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Abstract 
This paper mainly discusses the following equation:  
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 where the potential func-

tion 3:V →  , ( )0,3α ∈ , 0λ >  is a parameter and Iα  is the Riesz 

potential. We study a class of Schrödinger-Poisson system with convolution 
term for upper critical exponent. By using some new tricks and Nehair- 
Pohožave manifold which is presented to overcome the difficulties due to the 
presence of upper critical exponential convolution term, we prove that the 
above problem admits a ground state solution. 
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1. Introduction 

Recently, the following Schrödinger-Poisson system has been studied widely by 
researchers  
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              (1.1) 

where 0λ > , 3N ≥ , the external potential function ( )3 ,V ∈    and the 
nonlinearity ( )3 ,f ∈ ×    . (1.1) is also called Schrödinger-Maxwell system, 
which appears in an amusing physical background. In fact, based on a classical 
physical model, coupled nonlinear Schrödinger-Poisson equation can be used to 
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describe the interaction between charge particles and electromagnetic field. For 
more physical contexts of the Schrödinger-Poisson system, we refer the readers 
to the papers [1] [2] and the references therein.  

There are lots of extended research on (1.1) in 3 . When ( ) 0V x V≡ >  is a 
constant and 3N = , Khoutir [3] proved that (1.1) possesses a least energy 
sign-changing solution and a ground state solution by variational methods un-
der some relaxed assumptions on f. When 1λ = , (1.1) reduces to the following 
class of Schrödinger-Possion system  
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when ( ) 1V x = , by introducing some new variational and analytic techniques, 
Chen, Shi and Tang [4] showed that (1.2) has a nontrivial solution of mountain 
pass type and a ground state solution of Neheri-Pohožaev type in 2 . By varia-
tional methods and Miranda’s theorem, Alves et al. [5] proved that (1.2) admits 
a least energy sign-changing solution in 3  when f satisfies some special assump-
tions. Similarly, combining constraint variational method and quantitative de-
formation lemma, Shuai and Wang [6] proved that (1.1) possesses a sign-changing 
solution uλ . Moreover, they showed that any sign-changing solution of (1.1) 
has energy exceeding more than twice the least energy. There are a lot of works 
about (1.2) and we refer to the literature [6] [7] and references therein.  

Without the internal potential uφ , (1.1) reduces to the following Schrödinger 
equation:  
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Using Berestycki-Lions conditions on f, Chen and Tang [8] studied generalized 
nonlinear Schrödinger equation with variable potential. By introducing skillful 
ideas and relaxed assumptions on ( )V x , they obtain a ground state solution of 
Pohožaev type and a least energy solution. Besides, there are many results of 
sign-changing ground state solutions of (1.3). We refer to [9]-[15] and references 
therein.  

Let 1λ =  and ( ) ( )( ) ( )f u I G u g uα= ∗ , the Schrödinger-Poisson system (1.1) 
becomes the following equation with convolution nonlinearity.  
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       (1.4) 

where ( )0,3α ∈ , ( ),g ∈    and ( ) ( )
0

d
t

G u g s s= ∫ . Under mild assump-
tions on nonlinear perturbation g and V, Chen and Tang [11] proved that (1.4) 
has a ground state solution in two cases by using new inequalities. In their work, 
when 0 2α< < , they established the Nehari-Pohožaev manifold and proved 
that (1.4) has a solution. Next, they defined the Nehari manifold to obtain the 
existence of the solution when 2 3α≤ < . For more details about assumptions 
and techniques of (1.4), we refer to [6] [11] [16] [17] [18].  
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In this paper, we mainly focus on the following equations:  
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where V satisfies the following assumptions: 
(V1) [ )( )3 , 0,V ∈ ∞  , ( ) ( ): lim xV x V V x∞ →∞≤ =  for all 3x∈  and  

0V∞ > ; 
(V2) ( )3V ∈  , the set ( ){ }3 :x V x x ε∈ ∇ ⋅ ≥  has finite Lebesgue measure 

for every 0ε > , and the function ( ) ( ) ( )2t t V tx V tx tx−∇ ⋅  �  is increasing 
on ( )0,∞  for every 3x∈ .  

