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Abstract 
The main aim of the article is to investigate the irrational and transcendental 
properties of certain real numbers by means of the factorial series and the 
factorial number system. The difference between the factorial series and the 
factorial system is that the factorial series does not set an upper bound at a 
given place after the radix point, while in the factorial system (i – 1) is the 
maximal possible value for ri after the radix point. I give an extended defini-
tion of periodic numbers, and show the relationship between periodic and ir-
rational numbers. I prove the transcendence of e by means of the factorial se-
ries and the factorial number system. 
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1. Introduction 

Factorials have been known for thousands of years [1] [2]. They have been used 
in many fields of mathematics, including permutations, binomial coefficients, 
Bernoulli and Stirling numbers, central factorials [3], calculus, number theory, 
etc. Most literature on factorials focuses on integers rather than the non-integer 
part of the number. 

The factorial number system [4] [5], though also known for centuries, is much 
less used in the study of irrational numbers than another tool, the theory of con-
tinued fractions [6]. Wikipedia deals with the factorial number system in 8 lan-
guages, while continued fractions are described in 42 languages. The reason for 
this discrepancy may be the great achievements of using continuous fractions by 
Bombelli, Wallis, Huygens, and especially by Lambert’s proof of the irrationality 
of π [7]. 
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When I started working on the factorial number system I felt that it was an 
unbiased system that could not be tied to a single, predefined number like binary 
or decimal number systems. This property was also present in continued frac-
tions, but to me, the factorial system was more familiar, easier to work with, 
closer to known fixed-base systems than continued fractions. For me, using the 
factorial system was easier “to see through infinity” than other systems.  

In this article, I focus on two main themes. One is the theory of periodic num-
bers in a new, extended definition, their properties and connections with ration-
al and irrational numbers. The other topic concerns the proof of transcendence 
of e based on the factorial series and the factorial number system. In both cases, I 
followed simple, almost elementary, methods and techniques, including proving 
the transcendence of e. 

2. Basic Features of the Factorial Number System 
2.1. Defining the Distinction between the Factorial Series and the  

Factorial Number System 

In the present paper a real number R is given in some form of a convergent factorial  
series  

0 1 20

1 1 1 1 1
! 0! 1! 2! !i iiR r r r r r

i i
∞

=

 = = + + + + + 
 

∑ � �   

( ir  is a non-negative integer 0
ir Z +∈ ). 

Specifically, where indicated, I give the notation in the factorial number sys-
tem. It is a special case of the factorial series:  

0 1 20

1 1 1 1 1
! 0! 1! 2! !i iiR a a a a a

i i
∞

=

 = = + + + + + 
 

∑ � �  

where 0a  is any non-negative integer, 1a  is equal to 0 or 1, and ( )0 1ia i≤ ≤ −  
for 2i ≥ . The fractional part in this notation corresponds to the usual notation 
of a real number in the factorial number system. The reason for allowing any 
non-negative integer for 0a  is that I focus on the fractional part of the number 
in the present paper. 

There are infinitely many ways to expand R as the limit of a factorial series. In 
contrast, in the factorial number system there is only a single expansion when R 
is irrational and two options when R is rational.  

2.2. Examples of Expressing Rational and Irrational Numbers  

1) Rational  
(in the factorial number system, ( )0 1ia i≤ ≤ −  for 1i ≥ :)  

1 1 1 1 10 1 0 0 0
0! 1! 2! 3!

0 1.0 0 0

0 0.1 2

4!
1 1 1 1 10 0 1 2 3
0! 1! 2! 3! 4!

3

=

=

+ + + + +

+ + + + +=�

��

�
 

(in the factorial series, but not in the factorial number system:) 
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( ) ( ) ( )

( )( ) ( )( )( )( )( )( )

1 1 1 1 1 1 10 0 0 2 1 0 2 4 3 0 4 6 5
0! 1! 2! 3! 4! 5! 6!

0 0 . 1 0 11 0 29 0

= + + × + + + × + + + × + +

= +

�

�
 

2) Irrational  
(in the factorial number system, ( )0 1ia i≤ ≤ −  for 1i ≥ ) 

( )( ) ( )( )( )1 1 1 1 11 1 1 1 1
0! 1! 2! 3! 4!

1 1 . 1 1 1e + + + + += =� �  

(in the factorial series, but not in the factorial number system): 

( ) ( ) ( ) ( )

( )( ) ( )( )( )( )( )( )

( ) ( ) ( ) ( )

( )( ) ( )( )( )( )( )( )( )

1 1 1 1 1 1 10 1 1 0 3 1 0 5 1 0
0! 1! 2! 3! 4! 5! 6!

1 1 1 1 1 1 1 10 0 1 2 2 1 0 0 4 5 5 1 0 0
0! 1! 2! 3! 4!

0 2 . 0 4 0 6 0 8

0 0 . 5 0 0 26 0 0
5! 6! 7

65
!

