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Abstract 
In this work, we make a number of proposals to explain how a world of (4 + 
4)-dimensions can be useful for a better understanding of both dark matter 
and quantum gravity. The key idea is to look for some advantage of consi-
dering self-dual invariants in (4 + 4)-dimensions rather than in a separate 
context of (1 + 3)-dimensions or (3 + 1)-dimensions. In fact, we show that by 
considering the duality concept in (4 + 4)-dimensions we may provide an al-
ternative meaning of a framework for loop quantum gravity. Moreover, con-
sidering the Dirac equation in (4 + 4)-dimensions for a particle without elec-
tric charge and mass, we show that when it is projected into the (1 + 3) and (3 
+ 1)-worlds may describe a system with electric charge and mass. We also 
discuss the relation between the three physical scenarios; (4 + 4)-world, 
black-holes and dark matter.  
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1. Introduction 

Dark matter (see Refs. [1] and [2] references therein) and quantum gravity (see 
Refs. [3] [4] [5] and references therein) are two of the main open problems in 
physics. In fact, they do not have a totally consistent solution [4]. There have 
been multiple attempts to solve them, including loop quantum gravity [5] and 
string theory [6], but they do not fully explain everything. We believe that this 
might be a consequence of the asymmetry in space-time. There is no fundamen-
tal reason that explains why the background of the universe may be described 
with 3 spatial coordinates and just 1 time real coordinate. In this paper, in order 
to search for a mathematical solution of dark matter and quantum gravity, we 
explore the idea that taking a more symmetric universe with (4 + 4)-dimensions 
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(four time and four space coordinates) might provide an alternative solution. In 
principle, the origin of (4 + 4)-signature may arises from M-theory via type II A 
and B strings which predicts a (5 + 5)-signature (see Refs. [7] and references 
therein), but here we try to promote the idea that such a signature is indepen-
dent of M-theory. 

Moreover, with heuristic physical reasoning in [8] was proposed another 
route for becoming interested in world of (4 + 4)-dimensions. Roughly speaking 
the main idea is to assume that the 2-sphere determined by the Schwarzschild 
radius associated with black-holes separate two worlds: 1) the exterior in (1 + 
3)-dimensions where ordinary matter lives and moves with velocities less than 
the light velocity and 2) the interior in (3 + 1)-dimensions where tachyons move 
with velocities greater than the light velocity. It turns out that this idea provides 
with an alternative explanation of the strange gravitational behavior of the rota-
tion curves of spiral galaxies, and therefore can be seen as a candidate for a solu-
tion of dark matter origin. 

It is worth mentioning that it has been proved that massless Dirac equation 
formulated in flat (4 + 4) (or (5 + 5)) dimensions may lead to massive spinors in 
(1 + 3)-dimensions [9]. In turn, (4 + 4)-dimensions have an interesting connec-
tion with qubits and chirotopes (see Refs. [10]-[17] and references therein). 

An illustration of how this ( ) ( ) ( )4 4 ~ 1 3 3 1+ + + +  construction might be 
useful in the development of quantum gravity we take into account, as guide, the 
Euler characteristic in graph theory. For this purpose, let us start describing the 
idea with a simple graph (see Refs [18] and [19]). An edge with 2 vertices, in a 
graphic space G. The dual of this line, will be a loop with 1 vertex in the dual 
graphic space G∗ . The idea is to consider that in general, the dual of a graph G 
corresponds to a graph in G∗ . Now, the Euler characteristic of a general graph 
gives us a truly wonderful equation  

2,V E F− + =                        (1) 

where V denotes number of vertices, E the number edges and F the number fac-
es of G. Considering that F V ∗=  the vertices on G∗  and E E∗=  we see that 
(1) becomes 

2.V E V ∗− + =                        (2) 

This equation implies that 

1 1V V E∗− + − =                       (3) 

and therefore defining the so called rank 1R V= −  we discover the formula 

.R R E∗+ =                         (4) 

By the way, starting from (4) we may be able to obtain (2). Let us try to see the 
behavior of (4), according to 2-vertices in G. In this case, 2V = , 1V ∗ =  and 

1E = , so 2 1 1 2− + = . This provides an easy relationship between two different 
but complementary graphic spaces G and G∗ . Our proposal is that something 
similar is what may happen in our Universe at different scales and circumstances. 
Assuming we “live” in the world G, and we have made every calculation on G, in 
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particular quantum gravity and dark matter structures, without taking into ac-
count the world G∗  we expect to find all kinds of problems since we are not 
using the complete background framework G G∗=  . This means that we 
might have been ignoring the dual space-time G∗ , and therefore without con-
sidering it, the gravitational physical theories are just incomplete. Our conjec-
ture is that it might not be possible to get a solution on quantum gravity without 
considering the dual of our Universe. 

