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Abstract 
Incorporating plant-dependent saturated reproduction function, chemical 
insecticide, and its resistance, a plant-vector-virus model which describes the 
spread of infection throughout the plant by the insect is investigated in this 
paper. First of all, the basic reproduction number 0  is obtained by using 
the method of the next generation matrix, and the existence of disease-free 
equilibrium and endemic equilibrium is examined. Then we show that the 
disease-free steady state is globally asymptotically stable if 0 1< , whereas if 

0 1> , the system is uniformly persistent and the endemic equilibrium is lo-
cal stability. Finally, numerical simulation is carried out to illustrate our theo-
retical results. Our result implies that insecticide resistance has a vital impact 
on the control of plant diseases. 
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1. Introduction 

In many plants, viruses are not transmitted only through seeds, but more 
through insects, such as helminth, leaf butterfly, flying wind, powdery wind, etc. 
It leads to a series of morphological, physiological and biochemical pathological 
changes in plants, hinders the process of normal growth and development, and 
affects human economic benefits, resulting in drastic reductions in yield for 
crops [1] [2]. It was reported from Food and Agriculture Organization of the 
United Nations that annually up to 40 percent of global crop production is lost 
from pests, economic loss is over $220 billion [3]. 

How to cite this paper: Zeng, C.M., Liu, 
Y.J., Yan, S.X. and Fu, W.Y. (2022) Global 
Dynamics of a New Huanglongbing Trans-
mission Model with Quarantine Measures. 
Journal of Applied Mathematics and Phys-
ics, 10, 360-371. 
https://doi.org/10.4236/jamp.2022.102028 
 
Received: January 8, 2022 
Accepted: February 18, 2022 
Published: February 21, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2022.102028
https://www.scirp.org/
https://doi.org/10.4236/jamp.2022.102028
http://creativecommons.org/licenses/by/4.0/


C. M. Zeng et al. 
 

 

DOI: 10.4236/jamp.2022.102028 361 Journal of Applied Mathematics and Physics 
 

Mathematical models of plant vector-borne diseases are usually used to de-
scribe, analyze, predict and control the prevalence of plant diseases in details [4] 
[5] [6] [7] [8]. Holt et al. [4] developed epidemiological model to depict the dy-
namics of African cassava mosaic virus disease. Theoretical results illustrate that 
a high virus transmission rate or a large population of vectors could bring on 
persistent mode. Jeger et al. [8] explored the effect of immigration of vectors and 
found that it comes into being a negative impact on the efficacy of insecticides 
for the control of the propagation of the virus. 

Recently, many researcher have payed attention to control issues of plant dis-
eases [9] [10] [11] [12] [13]. Venturino et al. [11] formulated a mosaic virus dis-
ease model in Jatropha curcas plantations. One interesting result of the model 
analysis showed that the control policy with minimum use of insecticides can 
concentrate the oscillatory nature of the vector population and eventually eradi-
cate the disease. Al Basir and Roy [12] formulated a nonlinear mathematical mod-
el with roguing and delay. They showed that endemic equilibrium may be oc-
curring bifurcation with periodic solution. Based on the modelling idea of [4] [8], 
Bokil et al. [13] extended two vectored plant disease models with frequency rep-
lanting and abundance replanting. The effects of roguing and insecticide use 
with a goal of maximizing the healthy plants that are harvested were investigated 
by using optimal control theory. As we know, constant reproduction rate has 
been assumed in many models, however, saturated reproduction rate has seldom 
been considered. Therefore, the main objective of this work is to establish a vec-
tored plant disease model with saturated reproduction function, investigate the 
dynamics of the model, and evaluate the control strategy. 

The paper is organised as follows. In Section 2, mathematical model is pre-
sented and the basic reproduction number is formulated. In Section 3, the local 
and global stability of disease-free equilibrium is studied. In Section 4, the un-
iformly persistent and the local stability of the endemic equilibrium are analysed. 
Numerical simulations are carried out to illustrate the analytical results and the 
effects of control strategy and insecticide resistance are evaluated in Section 5. 
Finally, a brief discussion concludes the paper. 