= + + + + + + + + + +

+ + ⋅ + + + + + ⋅ + += + + +…

=

=

�

�

�

 

2.3. Notation of Rational and Irrational Numbers in the Factorial  
Number System 

In the factorial number system all rational numbers have a terminating expansion 
with a last non-zero digit. The number of digits after the radix point to the last 
non-zero digit is less than or equal to the denominator of the given rational number, 
because there exists a factorial for any non-negative integer, and the denominator 
divides into its own factorial even if it does not divide into any smaller factorial [5]. 

There is also a non-terminating equivalent for every rational number which 
can be created by reducing the final non-zero term by 1, then filling in the re-
maining infinite number of terms with the highest value possible for that posi-
tion after the radix point. 

0 1.0 0 0 0 0 0 ∙∙∙ = 0 0. 1 2 3 4 5 6 7 8 9 (10) (11) ∙∙∙ 

0 0.0 0 2 0 0 0 ∙∙∙ = 0 0. 0 0 1 4 5 6 7 8 9 (10) (11) ∙∙∙ 

Just as with fixed-base systems, this ambiguity belongs to rational numbers only, 
while the fractional part of an irrational number admits one single expansion.  

2.4. Number Pictures 

For visual representation of the fractional part of a real number (deliberately 
neglecting the integer part here), it is of advantage to use number pictures based 
on the lattice points of the upper right octant of the coordinate system. Places 
after the radix point are displayed on the x-axis, and the corresponding digits on 
the y-axis. Lattice points on the y = x line represent the maximal value allowed at 
the given place (Figure 1). 

Example: 1/2e = 0 0. 0 1 0 2 0 3 0 4 ∙∙∙ (Figure 2): 

2.5. Arithmetic Operations in the Factorial Number System 

Addition and subtraction can be done on the usual pattern of fixed-base sys-
tems. The same applies for multiplication of a real number by a whole number.  
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Figure 1. Lattice points of the number picture between the x-axis and the y = x line. 

 

 

Figure 2. Number picture of 1
2e

 = 0 0. 0 1 0 2 0 3 0 4 ∙∙∙ 

 
Multiplication of two real numbers can be performed by using binomial 

coefficients and the diagonal method with sums along the southwest to northeast 
diagonals. This method works for any form of the two numbers in the factorial 
series, not only in the factorial number system. However, multiplying two real 
numbers given in the factorial number system does not necessarily yield the 
product in the proper form of the factorial number system, but only in the fac-
torial series. Some digits may overflow the maximal value permitted at a given 
place, and the result has to be converted into the factorial number system. 

Example: 00.1∙00.1 (Table 1) 
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Table 1. Multiplication in the factorial system. 

 0(1/0!) 0 (1/1!) 1 (1/2!) 0 (1/3!) 0 (1/4!) 

0 (1/0!) 
0

0
0
 

⋅ 
 

 
1

0
0
 

⋅ 
 

 
2

0
0
 

⋅ 
 

 
3

0
0
 

⋅ 
 

 
4

0
0
 

⋅ 
 

 

0 (1/1!) 
1

0
1
 

⋅ 
 

 
2

0
1
 

⋅ 
 

 
3

0
1
 

⋅ 
 

 
4

0
1
 

⋅ 
 

 
5

0
1
 

⋅ 
 

 

1 (1/2!) 
2

0
2
 

⋅ 
 

 
3

0
2
 

⋅ 
 

 
4

1
2
 

⋅ 
 

 
5

0
2
 

⋅ 
 

 
6

0
2
 

⋅ 
 

 

0 (1/3!) 
3

0
3
 

⋅ 
 

 
4

0
3
 

⋅ 
 

 
5

0
3
 

⋅ 
 

 
6

0
3
 

⋅ 
 

 
7

0
3
 

⋅ 
 

 

0 (1/4!) 
4

0
4
 

⋅ 
 

 
5

0
4
 

⋅ 
 

 
6

0
4
 

⋅ 
 

 
7

0
4
 

⋅ 
 

 
8

0
4
 

⋅ 
 

 

 

0 1 11 10 0 0
0 1 00! 1!

2 2 2 10 0 0
2 1 0 2!

3 3 3 3 10 0 0 0
3 2 1 0 3

0 0.1

!

4 4 4 4
0 0 1

4 2 1

0 1

3

0.
         

= ⋅ + ⋅ + ⋅         
          

      
+ ⋅ + ⋅ + ⋅      

      

        
+ ⋅ + ⋅ + ⋅ + ⋅        

        

      
+ ⋅ + ⋅ + ⋅ +     

    

⋅



( )( ) ( )( )( )( )( )0 0 .

4 10 0
0

0 6 0 0

4!

0

   
⋅ + ⋅    

    

= �

 

The result does not fit into the factorial number system, because it overflows  

at 
4 11 6
2 4!
 

⋅ = ⋅ 
 

, where the maximal value allowed is 3. So we have to convert it 

further into the factorial number system:  

1 1 1 1 10 0 0 0 6
0! 1! 2! 3! 4!
1 1 1 1 10 0 0 4 2
0! 1! 2! 4! 4!
1 1 1 1 10 0 0 1 2
0! 1!