2. Towards Loop Quantum Gravity in (4 + 4)-Dimensions 

Consider the metric 

,a b
abg e e=µν µ νη                           (5) 

where we require that the vielbein aeµ  satisfies 

0.a a ab
be e e∂ −Γ + =α

µ ν µν α µ νω                      (6) 

Here, Γα
µν  is the Christoffel symbol and ab

µω  spin connection. 
It is well known that the Riemann tensor in terms of ab

µω  is given by 

.ab ab ab ac b bc a
c cR = ∂ − ∂ + −µν µ ν ν µ µ ν µ νω ω ω ω ω ω                (7) 

It turns out convenient to define the extended Riemann tensor 

.ab ab a b b aR e e e e= + −µν µν µ ν µ ν                      (8) 

A self-duality of abµν  in (1 + 3)-dimensions is determined by 

( )1 .
2

ab ab ab cd
cdi± =   µν µν µνε                     (9) 

It is worth mentioning that this expression can be used as starting point in the 
development of loop quantum gravity. In fact, we can verify that 

1   .
2

ab cd cd
cd i± ±= ± µν µνε                      (10) 

Observe that (9) may be considered as the analogue of the version of the Euler 
characteristic (4) in graph theory. If we choose that instead of (1 + 3)-signature 
we choose the (0 + 4)-signature, then we must have  

( )1 .
2

ab ab ab cd
cd

± = ±  µν µν µνε                    (11) 

In fact, we can verify that 

1   .
2

ab cd cd
cd

± ±= ± µν µνε                     (12) 

It turns out that the extension of (9) and (11) to any signature is not so 
straightforward. This is because these relations depend strongly in the properties 
of the ε -symbol. First, recall that the number of indices of ε -symbol deter-
mines the dimension of the space. Secondly, combination of the properties of the 
ε -symbol and the flat metric ( )1, , 1, 1, , 1ab diag= − − + + η  plays a central 
role. For instance, if the space is of the form ( )0 n+ -signature then 
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1 1
1 1

1 1.
!

n n
n n

a a b b
a b a bn

= 

ε ε η η                      (13) 

Moreover, it is not difficult to see that we also obtain (13) in a ( )m n+ -dimen- 
sions, with 2m s=  and 0,1,2,s etc=  . On the other hand if 2 1m s= +  
then 

1
1

1 1
!

n
n

a a
a an

= −



ε ε                         (14) 

and therefore as in the case of (1 + 3)-dimensions we require a complex struc-
ture for self-duality as (10). While in the case of the signatures ( )0 n+  and 
( )2s m+  we still accomplish self-duality in a real scenario. 

Another, important problem in an extension of self-duality to higher dimen-
sions emerges from the fact that in any dimension, the extended curvature abµν  
always contains the same number of indices. Thus, if we want to define its dual 
we must have a quantity with different indices that the original curvature abµν . 
For instance, in 8-dimensions the ε -symbol contains eight indices and there-
fore we obtain 

1 2 3 4 5 61 2 3 4 5 6 7 8
7 8

1 .
2!

a a a a a aa a a a a a a a
a a

∗ = µν µνε                   (15) 

This looks so asymmetric that we are forced to look for an alternative defini-
tion of a new extended curvature. This idea was developed in even dimension in 
Refs. [20] [21] in which a new tensor was proposed, namely 

1 1 11 2
1 1 1 2 1

1 ,
!

n n n n
n n n n

a a a a b bb b
b bn

−
−

Ω = 

 

 µ µ µ µ µ µδ                  (16) 

where 1
1

n
n

a a
b b




δ  is a generalized δ -symbol. In 8-dimensions we get 

1 2 3 4 1 2 3 4 3 41 2
1 2 3 4 1 2 3 4 1 2 3 4

1 .
4!

