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Abstract 
This paper systematically studies the complete integrability of the Newell eq-
uation. Using generalized Bell polynomials, the corresponding bilinear equa-
tion, bilinear Bäcklund transformation, Lax pair, and multi-shock wave solu-
tions are successfully obtained. In addition, using the multidimensional Rie-
mann theta functions, the periodic wave solutions of the Newell equation are 
constructed. On this basis, the asymptotic behavior of the periodic wave solu-
tion is given, which is the relationship between the periodic wave solution 
and the solitary wave solution. 
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1. Introduction 

Since the pioneering introduction of solitons into nonlinear science, many ex-
perts and scholars have studied and explored its various aspects. In a great deal 
of work and efforts of scientists, the main focus has been on the search for exact 
solutions of nonlinear evolution equations and the study of integrability [1]-[7]. 
The application of the bilinear method, pioneered by the Japanese mathemati-
cian Hirota is very important in nonlinear theory [8]. Nakamura proposed a syn-
thetic approach for constructing multi-periodic wave solutions of nonlinear eq-
uations based on the Hirota bilinear method. The advantage of this method is 
that it only depends on the bilinear form. However, it is not easy to seek a bili-
near transformation of a nonlinear evolution equation. It is necessary to make 
an appropriate transformation, and considerable skill is required to find this 
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transformation. To solve this problem, Lambert et al. introduced the concept of 
the Bell polynomials in algebra to nonlinear differential equations, which made 
it simple to construct bilinear forms of nonlinear equations [9]. This method not 
only simplifies the computational complexity but is also practical. Furthermore, 
it was found that based on the bilinear form, the Bäcklund transformation, Lax 
pair and infinite conservation laws can be obtained [10] [11]. At present, Bell 
polynomial theory and the Riemann theta function are extended to superintegr-
able systems, discrete systems and higher-order integrable systems [12]. In addi-
tion, Wang wrote the corresponding package, so that the Bell polynomial theory 
method became more procedural and simplified [13]. 

The Newell equation is a very important equation in nonlinear mathematical 
physics. It is widely used in hydrodynamics, and for coastal wave simulation, 
nonlinear motion of charged particles in electromagnetic fields, propagation of 
solitary waves in media, and vibration of a one-dimensional nonlinear lattice. Its 
general form is 

2
0 0,tt xx x xx xxxxu c u u u u− − − =α β                     (1) 

using the homogeneous balance method, the Bäcklund transformation and exact 
solutions of the Newell equation were presented in [14] [15]. The content of this 
paper is arranged as follows. In Section 2, the bilinear expression of Newell equ-
ation is constructed by using multidimensional Bell polynomials. In Section 3, 
multiple solitary wave solutions and Riemann theta function periodic wave solu-
tions are obtained by using the bilinear expression of Newell equation. In Sec-
tion 4, the relationship between periodic wave solution and solitary wave solu-
tion is further analyzed, and it is strictly proved that the periodic solution tends 
to soliton solution under the small amplitude limit. In Section 5, the Bäcklund 
transformation and Lax pair of Newell equation are derived. 

2. Bilinear Form  

First, we do the following transformation by introducing the potential function q  

( ) xu m t q= , 

where ( )m m t=  is a function to be determined, bring the above into Equation 
(1) you can get 

2 2
, ,2 0 3 2 3 52 0,tt x t x t x t x t x x xm q m q mq c mq m q q mqα β+ + − − − =  

integrating it with respect to x once, and taking the integral constant to zero, can 
derive the following equation 

2 2 2
2 0 2 2 42 0.5 0,tt t t t x t x xm q m q mq c mq m q mqα β+ + − − − =          (2) 

take ( ) 6m t β
α

= , then Equation (2) can be written as a combination of P-poly- 

nomials, 

( ) ( ) 2
2 0 2 4 0.t x xE q P q c P Pβ= − − =  
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By using the following transformation 

( ) ( ) ( )2 2
6 122 ln ln ,x x xq f u m t q q fβ β
α α

= ↔ = = =  

the bilinear form of Equation (1) can be obtained as 

( )2 2 2 4
0 0t x xD c D D f fβ− − ⋅ = .                    (3) 

3. Solitary Wave Solutions and Riemann Theta Functions  
Periodic Wave Solutions 

In this section, we use the bilinear form of the Newell equation to construct the 
multi-solitary wave solutions and periodic wave solutions.  