0 0.1 0 0.1

0 0.0 
2! 3 !

2
!

1 
4

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

=

⋅

⋅ +

 

2.6. Division Algorithm of a Real Number by a Whole Number 

- In fixed-base systems: The base (e.g. 10, 10, 10, ∙∙∙ in the decimal system) is 
multiplied by the respective remainder.  

- In the factorial number system: The algorithm is based on the series 1, 1, 2, 3, 
4, 5, ∙∙∙ to be multiplied by the respective remainder [8].  

Example (Table 2):  
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Table 2. Division of a rational number in the factorial number system. 

1:5 = 0 1. 0 0 0… : 5 = 
0 1. 0 0 0… : 5 = 0 0. 0 1 0 4 0 0 0 0… 
(0 · 1) : 5 = 0·5 + 0 
(0 · 1 + 1) : 5 = 0·5 + 1 
(1 · 2 + 0) : 5 = 0·5 + 2 
(2 · 3 + 0) : 5 = 1·5 + 1 
(1 · 4 + 0) : 5 = 0 ·5+ 4 
(4 · 5 + 0) : 5 = 4·5 + 0 
(0 · 6 + 0) : 5 = 0·5 + 0 
(0 · 7 + 0) : 5 = 0·5 + 0 
(0 · 8 + 0) : 5 = 0·5 + 0 
… 

1:5 = 0 0. 1 2 3 4 5… : 5 = 
0 0. 1 2 3 4 5… : 5 = 0 0. 0 1 0 3 5 6 7… 
(0 · 1) : 5 = 0·5 + 0 
(0 · 1 + 0) : 5 = 0·5 + 0 
(0 · 2 + 1) : 5 = 0·5 + 1 
(1 · 3 + 2) : 5 = 1·5 + 0 
(0 · 4 + 3) : 5 = 0·5 + 3 
(3 · 5 + 4) : 5 = 3·5 + 4 
(4 · 6 + 5) : 5 = 5·5 + 4 
(4 · 7 + 6) : 5 = 6·5 + 4 
(4 · 8 + 7) : 5 = 7·5 + 4 
… 

3. Periodic Numbers 

1) In a fixed-base system, a periodic number contains a finite series of digits 
which is repeated infinitely. The same definition applies to continued fractions 
[6]. The following definition extends the concept of periodicity in the factorial 
number system. It is not a series of digits, but the differences between the cor-
responding digits of two consecutive series that are fixed.  

Example: e
3

 (Table 3) 

2) Definition: A real number ( )( )( )( )0 1 2 3A a a a a= �  expanded in the fac-
torial number system is periodic if there exists an index r, a natural number N, 
and non-negative integers 1 2, , ,r r r Nb b b+ + +�  so that  

1 1 1 1 1 2 2 2 21 ; 1 ; ; 1 ;r N r r N r r N r N Na a b a a b a a b+ + + + + + + += + = + = +�  

2 1 1 1 2 2 2 2 32 ; 2 ; ; 2 ;r N r r N r r N r N Na a b a a b a a b+ + + + + + + += + = + = +�  

�  

1 1 1 2 2 2 2 3; ; ; ;r kN r r N r r N r N Na a kb a a kb a a kb+ + + + + + + += + = + = +�  

�   

The series of digits ( )( )( )( ) ( )0 1 2 3 ra a a a a�  represents the introductory se-
ries;  

( )( ) ( )1 2r a r Na b a+ + +�  the basis series; 
( )( ) ( )1 2r r r Nb b b+ + +�  the difference series of digits. 
3) Examples: 
0 0. 1 0 0 0∙∙∙: Introductory series: 0 0. 1; basis series: 0; difference series: 0.  
0 0. 1 0 0 0∙∙∙ = 0 0. 0 2 3 4∙∙∙: Introductory series: 0 0. 0; basis series: 2; differ-

ence series: 1.  
(e − 2) = 0 0. 1 1 1∙∙∙: Introductory series: 0 0.; basis series: 1; difference series: 

0 (Figure 3). 
e
3

 = 0 0. 1 2 1 3 4 2 5 6 3∙∙∙ Introductory series: none; basis series: 0 0.1; dif-

ference series: 2 1 2 (Figure 4).  
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Table 3. e
3

 = 0 0. 1 | 2 1 3 | 4 2 5 | 6 3 7 | ∙∙∙ (difference series 2 1 2). 

0 0. 1 = 0 0. 1 

2 1 3 = (0 + 2) (0 + 1) (1 + 2) 

4 2 5 = (2 + 2) (1 + 1) (3 + 2) 

6 3 7… = (4 + 2) (2 + 1) (5 + 2)… 

 

 
Figure 3. Number picture of (e – 2) = 0 0. 1 1 1∙∙∙. 