a a a a a a a a b bb b
b b b bΩ =  µ µ µ µ µ µ µ µδ                   (17) 

Now, self-duality of 1 2 3 4
1 2 3 4

a a a aΩµ µ µ µ  is given by 

1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4

1
4!

a a a a a a a a b b b b
b b b b

∗Ω = Ωµ µ µ µ µ µ µ µε                    (18) 

and therefore we have the same number of Latin indices in 1 2 3 4
1 2 3 4

b b b bΩµ µ µ µ  and 
1 2 3 4
1 2 3 4

a a a a∗Ωµ µ µ µ . This means that in 8-dimensions the self-dual can be defined as  

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1 .
2 4!

a a a a a a a a a a a a b b b b
b b b b

±  Ω = Ω ± Ω 
 

µ µ µ µ µ µ µ µ µ µ µ µε             (19) 

Of course, the tensor 1 2 3 4
1 2 3 4

a a a a±Ωµ µ µ µ  satisfies the self-duality formula 
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4

.a a a a a a a a∗± ±Ω = ± Ωµ µ µ µ µ µ µ µ                      (20) 

If we observe that in (4 + 4)-dimensions both (19) and (20) are structures in a 
real scenario we may expect that, in the route of quantization, key differences 
with the (1 + 3)-dimensional case may emerge. In particular, for self-duality we 
have that in (1 + 3)-dimensions complex structure is required, while (4 + 4)- 
dimensions we can develop quantization in a real background. 

https://doi.org/10.4236/jamp.2022.103049


B. M. Martínez-Olivas et al. 
 

 

DOI: 10.4236/jamp.2022.103049 692 Journal of Applied Mathematics and Physics 
 

3. Dirac Equation in (1 + 3) and (3 + 1) Dimensions 

The Dirac equation for 1
2

-spin [22] provides one of the most remarkable theories  

of modern physics. Among its features one can cite the unification of special re-
lativity and quantum mechanics and the prediction of antiparticles. Moreover, 
such an equation can be considered as main source of supersymmetry, super-
strings and supergravity. The aim of this section is to revise the Dirac equation 
from the point of view of the (1 + 3) and (3 + 1) signatures. We argue that our 
analysis may help to have a better understanding of the Dirac equation in (4 + 
4)-dimensions, which we shall discuss in the next section. Roughly speaking this 
is due to the fact that in vacuum one may expect the symmetry braking 

( ) ( ) ( )4 4 1 3 3 1 .+ → + + +                      (21) 

Let us start defining the flat metrics 

( ) ( )1, 1, 1, 1diag+ = − + + +µνη                     (22) 

and  

( ) ( )1, 1, 1, 1 ,diag− = + − − −µνη                    (23) 

corresponding to (1 + 3) and (3 + 1) dimensions, respectively. Here the indices 
{ }, 0,1, 2,3∈µ ν . Notice from the beginning that one has 

( ) ( ) .+ −= −µν µνη η                          (24) 

With these two kinds of flat metrics one can write two constraints equations 
associated with a point test particle of rest mass 0m  and of linear momentum 
pµ , namely 

( )
2 2
0 0p p m c+ + =µν

µ νη                       (25) 

and  

( )
2 2
0 0,p p m c− + =µν

µ νη                      (26) 

where c is the light velocity. If we consider the energy definition 0E cp≡  from 
(25) we may derive the well known relation 2 2 2 4

0E p c m c= ± + . It turns out 
that the two constraints (25) and (26) are unique in the sense that any other 
possible constraint involving quadratic linear momentum pµ  may arise from 
these two constraints by simply multiplying the whole constraints by minus sign. 
Of course, only in the case of 0 0m =  the constrains (25) and (26) collapses to 
just one constraint 

( ) 0.p p + =µν
µ νη                        (27) 

In order to clarify the meaning of the constraints (25), (26) and (27) we shall 
write 

0
d .
d
xp m=
µ

µ

τ
                       (28) 

Substituting this expression into (25), (26) and (27) we learn that these con-
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straints lead to 

( )
2d d 0,

d d
x x c+ + =
µ ν

µνη
τ τ

                    (29) 