3.1. Multi-Solitary Wave Solutions 

Once the bilinear form of Equation (1) is given, the multi-solitary wave solution 
of Equation (1) can easily be obtained by using symbolic computation and Hi-
rota method. The multi-solitary wave solutions of the Newell equation can be 
written as 

( )12 ln ,xu fβ
α

=                         (4) 

with 

0,1 1 1
exp ,

N

j j i j ij
j j i N

f A
ρ

ρ η ρ ρ
= = ≤ < ≤

 
= + 

 
∑ ∑ ∑  

( ) ( ) ( )
( ) ( ) ( )

2 2 42
0

2 2 42
0

e ,ij i j i j i jA

i j i j i j

v v c

v v c

µ µ β µ µ

µ µ β µ µ

− − − − −
= −

+ − + − +
 

( )2 2 4
0, , 1 ,j j j j j j jx v t c v c j i Nη µ µ βµ= + + = ± + ≤ < ≤         (5) 

in which ,j jvµ  are all free constants, and 
0,1ρ=∑  sums all possible combina-

tions of , 0,1i jρ ρ = .  
When 1N = , one-solitary wave solutions of Equation (1) is given by 

( ) 2 2 4
0

12 1 e , ,
x

u x c t cηβ η µ µ βµ
α

= + = ± + +             (6) 

where ,u c  are free constants (Figure 1).  

3.2. Riemann Theta Function Periodic Wave Solutions 

Here, we obtain one-periodic wave solution of the Newell equation and analyze 
its asymptotic properties. To do this, we introduce the following one-Riemann 
theta function: 

( ) 2 2, e ,in in

n

τ ξϑ ξ τ
+∞

π + π

=−∞

= ∑                      (7) 

in which the phase variable kx tξ ω ε= + + , and ( )Im 0τ > . 
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Figure 1. One-solitary wave with parameters: 00.1, 0.5, 2, 1, 1.8c c= − = = = =α β µ . 

 
To construct the periodic wave solution of Equation (1), we consider the more 

general form of the bilinear equation as 

( )2 2 2 4
0 0,t x xD c D D f fβ δ− − + ⋅ =                   (8) 

where δ  is an arbitrary nonzero constant. 
Theorem 1. If ( ),ϑ ξ τ  is a one-Riemann theta function (7) and  

kx tξ ω ε= + + , the Newell equation allows a one-periodic wave solution as fol-
lows: 

( )12 ln , ,xu β ϑ ξ τ
α

= ∂                       (9) 

with 

2 1 22 2 12 1 21 2 11

11 22 12 21 12 21 11 22

, ,b a b a b a b a
a a a a a a a a

ω δ
− −

= =
− −

 

and 
2 22 2 2 2

11 1216 , ,n n

n n
a n a

+∞ +∞

=−∞ =−∞

= − π℘ = ℘∑ ∑  

( ) 2 22 2 2 2 1 2 2 1
21 224 2 1 , ,n n n n

n n
a n a

+∞ +∞
− + − +

=−∞ =−∞

= − − π℘ = ℘∑ ∑  

( ) 24 4 4 2 2 2 2 2
1 0256 16 ,n

n
b n k c n kβ

+∞

=−∞

= π − π ℘∑  

( ) ( )( ) 24 24 4 2 2 2 2 2 1
2 016 2 1 4 2 1 , e ,n n i

n
b n k c n k τβ

+∞
− + π

=−∞

= − − π − − π ℘ ℘=∑  (10) 

in which the parameters , ,k ε τ  are free. 
Proof. For Equation (1), we consider the Riemann theta function solutions of 

the form (7), according to the Theorem 1 in Ref. [10] and the bilinear equation 
(8), the parameters , ,k ω ε  satisfy the following system 
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( ) 22 2 2 2 2 2 2 4 4 4 2
016 16 256 e 0,in

n
n c n k n k τω β δ

+∞
π

=−∞

− π + π − π + =∑  

( )( ( )

( ) ) ( )2

2 22 2 2 2 2
0

2 2 14 4 4

4 2 1 4 2 1

16 2 1 e 0.

n

i n n

n c n k

n k
τ

ω

β δ

+∞

=−∞

π − +

− − π + − π

− − π + =

∑
 

According to the representations in (10), the upper expressions are naturally 
written in the following matrix form: 

2
11 12 1

21 22 2

,
a a b
a a b

ω
δ

    
=    

    
                     (11) 

solving the above linear system results in one-periodic wave solution (9) of Equ-
ation (1) (Figure 2). 