 

 

Figure 4. Number picture of e
3

 = 0 0. 1 2 1 3 4 2 5 6 3 7∙∙∙. 
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1
e

 = 0 0. 0 2 0 4 0 6 0 8∙∙∙ 

1
2e

 = 0 0. 0 1 0 2 0 3 0 4∙∙∙ 

sinh 1 = 0 1. 0 1 0 1 0 1 0∙∙∙ 
sinh1

2
 = 0 0. 1 0 2 0 3 0 4∙∙∙ 

cosh 1 = 0 1. 1 0 1 0 1 0 1∙∙∙ 
cosh1

2
 = 0 0. 1 1 2 2 3 3 4 4∙∙∙ (Figure 5) 

sinh1 cosh1 e
2 2
+

=  = 0 1. 0 2 0 3 0 4 0∙∙∙ 

sin 1 = 0 0. 1 0 0 4 5 0 0 8 9 0 0 12∙∙∙ 
cos 1 = 0 0. 1 2 0 0 5 6 0 0 9 10 0 0∙∙∙  
4) Create periodic numbers by the factorial division algorithm 
New periodic numbers can be created from a given one by the factorial divi-

sion algorithm (Table 4). 
 

Table 4. e
6

 generated by the factorial division algorithm. 

(1 · 1)/ 6 = 0 
(1 · 1 + 1) : 6 = 0·6 + 2 
(2 · 2 + 1) : 6 = 0 ·6+ 5 
(5 · 3 + 1) : 6 = 2·6 + 4 
(4 · 4 + 1) : 6 = 2·6 + 5 
(5 · 5 + 1) : 6 = 4·6 + 2 
 

(2 · 6 + 1) : 6 = 2·6 + 1 
(1 · 7 + 1) : 6 = 1·6 + 2 
(2 · 8 + 1) : 6 = 2·6 + 5 
(5 · 9 + 1) : 6 = 7·6 + 4 
(4 · 10 + 1) : 6 = 6·6 + 5 
(5 · 11 + 1) : 6 = 9·6 + 2 
 

(2 · 12 + 1) : 6 = 4·6 + 1 
(1 · 13 + 1) : 6 = 2·6 + 2 
(2 · 14 + 1) : 6 = 4·6 + 5 
(5 · 15 + 1) : 6 = 12·6 + 4 
(4 · 16 + 1) : 6 = 10·6 + 5 
(5 · 17 + 1) : 6 = 14·6 + 2 
… 

 

 

Figure 5. Number picture of cosh1
2

 = 0 0. 1 1 2 2 3 3 4 4∙∙∙. 
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Example: e
6

 = 1 1. 1 1 1 ∙∙∙ : 6 = 0 0. 0 2 2 4 | 2 1 2 7 6 9 | 4 2 4 (12) (10) (14) | ∙∙∙ 

= 1 1. 1 1 1 ∙∙∙: 6 = 0 0. 0 2 2 4 | 2 1 2 7 6 9 | 4 2 4 (12) (10) (14) | ∙∙∙ 
Introductory series: none; basis series: 0 0. 0 2 2 4; difference series: 2 1 2 5 4 5 

(Figure 6). 

4. Theorems about Periodic Numbers 

I give a detailed proof for Theorems 3.7 and 3.8. 
Theorem 3.1. From the definition it follows that the two types of expansion 

of rational numbers are periodic with length of period “1”. All other periodic 
numbers are irrational, including those with length of period “1” after an intro-
ductory series (for example 3 – e = 0 0. 0 1 2 3 ∙∙∙), or those in which the minimal  

value 1 0r =  and the maximal value ( )1 1r i= −  at 1r  1
!i

 are oscillating, as in 

cos 1 = 0 0. 1 2 0 0 5 6 0 0 9 (10) ∙∙∙ (Figure 7). 
Theorem 3.2. The set of periodic numbers with respect to addition is an Ab-

elian group with 0 0.0 0 0 ∙∙∙ as the unit element.  
Theorem 3.3. The product of two periodic numbers may or may not be a pe-

riodic number. For example, e is periodic, as is the product of e with any rational 
number, but e2 is not periodic in the factorial number system. 

Theorem 3.4. If a number is periodic after an introductory series of length M, 
it is also periodic after an introductory series of length M M′ ≥ .  

Theorem 3.5. If a number is periodic by length of period N, it is also periodic 
by 2N, 3N, ∙∙∙ Conversely, for every periodic number there exists a natural number  

 

 

Figure 6. Number picture of e
6

 = 0 0. 0 2 2 4 | 2 1 2 7 6 9 | 4 2 4 (12) (10) (14) | ∙∙∙. 
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Figure 7. Number picture of cos 1 = 0 0. 1 2 0 0 5 6 0 0 9 (10) ∙∙∙. 

 
N as the minimal length of the period. For example, 0 0. 1 1 2 2 3 3 4 4 ∙∙∙ is pe-
riodic by 2, but also by 2n where n is any natural number. 

Theorem 3.6. In a periodic number with length of period N, no element in 
the difference series can be greater than N, because in this case there would be a 
digit in the number which is greater than the maximum allowed at the given in-
dex.  