( )
2d d 0

d d
x x c− + =
µ ν

µνη
τ τ

                    (30) 

and 

( )
d d 0,
d d
x x

+ =
µ ν

µνη
τ τ

                      (31) 

respectively. Therefore, in the case of (29) and (30) τ  admits the meaning of 
proper time, while in the case of (31) is just a null parameter. Developing these 
three constrains it is straightforward to verify that (29) corresponds to v c< , 
(30) refers to v c>  and (31) leads to the case v c= . Here, v is the magnitude  

of the usual velocity of the particle, that is d
d

i
i xv

t
= , with the index i running  

from 1 to 3. Thus, with the constraints (29), (30) and (31) we cover all possibili-
ties; v c< , v c>  and v c= . Of course, v c<  refers to ordinary matter, 
v c>  describes superluminal particles (tachyons) and v c=  light like par-
ticles. 

In order to quantize the system we promote the linear momentum pµ  to an 
operator; 

ˆ .p p i
x
∂

→ = −
∂
µ µ µ                     (32) 

Thus, the constraints (25) and (26) lead to the field equations 

( )( )2 2
0ˆ ˆ 0p p m c+ + =µν

µ νη ψ                    (33) 

and  

( )( )2 2
0ˆ ˆ 0,p p m c− + =µν

µ νη ψ                    (34) 

respectively. Of course, by using a Fourier transform method we may find that 
(33) and (34) will lead back to (25) and (26). 

It is well known that (33) admit a square root of the form 

( )0ˆ 0.p m c+ =µ
µγ ψ                      (35) 

This can be proved by multiplying (33) in the left side by the operator 

( )0p̂ m c−µ
µγ                        (36) 

and requiring that the µγ  satisfy 

( )2 .++ = −µ ν ν µ µνγ γ γ γ η                     (37) 

We may think that another possible square root of (13) is given by 

( )0ˆ 0.p m c− =µ
µγ ψ                      (38) 

However, by multiplying this expression by (−1) and considering that (37) is 
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invariant under the change → −µ µγ γ  we learn that (35) and (38) are indeed 
equivalents. 

On the other hand the square root of (34) is exactly the same Equation (35) 
but with the condition that now the µγ  satisfy  

( )2 .−+ = −µ ν ν µ µνγ γ γ γ η                       (39) 

This seems to be an intriguing result, because the constraints (33) and (34) 
describe completely different systems; ordinary matter and tachyons. However, 
both constraints have exactly the same square root (35). 

4. Dirac Equation in (4 + 4)-Dimensions 

In this section we discuss a number of features of the Dirac equation in four time 
and four space dimensions [9]. Let us start assuming that we can make the split 

( ) ( ) ( )4 4 3 1 1 3 .+ → + + +                     (40) 

First, we note that a signature duality emerges because (3 + 1)-world is mere a 
changing signature of our ordinary world in (1 + 3)-dimensions. Suppose an 
electron “lives” in (1 + 3)-world. We can ask: What could be the corresponding 
dual electron in (3 + 1)-dimensions? A partial answer to this question may be 
obtained from the observation that since in (4 + 4)-dimensions there exist Ma-
jorana-Weyl spinors (see Ref. [9] and references therein) 16 spinors complex  
components of the Dirac equation can be reduced to 4-complex spinor compo-

nents: the same number than an ordinary 1
2

-fermion in 4-dimensions. 

Consider the Dirac equation in any ( )t s+ -signature, namely 

( )ˆ
ˆ 0ˆ 0,p m+ =µ
µγ ψ                       (41) 

where µ̂γ  are the gamma matrices satisfying the Clifford algebra 
ˆ ˆ ˆˆ ˆ ˆ2 .+ = −µ ν ν µ µνγ γ γ γ η                      (42) 

Here, ˆµ̂νη  is a ( )t s+ -dimensional flat diagonal metric which depends on 
the signature ( )t s+  (t times and s space dimensions). Note that (41) depends 
on the signature via the expression (42). Moreover, the µ̂γ  are matrices of  

2 22 2
D D

× , with D t s= + . 
It turns out convenient to mention that in (1 + 3)-dimensions, the three more 

communes representations of the gamma matrices µγ  are the Weyl ( W
µγ ), Di-

rac ( D
µγ ) and Majorana ( M

µγ ) representations. Explicitly, considering the Pauli 
matrices 

1 2 3

0 0 0
, , ,

0 0 0
I i I

I i I
−     

≡ ≡ ≡     −     
σ σ σ            (43) 

we have 

1 20 1 0
, ,

1 0 0

i

W W i

  
≡ ≡    −   

σ
γ γ

σ
                (44) 

1 21 0 0
, ,

0 1 0

i

D D i

  
≡ ≡   − −   

σ
γ γ

σ
                (45) 
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and 
2 3

1 2
2 3

2 1
3 4

2 1

0 0
, ,

0 0

0 0
, .

