier-Stokes momentum balance equation is an incomplete version 

of the second-order approximation of the Taylor differential transformation of 
the integro-differential momentum balance equation based on the BPPBS.  

b) The radius of expansion with a given tolerance of the second-order trunca-
tion of the Taylor differential transformation of the integro-differential equa-
tions of the mass balance and the momentum balance is limited. All the terms of 
the Navier-Stokes equation are built-in the second-order approximation of the 
Taylor differential transformation. Therefore, the solution of the Navier-Stokes 
equation may exist only within the limited, confined space.  

c) Therefore, there exists no solution ( ),p u  of (1), (2), and (5) on [ )3 0,× ∞ . 

https://doi.org/10.4236/jamp.2022.103052


N. Kislov 
 

 

DOI: 10.4236/jamp.2022.103052 770 Journal of Applied Mathematics and Physics 
 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Guggenheim, E. (1960) Elements of the Kinetic Theory of Gases. Pergamon Press, 

Oxford. 

[2] Galdi, G. (2000) An Introduction to the Navier-Stokes Initial-Boundary Value Prob-
lem. In: Galdi, G.P., Heywood, J.G. and Rannacher, R., Eds., Fundamental Direc-
tions in Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechan-
ics, Birkhäuser, Basel, 1-70. https://doi.org/10.1007/978-3-0348-8424-2 

[3] Fefferman, C.L. (2006) Existence and Smoothness of the Navier-Stokes Equation. 
In: The Millennium Prize Problems, Clay Mathematics Institute, Cambridge, 57-67. 

[4] Wilcox, D. (2000) Basic Fluid Mechanics. 2nd Edition, DCW Industries Inc., La 
Canada. 

[5] Payne, M. (2013) A Study of the Pressure Term in the Navier-Stokes Equations.  
https://digitalrepository.unm.edu/math_etds/39  

[6] Navier, C. (1822) On the Laws of Motion of Fluids Taking into Consideration the 
Adhesion of the Molecules. Annales de Chimie et de Physique, 19, 234-245. 

[7] Kislov, N. (2019) Analytical Tools and Methods for Modeling Transport Processes 
in Fluids. US Patent No. 10467362. 

[8] Kislov, N. (2020) Ballistic Principle of the Property Balance in Space and Its Appli-
cation to Modeling of Fluid Dynamics Problems. Journal of Applied Mathematics 
and Physics, 8, 1081-1122. https://doi.org/10.4236/jamp.2020.86084  

[9] Kislov, N. (2020) Novel Analytical Molecular Dynamics Technique for Solving Fluid 
Dynamics Problems, Chapter 1. In: Chaouchi, B., Ed., Theory and Practice of Ma-
thematics and Computer Science, Vol. 5, Book Publisher International, Bhanjipur, 
1-41. 

[10] Kislov, N. (2021) Effect of Ballistic Bouncing of Gas Particles across a Microchannel 
on Rarefied Gas Flows. Journal of Applied Mathematics and Physics, 8, 779-808.  
https://doi.org/10.4236/jamp.2021.94054 

[11] Callen, G. (2002) Fundamentals of Plasma Physics. Appendix D. Vector Analysis.  
https://www.scribd.com/doc/75883576/Vector-Analysis-AppD  

[12] Glegg, S. and Devenport, W. (2017) Chapter 5. The Ffowcs Williams and Hawkings 
Equation. In: Glegg, S. and Devenport, W., Eds., Aeroacoustics of Low Mach Num-
ber Flows: Fundamentals, Analysis, and Measurement, Academic Press, Cambridge, 
95-114. https://doi.org/10.1016/B978-0-12-809651-2.00005-9 

[13] Huang, Y. and Li, X.-F. (2010) Approximate Solution of a Class of Linear Integro- 
Differential Equation by Taylor Expansion Method. International Journal of Com-
puter Mathematics, 87, 1277-1288. https://doi.org/10.1080/00207160802275969 

[14] Arfken, G. and Weber, H. (2005) Mathematical Methods for Physicists. 6th Edition, 
Elsevier Academic Press, Amsterdam. 