Theorem 3.7. If a number is periodic by N and N* where N and N* are 
co-primes (relative primes), this number is periodic by 1. 

The proof is cumbersome to describe in the general case. I prove the theorem 
for the special case N = 2 and N* = 3 which shows the principle of proof for any 
two co-primes. 

Given a periodic number of period 2 which means that after an introductory 
series the digits are (a + 1c) (b + 1d) | (a + 2c) (b + 2d) | (a + 3c) (b + 3d) | (a + 
4c) (b + 4d) | (a + 5c) (b + 5d) ∙∙∙ where the parentheses indicate the consecutive 
digits of the number (not multiplication). The basis series is a b, and the differ-
ence series c d.  

Suppose that this number is also periodic of period 3 after the same introduc-
tory series: 

(a + 1c) (b + 1d) (a + 2c) | (b + 2d) (a + 3c) (b + 3d) | (a + 4c) (b + 4d) (a + 5c) 
| (b + 5d) ∙∙∙  

This means that the basis series of period 3 is (a + 1c) (b + 1d) (a + 2c), and 
the stair series can be calculated from the differences at the respective places 
(non-bold parentheses are in the ordinary sense of calculation): 

( ) ( ) ( ) ( )2 1 4 2b d a c a c b d+ − + = + − +  
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( ) ( ) ( ) ( )5 4 4 2b d a c a c b d+ − + = + − +  

3 3 and .d c c d= =  

This gives that the only solution for the elements c and d of the difference se-
ries is the same digit, but Theorem 6 gives that this digit can only be equal to 0 
or 1. Q.E.D. 

Theorem 3.8. The set of periodic numbers in the [0, 1) interval is countable. 
Faber [9] proved the countable property of rational numbers by using the fac-

torial expansion. In like manner, we take all periodic numbers with length of 1 
digit. The introductory series to a given index i can be chosen in i! different ways, 
so this is a countable set. The basis series of length 1 can be any natural number, 
the step period either 0 or 1, so this is also a countable set. For length of 2 digits, 
the introductory series is the same as with length 1, the basis series can be any 
pair of natural numbers, and the difference series can be chosen in 32 different 
ways (00, 01, 10, 11, 02, 20, 12, 21, 22), so this is also a countable set. In this 
manner, each series determines a countable set of periodic numbers. A counta-
ble union of countable sets is countable, so the set of periodic numbers in the [0, 
1) interval is countable.  

5. Double factorials 

The odd and even double factorials generate two different number systems. The 
even factorial system is in many ways similar to the simple factorial system. It 
expresses all rational numbers in a finite form, and allows for periodic numbers, 
just like in the factorial system. The odd factorial system also admits periodic 
numbers, but an even-denominator fraction is expanded into an infinite periodic 
number.  

6. Extending the Definition of Periodicity in the Factorial  
Series 

1) Following is an extension of periodicity from the factorial number system 
to the factorial series so that the length of a period remains constant.  

In the factorial number system there is a constant difference series between 
two finite consecutive series of digits (see 2.1.)  

Extend this definition so that it is not necessarily the difference between the 
two corresponding digits, but a well-defined function f(k) that expresses the va-
riance of rk according to f(k) at a given place after the radix point. Therefore, it is 
appropriate in these cases to use the expression “variance series” rather than 
“difference series”. 

It follows from the broader definition that the periodic numbers in the fac-
torial number system retain this property by the new definition. 

Extending the concept of periodicity in this way, many noteworthy numbers 
that are not periodic in the factorial number system, can be expressed in periodic 
form in the factorial series. 
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2) Examples: 

( )( ) ( )( )

0

1 1 1 10! 1! 2! 3! 0 1! . 2! 3!
0! 1! 2! 3!

1! 1 1 1
!k k

k
∞

=

∞ = + + + + =

= = + + +∑

� �

�
  

( )( ) ( )( )

( )0

1 1 1 10! 1! 2! 3! 0 0! . 1! 2!
1! 2! 3! 4!

1 1 1 1!
1 ! 1 2 3k k

k
∞

=

∞ = + + + + =

= = + + +
+∑

� �

�
 

( )( ) ( )( )( )

( )0

1 1 1 11 0! 1! 2! 3! 0 0! . 0! 1! 2!
2! 3! 4! 5!

1 1 1!
2 ! 1 2 2 3k k

k
∞

=

= + + +

= = + +
+ ⋅ ⋅∑

�

�
 

( )( ) ( )( )( )1 0 1 2 3 41 1 1 1 1e 1 1 1 1 1 1 1 . 1 1 1
0! 1! 2! 3! 4!

= + + + + + =� �  

( )( ) ( )( )( )2 0 1 2 3 0 1 2 3 41 1 1 1e 2 2 2 2 2 2 . 2 2 2
0! 1! 2! 3!

= + + + + =� �  

( )( ) ( )( )( )0 1 2 3 4 0 1 2 3 41 1 1 1 1e .
0! 1! 2! 3! 4!

n n n n n n n n n n n= + + + + + =� �  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )( )( )( )( )( )( )( )
1

1 1 1 1 1 1 1 1 1 1 1ln 2
1 2 3 4 5 6 7 8 1 2 3 4 5 6

1 1 1 1 10 0 0! 0 2!
0! 1! 2! 3! 4!