0 0

M M

M M

i
i

i
i

σ σ
γ γ

σ σ

σ σ
γ γ

σ σ

   −
≡ ≡   

−   
   −

≡ ≡   
− −   

             (46) 

By considering the unitary transformations 

1 1
,

1 1
V  
=  − 

                       (47) 

and 
2

2

1
,

1
W

 
=  

− 

σ
σ

                     (48) 

we can determine different relations between W
µγ , D

µγ  and M
µγ . In fact, a con-

nection between W
µγ  and D

µγ  is given by 1
D WV V −=µ µγ γ . Also we have  

1
M DW W −=µ µγ γ  and 1 1

M WWV V W− −=µ µγ γ . Moreover the corresponding spinors 
,D Wψ ψ  and Mψ  are linked by D WV=ψ ψ , 1

M DW W −=µ µγ γ , M DW=ψ ψ  and 

M WWV=ψ ψ . 
In 8D =  the µ̂γ  in (42) are 16 16× -matrices. This leads to column spinor 

with 16-complex components. The Majorana condition shall reduce number to 
just 16-real components and the Weyl condition shall reduce this number to just 
8-real components, surprisingly the same number of complex components of the 
Dirac spinor in (1 + 3)-dimensions. This observation allows to suggest [9] that 
massless Majorana-Weyl fermion in (4 + 4)-dimensions is equivalent to massive 
fermion in (1 + 3)-dimensions. 

In order to clarify this observation let us write the massless Dirac Equation (1) 
as 

( )ˆ ˆ 0.a
ap p+ =µ

µγ γ ψ                     (49) 

Here, the terms p̂µ
µγ  and ˆa

apγ  refer to (1 + 3)- and (3 + 1)-signature, re-
spectively. Now, note that if ˆa

apγ  may determine a mass 0m  in the form 

0ˆ 0,a
ap m− =γ ψ ψ                      (50) 

then (49) becomes the massive Dirac equation in (1 + 3)-dimensions 

( )0ˆ 0.p m+ =µ
µγ ψ                      (51) 

This means that in the world of (1 + 3)-signature one has massive fermions. 
While according to (50) in the (3 + 1)-world we have tachyons, that is we dis-
cover that the in the mirow (3 + 1)-world we also have massive fermions: but with 
opposite signed mass. However, again since (42) is invariant under the change 

a a→ −γ γ  we learn that (50) describe a system with positive mass which seems 
to be unexpected result for tachyons. A possible mechanism to solve this prob-
lem is to add a new constraint 

0 0 0,m m∗+ =                        (52) 
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where 0 0m >  denotes the mass of a particle in the (1 + 3)-world and 0 0m∗ <  
refers to a system in the (3 + 1)-world. This means that we can apply the trans-
form a a→ −γ γ  in (50) but according to (52) we reintroduce the mass 0m∗  
and we end up with the equation 

0ˆ 0,a
ap m∗+ =γ ψ ψ                         (53) 

with 0m∗  always satisfying the inequality 0 0m∗ < . 
Our goal now it is to see what are the consequences of introducing minimal 

coupling in our system of (4 + 4)-world. In this case the Dirac Equation (49) 
reads as 

( ) ( )( )ˆ ˆ 0.a
a ap eA p e A∗− + − =µ

µ µγ γ ψ                (54) 

Here, we try to associate with the (1 + 3)-world a particle with mass 0 0m >  
and charge 0e <  and with the (3 + 1)-world a particle with mass 0m∗ <  and 
charge 0e∗ > . Of course, just as the that masses of the two dual worlds satisfy 
the relation (52) we assume that the charges are forced to satisfy the relation 

0,e e∗+ =                            (55) 

Note that both (52) and (55) are in agreement with the idea in the Euler cha-
racteristic expressed in (4) with 0 as the self-dual quantity. 