[15] Thermo-Osmosis, from Wikipedia, the Free Encyclopedia.  
https://de.zxc.wiki/wiki/Thermoosmose  

[16] Stokes, G. (1845) On the Theories of the Internal Friction of Fluids in Motion and 
of the Equilibrium and Motion of Elastic Solids. Transactions of the Cambridge 

https://doi.org/10.4236/jamp.2022.103052
https://doi.org/10.1007/978-3-0348-8424-2
https://digitalrepository.unm.edu/math_etds/39
https://doi.org/10.4236/jamp.2020.86084
https://doi.org/10.4236/jamp.2021.94054
https://www.scribd.com/doc/75883576/Vector-Analysis-AppD
https://doi.org/10.1016/B978-0-12-809651-2.00005-9
https://doi.org/10.1080/00207160802275969
https://de.zxc.wiki/wiki/Thermoosmose


N. Kislov 
 

 

DOI: 10.4236/jamp.2022.103052 771 Journal of Applied Mathematics and Physics 
 

Philosophical Society, 8, 287-319. 

[17] Stokes, G. (1851) On the Effect of the Internal Friction of Fluids on the Motion of 
Pendulums. Transactions of the Cambridge Philosophical Society, 9, 8-106.  
https://doi.org/10.1017/CBO9780511702266.002  

 
 

https://doi.org/10.4236/jamp.2022.103052
https://doi.org/10.1017/CBO9780511702266.002

	Discovery of New Terms Associated with the Navier-Stokes Momentum Balance Equation and Finding the Evidence of Its Inapplicability to Govern Fluid Flow in the Infinite Space
	Abstract
	Keywords
	1. Introduction
	2. Physical Principles of the Ballistic Model Adapted to the Three-Dimensional Incompressible Gas Flow
	2.1. Properties and Features of the Incompressible Gas
	2.2. Bases of Construction of the Property Balance in the Incompressible Gas Space
	2.2.1. The Model Parameters
	2.2.2. Important Assumptions and Approximations of the Model

	2.3. Analytical Representation of a Net Rate of Total Property Influx Per Unit Volume in a Nonmoving Point of Gas Space in the Collision-Dominated Flow Regime
	2.4. Analytical Representation of a Net Rate of Total Property Efflux Per Unit Volume From a Nonmoving Point of Gas Space in the Collision-Dominated Flow Regime
	2.5. A General Integro-Differential Form of Property Balance Equation in the Three-Dimensional Gas System

	3. Integro-Differential Forms of Mass and Momentum Balance Equations in the Collision-Dominated Flow Regime
	3.1. Integro-Differential Form of the Mass Balance Equation of Incompressible Gas in the Collision-Dominated Flow Regime
	3.2. Integro-Differential Form of the Momentum Balance Equation in the Collision-Dominated Flow Regime
	3.2.1. Defining a Net Rate of Total Momentum Influx Per Unit Volume in the General Non-Moving Point at the Given Time
	3.2.2. Defining the Total Momentum Efflux Per Unit Volume at the Given Time from the General Non-Moving Point
	3.2.3. Formulating the Integro-Differential Momentum Balance Equation in the Infinite Gas Space


	4. Reducing Integro-Differential Forms of Mass and Momentum Balance Equations to the Corresponding Differential Forms by the Taylor Series Expansion of the Integral Terms Near Point 
	4.1. Approximate Integro-Differential Form of the Mass Balance Equation for Incompressible Gas
	4.2. Approximate Integro-Differential Form of the Momentum Balance Equation for Incompressible Gas
	4.3. Approximating Integro-Differential Mass and Momentum Balance Equation Using Taylor Series Expansion of a Vector Field
	4.3.1. Applying the Taylor Series Expansion Method to Derive a Differential Form of the Mass Balance
	4.3.2. Applying the Taylor Expansion Method to Derive a Differential Form of the Momentum Balance


	5. Comparison of the Derived Differential Forms of Mass and Momentum Balance Equations with the Corresponding Navier-Stokes Equations
	5.1. Zero-Order Polynomial Approximations of Integrals in the Mass and Momentum Balance Integro-Differential Equations
	5.2. Second-Order Polynomial Approximations of Integrals in the Mass and Momentum Balance Integro-Differential Equations
	5.2.1. Non-Isothermal Fluid System
	5.2.2. Isothermal Fluid System

	5.3. Revealing an Unknown Effect Associated with the Interaction of the External Field of Force and the Mass-Flow Velocity, Which Is Missed in the Navier-Stokes Momentum Balance Equation
	5.4. Revealing an Unknown Effect Associated with the Temperature Gradient at the Non-Uniform Temperature
	5.5. The Evidence of the Inapplicability of the Navier-Stokes Equations to Govern Fluid Flow in the Infinite Space

	6. Discussion and Conclusions
	6.1. Approach in the Modeling Gas Flow
	6.2. Comparative Analysis of the Navier-Stokes Momentum Balance Equation and the Derived in Present Work Non-Isothermal and Isothermal Differential Momentum Balance Equations
	6.3. Conclusions

	Conflicts of Interest
	References