1 1 1 10 4! 0 6!
5! 6! 7! 8!

12 2 ! 0 0 . 0! 0 2! 0 4! 0 6! 0 8!
2 !k

k
k

∞

=

= − + − + − + − + = + + +
⋅ ⋅ ⋅

= + + + +

+ + + + +

= − =  ∑

� �

�

�

 

( ) ( ) ( )1

1 1 1 1 1 1 1 1 1
8 2 1 3 5 7 9 11 13 15

1 1 1 1 1 1 1 1 10 0 0 0! 2 0 0 0 4! 6 0
0! 1! 2! 3! 4! 5! 6! 7! 8!

1 1 10 0 8! 10
9! 10! 11!

14 4 ! 4 2
4 1 !k

k k
k

∞

=

π  = − + − + − + − + 
 

= + + + ⋅ + + + + ⋅ +

+ + + ⋅ +

= − −   −∑

�

�
 

( )( ) ( )( )( )( )( )( )( )( )( )( )( )( )( )( )

( )( ) ( )( )( )( )( )( )( )( )( )( )
( )( ) ( )( )( )( )( )( )( )( )( )( )

0 0 . 0 0! 2 0 0 0 4! 6 0 0 0 8! 10 0 0 0 12! 14

1 1 1 1 1 10! 4! 8! 1! 5! 9!
3! 7! 11! 3! 7! 11!

0 0 . 0 0! 0 0 0 4! 0 0 0 8!

0 0 . 0 1! 0 0 0 5! 0 0 0 9!

= ⋅ ⋅ ⋅ ⋅

   = + + + + + + +   
   

=

+

�

� �

�

�

 

Riemann numbers: 
For example, the Apéry number: 

https://doi.org/10.4236/jamp.2022.102041


I. Lénárt 
 

 

DOI: 10.4236/jamp.2022.102041 570 Journal of Applied Mathematics and Physics 
 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )3
0 0

3 ! 1 ! 2 1 ! 3 1 !1 13 3!
3 ! 0 ! 1 ! 2 ! 3 !k k

k k k k
k k k k kk

ζ
∞ ∞

= =

− − −
= =∑ ∑  

( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( )
( ) ( ) ( ) ( )0

3 0!1!2! 1!3!5! 2!5!8!0 0 . 0 0 0 0 0
3! 0!1!2! 0!2!4! 0!3!6!

1 ! 2 1 ! 3 1 ! 1
0 ! 1 ! 2 ! 3 !k

k k k
k k k k

ζ

∞

=

     =      
     

− − −
= ∑

�
 

7. e Transcendental 

1) Here I consider expansions not only in the factorial number system, but 
other expansions in the factorial series, where some ri digits may overflow the 
upper limit (i − 1) at the given place. 

0 1 2
0

1 1 1 1 1e
! 0! 1! 2! !

n k k
k n n n n n

k k
∞

=

 = = + + + + + 
 

∑ � �          (1) 

Suppose 0 1 2 1
0 1 2 1e e e e e e 0i n n

i n nc c c c c c−
−+ + + + + + + =� �       (2) 

(n fixed natural number, ci integer). I prove that the only solution for all ci coef-
ficients is the trivial 0ic = .  

I give the proof for 3n = , and generalize for arbitrary n. 
Suppose 0 1 2 3

0 1 2 3e e e e 0c c c c+ + + =  (ci integer).            (3) 

All of the series 0 1 2 3
0 1 2 3e , e , e , ec c c c  have absolute convergence, so they can 

be rearranged in the following way: 

( ) ( )

( ) ( )

0 1 2 3
0 1 2 3

0 1 2
1 1 2 1

0 1 2
1 1 2 1

0 1 2
1 1 2 1

0 0 0 1 1 1
1 2 3 1 2 3

2 2 2
1 2 3 1 2 3

e e e e
1 1 1 11 1 1 1
0! 1! 2! !

1 1 1 12 2 2 2
0! 1! 2! !
1 1 1 13 3 3 3
0! 1! 2! !

1 11 2 3 1 2 3
0! 1!