The Equation (54) can be understood as massless  
particle anti-particle self-dual+ =                  (56) 

system, again in agreement with (4) in graph theory. Something even more in-
teresting arises if in the Majorana representation for M

µγ  we impose the Majo-
rana reality condition 

.=ψ ψ                             (57) 

This is because taking the complex conjugate of (54) leads to 

( ) ( )( )ˆ ˆ 0.a
M M a ap eA p e A∗− + − + =µ

µ µγ γ ψ              (58) 

But, in this case M
µγ  and a

Mγ  are pure imaginary and therefore (58) be-
comes 

( ) ( )( )ˆ ˆ 0.a
M M a ap eA p e A∗+ + + =µ

µ µγ γ ψ               (59) 

Thus, if (57) it is satisfied then (59) yields to 

( ) ( )( )ˆ ˆ 0.a
M M a ap eA p e A∗+ + + =µ

µ µγ γ ψ               (60) 

A comparison with (54), we learn that if we assume (55) we still have a con-
sistent theory with 0e ≠  and therefore with 0e∗ ≠ . This must be compare 
with the usual case of the Dirac in (1 + 3)-dimensions in which the condition (57) 
implies that 0e = , meaning that Majorana fermions are uncharged. 

5. Black-Holes in (4 + 4)-Dimensions 

In terms of (4 + 4)-dimensions the flat line element reads as 

( ) ( )
( ) ( )2 2 2d d d d d d d .a b

abx x x x+ −
+ −= + = +   µ ν

µνη η           (61) 
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This is a theory formulated with ( ),M ax x x= µ  coordinates corresponding to 
the double space 2 2n nR R× . In (4 + 4)-dimensions flat background leads to (61). 
The relevant group in this case is ( )4,4O  which is associated with the mani-
fold 8R . It turns out that 8R  can be compactified in such a way that becomes 
the product 7 7S S×  modulo the group 2G . We may expect the transition 

( ),MN MNg x x→ η  in a curved spacetime of (4 + 4)-dimensions. 
It may be helpful to make some remarks about the so-called Kruskal--Szekeres 

transformations of black-holes. In the case of the Schwarzschild solution in (1 + 
3)-dimensions such transformation covers the entire spacetime manifold and are 
well-behaved everywhere outside the central physical singularity. In fact, we may 
consider that the Kruskal--Szekeres transformations provide with maximal ex-
tended Schwarzschild solution, giving an alternative description of the event ho-
rizon of a black-hole. In Ref. [23] it was shown that an extended Kruskal-Szekeres 
transformation implies a (4 + 4)-dimensional spacetime as predicted by the flat 
line element (61). In fact, we recall that a surprising result of the Kruskal-Szekeres 
transformation is that predicts four regions (4-region) instead of only two re-
gions (2-region) as in the case of a Schwarzschild black-hole (interior and exte-
rior regions, which are determined by the event horizon). However as it was 
shown in [23] more general Kruskal-Szekeres transformations describe 8-regions 
(instead of only 4-region), which can be associated with (4 + 4)-dimensions. Let 
us briefly explain this result. Such extended Kruskal-Szekeres transformations 
can be written as 

1 2

1

2

2

2

1 e cosh ,
2

1 e sinh ,
2

s

s

r
r

s s

r
r

s s

r tX
r r

r tT
r r

    
= −    

     

    
= −    

     

ε η

ε η

                (62) 

or in the alternative form 
1 2

1

2

2

2

1 e sinh ,
2

1 e cosh .
2

s

s

r
R

s s

r
R

s s

r tX
r r

r tT
r r

    
= −    

     

    
= −    

     

ε η

ε η

               (63) 

Here, the quantities ε  and η  are parameters that take values in the set 
{ }1± . Notice that since 1= ±ε  and 1= ±η  the transformations (35) and (36) 
describe 8-regions, instead of 4-regions. We find that when one takes 1= ±η  
one must have values of r such that sr r> , while when 1= −η  one must have 
values of r such that sr r< . This give us 4-regions structure; 2-regions with 

1= +η  and 2-regions for 1= −η . Assuming now the two values 1=ε  and 
1= −ε  one ends up with 8-regions. Let us split these 8-regions in the form; 

8-regions→4-regions and 4*-regions. The 4-regions can be understood as the in-
terior and exterior of a black-hole and also the interior and exterior of a 
white-hole, both living in a (1 + 3)-dimensional world, while the 4*-regions can 
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be understood as the interior and exterior of a mirror black-hole and the interior 
and exterior of a mirror white-hole living in (3 + 1)-dimensional world. This 
means that the total 8-regions can be associated with (4 + 4)-world. 