In three-dimensional space, the Riesz potential Iα  is defined as a function of 
3 →  :  
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where ( )Γ ⋅  is the Gamma function. It is widely known that for any ( )1 3u H∈  , 
there exists a unique ( )1,2 3

uφ ∈   such that 2uφ−∆ =  by using the Lax- 
Milgram theorem, moreover,  
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Inserting (1.6) into (1.5), we get the following equation  

 ( ) ( ) ( )3 1 .uu V x u x u I u u uα α
αφ + +−∆ + + = ∗           (1.7) 

The following inequality, which is a special case of Hardy-Littlewood-Sobolev 
inequality, plays a significant role in resolving the difficulty of relatively compact. 
There exists sharp constant S, independent of u, such that  
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whose external function is  
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 is invariant under dilations ( )
1
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1 uλ λ  [19]. Next, we de-

fine the energy functional:  
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Then for any ( )1 3,u v H∈  ,  
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To state our result, we define the Nehari-Pohožaev manifold as follows:  
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Our main result is as follows.  
Theorem 1.1. Assume 0 3α< < , V satisfies (V1), (V2). Then problem (1.5) 

has a ground state solution ( )1 3u H∈   such that  
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Notations.  
● ( )1 3H   denotes the usual Sobolev space equipped with the inner product 

and norm  

( ) ( ) ( ) ( )3
1 31 2, d , , , , .u v u v uv x u u u u v H= ∇ ⋅∇ + = ∀ ∈∫� �  

● ( )( )3 1sL s< < ∞�  denotes the Lebesgue space with the norm  
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● For any ( )1 3u H∈   and 0r > , ( ) { }: :rB x y y x r= ∈ − <� .  
● For any ( ) { }1 3 \ 0u H∈  , ( ) ( ):tu x u tx=  for 0t > .  
● 1 2 3, , ,C C C �  denote positive constants possibly different in different places.  

2. Preliminaries 

As usual, we assume 0 3α< < . By (1.11) and (1.13), we have  
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First, we give some key inequalities.  

( ) ( ) ( ) ( ) ( ) ( )3 3, : 3 1 0, , 0,f x t V x tV x t t V x V x x x t= − − − −∇ ⋅ ≥ ∀ ∈ >       � (2.2) 

 ( ) ( ) [ ) ( )3 9 3: 2 3 0, 0,1 1, .g t t t tαα α += + − + + > ∀ ∈ ∪ +∞       (2.3) 

Inspired by Tang and Chen [11], we establish a key functional inequality as 
follows. 
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Lemma 2.1. Assunme that (V1) and (V2) hold. Then  
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Thus, by (1.10), (1.11), (2.2), (2.3) and (2.5), one has  
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The proof of Lemma 2.1 is complete.                                  □ 
Assume that 0t → , from (2.4), we have  
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To solve the trouble caused by the lack of compactness of Sobolev space em-
bedding in 3 , we define the following energy functional when ( )V x V∞≡   
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According to (1.12) and (2.1), we define  

 ( ) { } ( ){ }1 3: \ 0 : 0 ,u H J u∞ ∞= ∈ =�               (2.9) 

and  
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From Lemma 2.1, we can deduce the following corollaries. 
Corollary 2.2. Assume that (V1) holds. Then  
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( ) ( ) ( ) ( ) ( ) ( )
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Corollary 2.3. Assume that (V1) and (V2) hold. Then for u∈   
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0
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Lemma 2.4. ([11]: Lemma 2.7) Assume that (V1) and (V2) hold. Then there 
exist 1 2, 0ρ ρ >  such that  
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uu tt u ∈ .  
Proof. Let ( ) { }1 3 \ 0u H∈   be fixed and define a function ( ) ( )2: tt E t uς =  
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By (V1), one has ( )0 0ς =  and ( ) 0tς >  for 0t >  small and ( ) 0tς <  for t 
large. Therefore, ( )tς  has a critical point which corresponds to its maximum, 
namely, there is a 0 0ut t= >  so that ( )0 0tς ′ =  and 

0

2
0 tt u ∈ . Then, we claim 

that ut  is unique. Similar to the proof of ([20]: Lemma 3.3), for any  

( ) { }1 3 \ 0u H∈   which is given, if there are two positive constants 1 2t t≠  
such that 

1 2
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we have  
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2 1

22 1 22 2
2 1 2

,
.