1 11 2 3 1 2 3
2!

k

k

k

k k k

c c c c

c c c c
k

c c c c
k

c c c c
k

c c c c c c

c c c c c c

− = + +

= + + + + +

+ + + + + +

+ + + + + +

= + + + + +

+ + + + + + +

� �

� �

� �

�
!k

       (4) 

Since 0 1 2 3
0 1 2 3e e e ec c c c− = + +  is an integer, it has an extension in the factorial  

number system where all kr  coefficients of 1
!k
 after the radix point, from 1

2!
 

are equal to zero ( 2 k≤ < ∞ ): 
2 2 2

1 2 3
3 3 3

1 2 3
4 4 4

1 2 3

1 2 3

1 2 3 0

1 2 3 0

1 2 3 0

1 2 3 0k k k

c c c

c c c

c c c

c c c

+ + =

+ + =

+ + =

+ + =

�

�

                          (5) 

Consider the first three equations: 
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2 2 2
1 2 3

3 3 3
1 2 3

4 4 4
1 2 3

1 2 3 0

1 2 3 0

1 2 3 0

c c c

c c c

c c c

+ + =

+ + =

+ + =

                         (6) 

This is a homogeneous system of linear equations with 1 2 3, ,c c c  unknowns. 
If there is any solution different from the trivial 0ic = , the determinant of 

the coefficients must be equal to zero:  

( )
2 2 2 0 0 0

3 3 3 2 2 2 1 1 1 2 2 2
3 3

4 4 4 2 2 2

1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3

D V⋅ = ⋅= =            (7) 

This is a Vandermonde determinant with 3 different base numbers, multiplied 
by 2 2 21 2 3 . Its numerical value differs from zero, so the only solution for 1 2 3, ,c c c  
unknowns is the trivial one: 1 2 3 0c c c= = = .  

Generalize for arbitrary fixed n: 

0 1 2
0

1 1 1 1 1e
! 0! 1! 2! !

n k k
k n n n n n

k k
∞

=

 = = + + + + + 
 

∑ � �            (8) 

0 1 2 3 1
0 1 2 3 1e e e e e e e 0i n n

i n nc c c c c c c−
−+ + + + + + + + =� �           (9) 

All of these series have absolute convergence, so they can be rearranged in the 
following way: 

0 1 2 3 1
0 1 2 3 1

0 1 2
1 1 2 1

0 1 2
1 1 2 1

0 1 2
1 1 2 1

0 1 2
1 1 2 1

e e e e e e e
1 1 1 11 1 1 1
0! 1! 2! !

1 1 1 12 2 2 2
0! 1! 2! !
1 1 1 13 3 3 3
0! 1! 2! !

1 1 1 1
0! 1! 2! !

i n n
i n n

k

k

k

k

c c c c c c c

c c c c
k

c c c c
k

c c c c
k

c n c n c n c n
k

−
−− = + + + + + + +

= + + + + +

+ + + + + +

+ + + + + +

+

+ + + + + +

� �

� �

� �

� �

�

� �

 

( )

( )

( )

0 0 0 0
1 2 3

1 1 1 1
1 2 3

2 2 2 2
1 2 3

1 2 3

11 2 3
0!
1( 1 2 3 )
1!

11 2 3
2!

11 2 3
!

n

n

n

k k k k
n

c c c c n

c c c c n

c c c c n

c c c c n
k

= + + + +

+ + + + +

+ + + + +

+

+ + + + +

�

�

�

�

�

            (10) 

Since 0 1 2 3 1
0 1 2 3 1e e e e e e ei n n

i n nc c c c c c c−
−− = + + + + + + +� �  is an integer, it  

has an extension in the factorial number system where all rk coefficients of 1
!k
 

after the radix point, from 1
2!

 are equal to zero ( 2 k≤ < ∞ ): 
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2 2 2 2
1 2 3

3 3 3 3
1 2 3

4 4 4 4
1 2 3

1 2 3

1 2 3 0

1 2 3 0

1 2 3 0

1 2 3 0

n

n

n

k k k k
n

c c c c n

c c c c n

c c c c n

c c c c n

+ + + + =

+ + + + =

+ + + + =

+ + + + =

�

�

�
�

�
�

                   (11) 

Consider the first n equations: 
2 2 2 2

1 2 3
3 3 3 3

1 2 3
4 4 4 4

1 2 3

1 1 1 1
1 2 3

1 2 3 0

1 2 3 0

1 2 3 0

1 2 3 0

n

n

n

n n n n
n

c c c c n

c c c c n

c c c c n

c c c c n+ + + +

+ + + + =

+ + + + =

+ + + + =

+ + + + =

�

�

�
�

�

                (12) 

This is a homogeneous system of linear equations with 1 2 3, , , , nc c c c�  un-
knowns. If there is any solution different from 0ic = , the determinant of the coef-
ficients must be equal to zero. However, the determinant can be transformed into a 
Vandermonde determinant multiplied by a constant, in the same way as for 3n = . 

( ) ( )
2 2 0 0

2 2 2 2 2 2 2 2

1 1 1 1

1 1
1 2 3 1 2 3

1 1
n n

n n n n

n n
D n n V

n n+ + − −

= = ⋅ = ⋅
� �

� � � � � �
�

�
�

�  (13) 

This is a Vandermonde determinant with n different base numbers multiplied 
by 2 2 2 21 2 3 n� . Its numerical value differs from zero for any fixed n. The only 
solution for all ci unknowns is the trivial one: 0ic = . Therefore, e is transcen-
dental. Q. E. D. 

Corollary 1. All integer powers of e are irrational numbers. 
Corollary 2. ln 2  is irrational. 
2) The infinite form of e  
Any rational number has two different expansions in the factorial system, as 

in fixed-base systems. The above proof is based on the finite form that consists 
of zero digits after the radix point.  