4. Asymptotic Analysis 

In this section, we use asymptotic analysis theory to discuss the relationship be-
tween one-solitary wave solution and one-periodic wave solution. It is worth 
noting that if the coefficient matrix, right end vector and solution vector of the  
system (6.14) can be expanded by a power series with parameter ℘ , the 
asymptotic behavior of the periodic wave solution can be analyzed by using the 
method of small parameter expansion. Via the results from Ref. [10], we expand 
system (6.14) by parameter ℘  

11 12 2
0 1 2

21 22

a a
A A A

a a
 

= + ℘+ ℘ + 
 



 

 

 
Figure 2. One-periodic wave with parameters: 01.1, 2.5, 0.1, 0.5 , 1, 2c i k= = = = = =α β τ ε . 
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1 2
0 1 2

2

b
B B B

b
 

= + ℘+ ℘ + 
 

  

2
2

0 1 2X X X
ω
δ

 
= + ℘+ ℘ + 

 
                  (12) 

based on Equation (10), rewrite the functions ( ), , 1, 2ij ja b i j =  as series expan-
sion with respect to ℘   

( )22 2 8 18 2 2
11 32 4 9 ,na n= − π ℘ + ℘ + ℘ + + ℘ +   

( )22 8 18 2
12 1 2 ,na = + ℘ +℘ +℘ + +℘ +   

( )( )222 5 13 2 2 1
21 8 9 25 2 1 ,n na n − += − π ℘+ ℘ + ℘ + + − ℘ +   

( )25 13 2 2 1
22 2 ,n na − += ℘+℘ +℘ + +℘ +   

( ) ( )(
( ) )2

2 2 4 2 2 2 2 4 2 2 8
1 0 0

4 2 4 2 2 2 2
0

32 16 256 4

16 ,n

b k c k k c k

n k c n k

β β

β

= π π − ℘ + π − ℘ +

+ π − ℘ +





 

( ) ( )((
( ) ) )2

42 2 4 2 2 2 4
2 0

22 2 2 2 1
0

8 4 4 2 1

2 1 ,n n

b k c k n k

c n k

β β

− +

= π π − ℘+ − π

− − ℘ +
         (13) 

combined with Equations (12) and (13), we get 
2

1 22

0 0 32 2
, ,

8 2 0 0
A A

 − π 
= =   − π   

 

3 4 1 2
1

0
0, ,

8
A A B

 
= = =  π ∆ 

  

2
2

2 5 0 3 42
3

032 , , 0,
720

B B B B B
   π ∆

= = = = =   π ∆  
        (14) 

in which i∆  are presented as follows: 
2 4 2 2 2 4 2 2 2 4 2 2

1 0 2 0 3 04 , 16 , 36 .k c k k c k k c kβ β β∆ = π − ∆ = π − ∆ = π −  

Then, using Equation (4.15) in Ref. [10], we can calculate the following for-
mula 

2
1 1

0 2 1
1

8
, ,

0 32
k

X X
k

−

−

 −∆ − ∆ 
= =    π ∆   

 

2 1
1 3

4 1 32 1
1

39 9
, 0,

192
k k

X X X
k

− −

−

 − ∆ − ∆
= = = 

π ∆ 
             (15) 

combined with Equation (12) and the above expression, we can derive 

( ) ( )2 1 2 2 3 2 1 4 4
1 1 1 1 38 64 25 9 ,k k k k k oω − − − − −= − ∆ − ∆℘ + − ∆ − ∆ − ∆ ℘ + ℘  

( ) ( )1 2 2 2 2 1 4 4
1 1 132 256 64 .k k k oδ − − −= π ∆℘ + − π ∆ + π ∆ ℘ + ℘       (16) 
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Further, rewrite the Riemann theta function ( )ϑ ξ  to 

( ) ( ) ( )2 2 4 4 41 e e e ei i i iξ ξ ξ ξϑ ξ π − π π − π= + + ℘+ + ℘ +           (17) 

with the following transformation 

, ,
2 2

ck
i i

µ τε + π
= =

π π
                     (18) 

it is easy to get that Equation (17) can be rewritten to 

( ) ( ) ( )2 2 2 3 6, 1 e e e e e 1 e ,ξ ξ ξ ξ ξ ξϑ ξ τ − −= + + + ℘ + + ℘ + → +
     

     (19) 

where 2 2i x i t cξ ξ τ µ ω= π − π = + π + . 
Combining Eqs. (17)-(19), we can get 

2 2 4
0 , when 0,x c t cξ µ µ βµ η→ ± + + = ℘→  

, when 0,
2 i

η τξ + π
→ ℘→

π
 

which means 

( ), 1 e , when 0ηϑ ξ τ → + ℘→ . 