6t t

t f x t t
E t u E t u u≥ +              (2.17) 

(2.2), (2.16) and (2.17) imply 1 2t t= . Hence, 0ut >  is unique for any  

( ) { }1 3 \ 0u H∈  .                                                 □ 
Corollary 2.6. For any ( ) { }1 3 \ 0u H∈  , there exists a unique 0ut >  such 

that 2
uu tt u ∞∈ .  

Combing Corollary 2.3 and Lemma 2.5, we get = ∅  and the following 
minimax characterization.  

Lemma 2.7. ([11]: Lemma 2.10) Assume (V1) and (V2) hold. Then  
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Lemma 2.8. Assume that (V1), (V2) hold. Then 
(i) There exists 0δ >  such that u δ≥ , u∀ ∈ ; 
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Proof. (i) Since ( ) 0J u = , u∀ ∈ , by (1.8), (2.1) and Sobolev embedding 
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which implies  
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Cases (1) and (2) show that (ii) holds.                                 □ 
Lemma 2.9. Assume that (V1) and (V2) hold. Then : infm m∞

∞ ∞= Φ ≥


.  
Proof. In view of Lemma 2.1 and Corollary 2.3, we have ≠ ∅ . By contra-

diction, we assume that m m∞> . Let : m mρ ∞= − . Then there exists uε
∞  such 

that  

 ( )and .
2

u m E uρ ρ
ρ∞ ∞ ∞ ∞ ∞∈ + >                 (2.24) 

In view of Lemma 2.5, there exists 0tρ >  such that ( )t
u

ρ
ρ ∈ . Hence, join-

ing with (V1), (V2), (1.10), (2.5), (2.11) and (2.24), we have  

 ( ) ( ) ( ) .
2 t t

m E u E u E u m
ρ ρ

ρ ρ ρ
ρ∞ ∞ ∞ ∞ ∞ ∞   + > ≥ ≥ ≥   

   
        (2.25) 

This is a contradiction. Therefore, the conclusion of Lemma 2.11 is true.     □ 
Lemmma 2.10. ([11]: Lemma 2.12) Assume that (V1) and (V2) hold. If  

nu u  in ( )1 3H  , then along a subsequence,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 , 1n n n nE u E u E u u o J u J u J u u o= + − + = + − +  (2.26) 

 ( ) ( ) ( ) ( )1 ,n nE u E u E u u o′ ′ ′= + − +               (2.27) 

 ( ) ( ) ( ) ( ), , , 1 .n n n nE u u E u u E u u u u o′ ′ ′= + − − +       (2.28) 

Lemma 2.11. Assume that (V1), (V2) hold. Then m is achieved.  
Proof. In view of Lemmas 2.5 and 2.8, we have ≠ ∅  and 0m > . Let 

{ }nu ⊂  be such that ( )nE u m→ . Then it follows from (1.10), (2.1) and (2.27) 
that  

 ( ) ( ) ( ) 21
2

1 .
3 3n n n nm E u E u J u uρ

= = − ≥            (2.29) 

It indicates that { }2nu  is bounded. Next, we will verify that { }2u∇  is also 
bounded. From (V1), (1.10), (2.1), (2.13), (2.29) and the Soblev embbeding in-
equality, we derive  

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )
( ) ( )

( )

3

3

3

2 2
2

2

3 3

2 22
2

1
3 3

2 1 d
2 3 2

1 d
6 3

2
d

4 3

6 22 .
2 3 6(3 )

n n n

n n

n

n n

E u E u J u

u V x u x

V x V x x u x

I u u x

u u

α α
α

α
α
α

α

α λ
α

ρ αα
α α

+ +

= −
+

+
= ∇ +

+

+ −∇ ⋅  +

+
+ ∗

+

− −+
≥ +

+ +

∫

∫

∫

�

�

�

        (2.30) 