Now a simply generalization of (61) is the curved space 

( ) ( )
( ) ( )2 2 2d d d d d d d ,a b

abg x x g x x+ −
+ −= + = +   µ ν

µν              (64) 

where the metrics ( ) ( )( ) ( )( ) ( )g e e+ + + += α β
µν µ ν αβη  and ( ) ( )( ) ( )( ) ( )c d

ab a b abg e e− − − −= η  are written 
in terms of the tetrads ( )( )e + α

µ  and ( )( )
ae − α , respectively. The simplest possibility 

is to assume that ( ) ( ) ( )g g x+ += λ
µν µν  and ( ) ( ) ( )c

ab abg g x− −=  This means the (4 + 
4)-metric ( )8

AB ABg g x=  can be written in the form 

( )
( ) ( )

( ) ( )
0

, .
0

c
AB c

ab

g x
g x x

g x

+

−

 
 =
 
 

λ
µνλ                (65) 

However, a more general Kaluza-Klein type metric is 

( ) ( ) .
i j j

ij ij iC C
AB AB k

kj j ij i j

g A A g A g g B
x g x

A g g B g B B g
 + +

= =   + + 

ν
µν µ ν µ µν

µ µ ν
ν νµ µν

γ         (66) 

(see Ref. [23] for details). 
From the current experiments one knows that our world is a (1 + 3)-dimensional 

spacetime. But theoretically one may ask why is our world (1 + 3)-dimensional? 
As far as we know until now there is non satisfactory answer to this question. 
But at least we are proposing a consistent theoretical (4 + 4)-dimensional scena-
rio with a more symmetric structure between space and time which eventually 
may give us a satisfactory answer to quantum gravity and dark matter. In fact, a 
clue in this direction comes from the result that massless Majorana-Weyl fer-
mion in (4 + 4)-dimensions [20] can be considered as the electron in (1 + 3)- 
dimensions. 

It is worth mentioning that other physical topics in which (4 + 4)-dimensional 
world is a central concept are oriented matroid theory and qubit theory (see Refs. 
[10]-[17] and references therein). In this context, division algebras and the Hopf 
maps are the mathematical notions that restrict the dimensionality of the space 
to the only values 1, 2, 4 and 8. It turns out that these dimensions are linked to 
the parallelizable spheres 0 1 3, ,S S S  and 7S  which in turn are closely related 
to the real numbers, the complex numbers, the quaternions and the octonions, 
respectively. 

6. Final Remarks: Dark Matter and the (4 + 4)-World? 

One may ask whether the (4 + 4)-world is related to dark matter (see Refs. [1] 
[2] and references therein). As we saw in the previous section (4 + 4)-dimensional 
world is closely related to fermions and black-holes. So, if we are able to connect 
black-holes with dark matter we may provide a solution to our problem. In Ref. 
[8] it was assumed that a black-hole in the center of a spiral galaxy with asso-
ciated mass M and a star with mass m in this galaxy satisfy the heuristic for-
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mulae 

0srm m
r

∗+ =                           (67) 

and 
2

.srr
r

∗ =                             (68) 

Here, r denotes the start distance from the center of the black-hole and it is 
assumed that at the interior of the black-hole, determined by an event horizon at 

sr , there is a tachyon of mass m∗  at distance r∗ . From these assumptions the 
energy relation 

( )
2 22

2 2 22 2 2
s s

s

Gm r Gm rmv GMmE
r r r r

= − − +
−

              (69) 

can be obtained, which leads to the expression for the velocity v  

2 2 2

2 2 .s s

s

Gmr GmrE GMv
m r r r r

= + + −
−

               (70) 

Surprisingly, a plot of v vs r of (70) leads to a graphic which resembles the ro-
tation curve of spiral galaxies (see Ref. [8]). Such rotations curves have been stu-
died from different routes, but perhaps the proposed by Matos and collaborators 
[1] [2], which is referred to as the so-called dark matter scalar field theory, is one 
of the most interesting. What is important for us, is that the idea behind (67) 
and (68) is precisely a (4 + 4)-dimensional world, in the sense that (1 + 3)-world 
is associated with the exterior of a black-hole and (3 + 1)-world is linked to a 
superluminal particle which lives in the interior of such black-hole. Notice that 
(67) can be understood as a generalization of duality relation (52). Moreover, 
observe that r and r∗  are dual in the sense of product operation in (68). 