According to the above analysis, we can conclude that under the limit condi-
tion 0℘→ , the one-periodic wave solution (9) is exactly inclined to the one- 
solitary wave solution (6). 

5. The Bӓcklund Transformation and Related Lax Pair 

Bilinear Bäcklund transformation plays an important role in constructing solu-
tions of nonlinear equations and characterizing the integrability of given systems. 
Next, we derive the Bäcklund transformation and related Lax pair of the Newell 
equation. 

Let 2ln , 2 lnq g q f′= =  be two different solutions of Equation (1), then we 
can get 

( ) ( )
( ) ( ) ( ) ( ) ( )2

02 2 2 2 43

0,
t x x x x

E q E q

q q c q q q q q q q qβ β

′ −

′ ′ ′ ′ ′= − − − − − + − −

=

 

the above formula can be regarded as the bilinear Bäcklund transformation of 
Equation (1). Based on this, we introduce two new independent variables 

( ) ( )ln , ln ,
2 2

q q q qv f g w fg
′ ′− +

= = = =  

according to multidimensional binary Bell polynomials, namely Y -polynomials 
[9], the corresponding two-field condition is rewritten as 

( ) ( ) ( ) ( )

( ) ( )

2
2 0 2 2 2 4

3

6
, , 0,

t x x x x

x x

E q E q E v w E w v

v c v v w v
v w R v w

β β
β

′ − = + − −

= − − −

= − ∂ + =Y
            (20)  

where 
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( ) ( ) ( ) 2
2 2 0 2, 3 , , .x x t xR v w Wronskian v w v v c vβ= − + −  Y Y  

In order to represent Equation (20) as a Y -polynomial Bäcklund transfor-
mation, we need to add a constraint condition, we can take this constraint as 

( ) ( )2 , , ,x tk v w v w λ+ =Y Y  

in which 3k β= ± −  and λ  are free parameters. 
According to the above constraints, we can get 

( ) ( ) ( ) ( )2
, 0, , , ,x x t x xR v w k v w k c v wλ = ∂ − + ∂ − Y Y  

by the above relations, the two-field condition (20) is decomposed into Y
-polynomial type Bäcklund transformation as 

( ) ( )
( ) ( ) ( ) ( )

2

2
3 , 0

, , ,

, , , 0.

x t

x x x t x

k v w v w

v w k v w k c v w

λ

β λ

+ =

 ∂ − − + − = 

Y Y

Y Y Y
 

On the basis of the relation between Y -polynomials and Hirota bilinear op-
erator [9], we can directly obtain the bilinear Bäcklund transformation of the 
Newell equation as 

( )
( )( )

2

3 2
0

0,

0,

x t

x x t x

kD D f g

D kD D k c D f g

λ

β λ δ

+ − ⋅ =

− − + − + ⋅ =
           (21) 

in which 3k β= ± −  and ,λ δ  are arbitrary parameters. 
Based on related theories of Bell polynomials, and by making use of the 

Hopf-Cole transformation lnv ψ= , we have 

( ) ( ) 2
2 2, , ,x x

x x xv v w q
ψ ψ
ψ ψ

= = +Y Y  

( ) ( ), ,, , ,xy y
x y x y yv w q v

ψ ψ
ψ ψ

= + =Y Y  

( ) ( )3
3 2, 3 , ,x x t

x x tv w q v
ψ ψ ψ
ψ ψ ψ

= + =Y Y  

thus, the system (21) can be linearized as a Lax pair with parameters ,λ δ   

( ) ( )
( ) ( )

1 2 2

2
2 2 0 3 , ,

,

3 0.
t x x t

xt x x x x t x t

k k q

k q c kq k

ψ ψ ψ ψ λψ

ψ β ψ βψ ψ ψ δψ

+ ∂ = + + =

− ∂ = − − − − − + =

P

P
 

6. Conclusion 

In this paper, we use the binary Bell polynomials to study the integrable proper-
ties of the Newell equation from many aspects, such as the bilinear equation, bi-
linear Bäcklund transformation and Lax pair. In Section 3, we use the Riemann 
theta functions and some of the results in Ref. [10] to obtain the periodic wave 
solutions of the Newell equation. In addition, by considering the small ampli-
tude limit, we further obtain the asymptotic behaviour between the one-periodic 
wave solution and the one-solitary wave solution. It is noteworthy that the Hi-
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rota bilinear method, the Riemann theta function and the Bell polynomials play 
important roles in constructing the solutions of nonlinear evolution equations.  
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