Together with (2.29), (2.30) implies that { }nu  is bounded in ( )1 3H  . Passing 
to a subsequence, we can get nu u  in ( )1 3H  . Then nu u→  in ( )3

loc
sL   

for 2 6s≤ <  and nu u→  a.e. in 3 . For u , there are two cases: (1) 0u =  
and (2) 0u ≠ .  
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Case (1). 0u = , i.e. 0nu   in ( )1 3H  . Then 0nu →  in ( )3
loc
sL   for 

*2 2s≤ <  and 0nu →  a.e. in 3 . Using (V1) and (V2), it is easy to prove that  

 ( ) ( )
3 3

2 2lim d lim d 0.n nn n
V V x u x V x xu x∞→∞ →∞

− = ∇ ⋅ =  ∫ ∫
 

         (2.31) 

From (1.10), (2.1), (2.8), (2.10) and (2.31), one has  

 ( ) ( ), 0.n nu m J uτ ∞ ∞→ →                  (2.32) 

By (1.8), (2.1) and Lemma 2.8 (i), we have  

 

{ } ( ) ( )

( )
( )

3 3

3

22 2 2
2

3 3

2 3
3

min 3, 3 1 3d d
2 2 2 4

3 d
2

.

n n u n

n n

n

u V x V x x u x u x

I u u x

C u

α α
α

α

ρ λδ φ

+ +

+

≤ ∇ + −∇ ⋅ +  

= ∗

≤

∫ ∫

∫

 



 (2.33) 

According to (2.33) and Lion’s concentration compactness priciple ([21]: Lem-
ma 1.21), we can prove that there exist 0δ >  and 3

ny ∈  such that  

( )1

2 d
n

nB y
u x δ>∫ . Let ( ) ( )ˆn n nu x u x y= + . Then we have ˆn nu u=  and  

 ( ) ( ) ( ) ( )1 0
ˆ ˆ ˆ1 , , d .n n nB

J u o E u m u x δ∞ ∞= → >∫           (2.34) 

Hence, there exists ( ) { }1 3ˆ \ 0u H∈   such that, passing to a subsequence,  

 

( )
( ) [ )

1 3

3
loc

3

ˆ ˆ, in ;

ˆ ˆ, in , 1,6 ;

ˆ ˆ, a.e. on .

n

s
n

n

u u H

u u L s

u u



 → ∀ ∈


→









               (2.35) 

Let ˆ ˆn nw u u= − . Then (2.35) and Lemma 2.10 yield  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ1 , 1 .n n nE u E u E w o J u J u J w o∞ ∞ ∞ ∞ ∞ ∞= + + = + +  (2.36) 

We set  

( ) ( ) ( )
3

2 1 1
3 3

2

1 1 1 d
3 3 6 6 2

VE u E u J u u I u u x
α α

αα
+ +∞ ∞ ∞ ∞   = − = + − ∗   +   ∫

�

(2.37) 

From (2.8), (2.10), (2.24), (2.36) and (2.37), one has  

 ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ1 , 1 .n nE w m E u o J w J u o∞ ∞ ∞ ∞= − + = − +     (2.38) 

If there exists a subsequence { }inw  of { }nw  such that 0
inw = , then we have  

 ( ) ( )ˆ ˆ, 0.E u m J u∞ ∞= =                   (2.39) 

Next, we consider that 0nw ≠ . We claim that ( )ˆ 0J u∞ ≤ . By contradiction, 
when ( )ˆ 0J u∞ > , that is (2.38) implies ( ) 0nJ w∞ <  for large n. In view of Co-
rollary 2.6, there exists 0nt >  such that ( )2

nn n t
t w ∞∈  for large n. From (2.8), 

(2.10), (2.11), (2.38) and Lemma 2.9, one has  

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )23
22
2

1ˆ 1
3

1 2
3 6n

n n n

n nn
n n n nt

m E u o E w E w J w

t t Vt
E t w J w w

∞ ∞ ∞ ∞

∞∞ ∞

− + = = −

− +
≥ − +
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( )
3

.
3
n

n
t

m J w m∞≥ − ≥                       (2.40) 