However, any rational number has two possible extensions in the factorial 
number system. Therefore the non-existence of the infinite form follows from 
the above proof of the non-existence of the finite form. 

This means that, if ( 0
0ec− ) is an integer, it has another expansion in the fac-

torial number system in which all digits after the radix point have maximal value 
allowed at the given place: 

( )

2 2 2 2
1 2 3

3 3 3 3
1 2 3

4 4 4 4
1 2 3

1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

1 2 3 1

n

n

n

k k k k
n

c c c c n

c c c c n

c c c c n

c c c c n k

+ + + + =

+ + + + =

+ + + + =

+ + + + = −

�

�

�
�

�

�

                 (14) 
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This is an infinitely many times over-determined system of equations for n 
unknowns 1 2 3, , , , nc c c c� . From the above proof about the non-existence of the 
finite form it follows that solving the first n equations, and substituting  

1 2 3, , , , nc c c c�  into any one of the remaining equations, the system of n + 1 eq-
uations is always inconsistent. 

Consider the first n equations: 
2 2 2 2

1 2 3

3 3 3 3
1 2 3

4 4 4 4
1 2 3

1 1 1 1
1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

1 2 3

n

n

n

n n n n
n

c c c c n

c c c c n

c c c c n

c c c c n n+ + + +

+ + + + =

+ + + + =

+ + + + =

+ + + + =

�

�

�

�

�

                (15) 

Apart from the indirect reasoning via the finite form above, this statement can 
also be justified by direct proof. Following is a proof for 3n =  that can be ge-
neralized for arbitrary n. 

Given the first three equations:  
2 2 2

1 2 3

3 3 3
1 2 3

4 4 4
1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

c c c

c c c

c c c

+ + =

+ + =

+ + =

                        (16) 

Solving this system of equations for, say, 3c  with Cramer’s rule:  
2 2 0 0

3 3 1 1

4 4 2 22 2

3 2 2 22 2 2 0 0 0

3 3 3 1 1 1

4 4 4 2 2 2

1 2 1 1 2 1
1 2 2 1 2 2
1 2 3 1 2 31 2

1 2 31 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3

c = =                 (17) 

Now consider another three equations ( 0k ≥ , k integer): 
2 2 2

1 2 3

3 3 3
1 2 3

4 4 4
1 2 3

1 2 3 1

1 2 3 2

1 2 3 4 1k k k

c c c

c c c

c c c k

∗ ∗ ∗

∗ ∗ ∗

∗ + ∗ + ∗ +

+ + =

+ + =

+ + = + −

                  (18) 

Solving this system of equations for 3c∗  with Cramer’s rule: 
2 2 0 0

3 3 1 1

4 4 2 22 2

3 2 2 22 2 2 0 0 0

3 3 3 1 1

4 4 4 2 2 2

1 2 1 1 2 1
1 2 2 1 2 2

1 2 3 1 2 31 2
1 2 31 2 3 1 2 3

1 2 3 1 2 1
1 2 3 1 2 3

k k k k

k k k k k k

c
+ + + +

∗

+ + + + + +

= =          (19) 

The question is, Can the following two expressions be equal to each other? 
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0 0 0 0

1 1 1 1

2 2 2 2

0 0 0 0 0 0

1 1 1 1 1

2 2 2 2 2 2

1 2 1 1 2 1
1 2 2 1 2 2
1 2 3 1 2 3

1 2 3 1 2 3
1 2 3 1 2 1
1 2 3 1 2 3

k k

k k k

+ +

+ + +

≤                  (20) 

Direct computation yields the following relation between 3c  and 3c∗ : 
4 22 3 2 7k k k+ +≤ + +                         (21) 

Here the equality sign only stands for 0k = . If 0k > , the strict inequality 
holds: 

4 22 3 2 7k k k+ +< + +                         (22) 

This proves that 3c  differs from 3c∗  for all 0k > .  
The same proof applies for 1 2 4 5, , , , , nc c c c c� .  
Consequently, the infinite system of equations is inconsistent. Q.E.D.  

8. Conclusions 

My main goal was to draw attention to the advantages of the factorial series and 
the factorial number system in the study of irrational and transcendental num-
bers.  

The periodic representation makes it easier to inquire into these properties.  
Proving the transcendence of e by mostly elementary methods used in this 

paper may help to prove the transcendence of other real numbers with relative 
ease.  

Some problems in the Diophantine approximation of irrationals [10] can bet-
ter be studied among periodic numbers. 

Proposals to proceed: 
I could not apply these methods to other important numbers like π, or Rie-

mann numbers. Perhaps other techniques in calculus can provide the missing 
links. 

I studied the digits of Egyptian fractions in the factorial number system with 
the help of Salát’s software [11]. I had some interesting findings which can be 
worth developing. 

I have not inquired into the properties of integers in this paper, but elementa-
ry calculations show that the periodic property can be extended to certain integ-
ers as well.  
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