Finally, it is worth mentioning an alternative Dirac equation for massive 1
2

- 

spin particles which may be interesting for further work. Let us first clarify that 
two spinors 1ψ  an 2ψ  in (4 + 4)-dimensions lead to 32 complex components. 
Thus, a Majorana condition must reduce to 32 real components. This is still too 
much to be associated with the let say with an electron. But we still have the 
freedom to impose in 1ψ  and 2ψ  the Weyl conditions which will reduce to 
only 16 real components which may be identified with 8 real components of the 
(1 + 3)-world and 8 real components of the (3 + 1)-world. Let us further clarify 
these comments. 

Let us propose the two equations 

( ) ( )( ) 1ˆ ˆ 0a
a ap eA p e A∗− + − =µ

µ µγ γ ψ              (71) 

and 

( ) ( )( ) 2ˆ ˆ 0.a
a ap eA p e A∗+ + + =µ

µ µγ γ ψ              (72) 

Of course, following similar procedure as in section 3, we can prove that (71) 
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and (72) are consistent with the condition (55) and therefore with 0e ≠ . Now 
assume that 

( ) 1 0 2ˆ 0a
a ap e A m∗ ∗− + =γ ψ ψ                   (73) 

and 

( ) 2 0 1ˆ 0.a
a ap e A m∗ ∗+ + =γ ψ ψ                   (74) 

Thus, from (73) and (71) we find 

( ) 1 0 2ˆ 0p eA m− + =µ
µ µγ ψ ψ                   (75) 

and from (74) and (72) we get 

( ) 2 0 1ˆ 0,p eA m+ + =µ
µ µγ ψ ψ                   (76) 

where we require that the condition (52) is satisfied. If we now impose the Ma-
jorana conditions in 1ψ  and 2ψ , namely 

1 1C =ψ ψ                           (77) 

and 

2 2 ,C =ψ ψ                          (78) 

where C is the charge conjugation matrix such that 
1 .C C− = −γ γ                         (79) 

In the Majorana representation in which C I=  and, M
µγ  and a

Mγ  are pure 
imaginary, we have now the reality conditions 

1 1=ψ ψ                           (80) 

and 

2 2 .=ψ ψ                          (81) 

But, this procedure applied to (72) and (75) implies that 0e = . It turns out 
that in our case the constraints (80) and (81) no necessarily must be imposed in 

1ψ  and 2ψ . Let us clarify this comment recalling that usually the Majorana 
condition is necessary in order to reduce the number of components of 1ψ  an 

2ψ . As we mentioned before, the 32 complex components of 1ψ  and 2ψ  are 
reduced by imposing the Majorana and Weyl conditions reduce to only 16 real 
components which may be identified with 8 real components of the (1 + 
3)-world and 8 real components of the (3 + 1)-world. But in the usual case, we 
get a system with 0e = . However in our formalism things are different because 
in addition to the Elko Equations (75) and (76) we have the Elko Equations (73) 
and (74) of the dual-world. This suggested that non-longer its necessary to im-
pose the Majorana conditions (80) and (81) in order to reduce the degrees of 
freedom of 1ψ  and 2ψ . This means that without imposing (80) and (81) we 
may still have a system with 4-complex components in the (1 + 3)-world and 
4-complex components in the (3 + 1)-world, with particles with 0 0m ≠  and 

0e ≠ , which in may be identified with the electron in (1 + 3)-world and dual 
electron in the (3 + 1)-world. 
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Of course, open issues that emerge from our proposal of (4 + 4)-world deals 
with possible causality violations. In the usual case of (1 + 3)-world, closed 
time-like curves violate in principle causality. However, although in a (4 + 4)- 
world can be a proliferation of four closed time-like curves this must be carefully 
analyzed since according to the view of this work the (3 + 1)-world cannot be 
ignored and therefore closed time-like curves in (1 + 3)-world must be dually 
compensated by corresponding time-like curves in (3 + 1)-world. We leave for 
further work a more detailed analysis of this interesting subject. 
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