Since ( )ˆ 0u∞Φ > , the above result is impossible, this shows that ( )ˆ 0J u∞ ≤ . In 
view of Lemma 2.1, there exists 0t∞ >  such that 2 ˆtt u

∞

∞
∞ ∈ . From (2.8), 

(2.10), (2.11), (2.32), (2.34), (2.37) Fatou’s lemma and Lemma 2.9, one has  

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
3

23
2 2

23
2

2

1ˆ ˆlim
3

1ˆ ˆ ˆ ˆlim
3

1 2
ˆ ˆ ˆ d

3 6

1 2
ˆ ˆ ,

3 6

n nn

nn

t

m E u J u

E u E u E u J u

t ttE t u J u V u x

t t Vtm J u u m

∞

∞ ∞

→∞

∞ ∞

→∞

∞ ∞∞ ∞
∞ ∞

∞ ∞ ∞∞∞

 = −  

= ≥ = −

− +
≥ − +

− +
≥ − + ≥

∫
�

       (2.41) 

which implies (2.39) holds also. In view of Lemma 2.3, there exists ˆ 0t >  such 
that 2

ˆˆ ˆtt u ∈ , moreover, it follows from (V1), (1.10), (2.8), (2.39) and Corol-
lary 2.3 that  

 ( ) ( ) ( )2 2
ˆ ˆˆ ˆˆ ˆ ˆ .t tm E t u E t u E u m∞ ∞≤ ≤ ≤ =               (2.42) 

Case (ii). 0u ≠ . In this case, the proof is similar to (2.39), by using E and J 
instead of E∞  and J ∞ , we can deduce that ( )E u m=  and ( ) 0J u = .  

Similar to the [22] and [23], we can obtain the following conclusion.      □ 
Lemma 2.12. Assume that (V1), (V2) hold. If u ∈  and ( )E u m= , then 

u  is a critical point of E.  
Proof. From (2.1) and Lemma 2.5, there exist ( )1 0,1T ∈  and ( )2 1,T ∈ ∞  such 

that  

 ( ) ( )1 2

2 2
1 20, 0.T TE T u E T u> <� �                  (2.43) 

From (2.2) and (2.4), we have  

 ( ) ( ) ( ) ( ) ( )
3

2 21 , d , 0,1 1, .
6tE t u E u f x t u x m t≤ − < ∀ ∈ ∪ ∞∫� � �



   (2.44) 

and (2.44) implies  

 ( ) ( ){ }1 2

2 2
1 1: max , .T TE E T u E T u m= <� �              (2.45) 

The next proof steps are routine. Similar to [22], we can verify Lemma 2.12 by 
using (2.43) and (2.44) instead of ([22]: (2.34) and (2.35)).                □ 

Proof of Theorem 1.1. In view of Lemmas 2.9 and 2.10, there exists u ∈  
such that  

 ( )
( ) { }

( ) ( )
1 3

2

0\ 0
inf max , 0.ttu H

E u m E t u E u
>∈

′= = =
�

        (2.46) 

This shows that u  is a ground state solution of (1.4).                   □ 

3. Conclusion 

Although one can establish a (PS) sequence in a nonstandard way, it is not easy 
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to prove its boundness because of the convolution term ( )3 1I u u uα α
α

+ +∗  and 
lack of Ambrosetti-Rabinowitz condition of Choquard type. To overcome this 
difficulty, we introduce an auxiliary function. Firstly, we proved that there exists 
a unique 0ut >  such that 2

uu tt u ∈ . What’s more, we find out the minima of 
the energy functional. Next, we get that m is achieved, that is the energy value of 
the minima of the energy functional is achieved by Mountain Pass Theorem. Fi-
nally, we proved that the limit of the (PS) sequence, that is u , is the critical 
point of E. It is obvious that for the Schrödinger-Poisson system with upper 
critical exponential convolution term, its ground state solution also exists. We 
hope the result can be widely used in Schrödinger-Poisson systems.  
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