2. Model and Preliminaries 

Plant and vector populations are considered in our model. ( )S t , ( )E t  and 
( )I t  denote the healthy, the exposed and the infected plant (host) population at 

time t, respectively. Let ( ) ( ) ( ) ( )N t S t E t I t= + +  be the total population size 
of host at time t. ( )X t  denotes the vector population. We assume that the growth 
rate of vector population satisfies plant-dependant saturated reproduction function  

0a N
k N+

, where 0a  is the maximum reproduction rate of vectors, and 1
k N+

  

measures the inhibition from the crowding effect of the hosts. Considering satu-
rated reproduction rate, insecticide spraying, and its resistance, we have the fol-
lowing mathematical model: 
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( ) ( )

( )

( ) ( )

( ) ( )

20d
1 ,

d
d

,
d

d
,

d
d

.
d

X t a N
X dX X mX

t k N
S t

K SX S
t

E t
SX E

t
I t

E b I
t

δ η

µ β µ

β µ γ

γ µ


= − − − − +


= − −


 = − +

 = − +

            (2.1) 

where µ  is the natural death rate of plant population, γ  is the conversion 
rate from the exposed to infectious plant, δ  is the killing rate of insecticide, m 
is the Density-dependent coefficient of vector population, η  is the resistance 
effect of the vector to insecticides, and b is the disease-induced death rate of 
plant. The inoculation rate of healthy plants by vectors is SXβ . 

In the following, we mainly discuss the dynamic behavior of model (2.1). 

2.1. Basic Reproduction Number 

For convenience, we denote 0a a k= , 1w k= , 1 1 1 hqµ σ γ µ= + + + ,  

2 2 2 hq dµ γ µ= + + + . System (2.1) becomes: 

( )

( )

( )

( )

2
1

1

2

d
,

d 1
d

,
d

d
,

d
d

.
d

X t aN X d X mX
t wN

S t
K SX S

t
E t

SX E
t

I t
E I

t

µ β µ

β µ

γ µ


= − − +


= − −


 = −

 = −

                 (2.2) 

Define  

 ( ) ( )
4, , , | , .

1
aKX S E I S E I K X

m wK+

  Ω = ∈ + + ≤ ≤ 
+  

       (2.3) 

It can be shown that the set Ω  is invariant.  
Lemma 1. The set Ω  is the positively invariant of system (2.2).  
Proof. First, it is easy to obtain the positivity of the solutions of system (2.2). 

Then we will discuss the boundedness of the solutions of system (2.2). 
Adding the last three equations of system (2.2), we have  

 
( )d

.
d

N t
K N bI

t
µ µ= − −                     (2.4) 

Thus, ( )limsupt N t K→∞ ≤ . It follows from the first equations of system (2.2), 
we have that there exists 1 0T >  such that  

 
( ) 2

1

d
, for .

d 1
X t aK X mX t T

t wK
≤ − >

+
             (2.5) 

Solving the differential inequality (2.5), we have  
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( )
( )

( ) ( ) 1

0
1

0 0 e
1

aK t
wK

aK X
wKX t

aKmX mX
wK

 − + 

 
 + ≤

 + − + 

 

Therefore, we have ( ) ( )
limsup

1t
aKX t

m wK→∞ =
+

.                      □ 

Since Ω  is a positively invariant and globally attractive set for system (2.2). 
From now on, we restrict the analysis of system (2.2) to the positive invariant set 
Ω . 

Obviously, the disease free equilibrium point (DFE) exists and is given by 
( )0 0, ,0,0P K= . 

The basic reproductive number denoted by 0 , is defined as the average 
number of secondary infections caused by an infectious individual in a fully 
susceptible population during its infection period. We shall compute 0  using 
the next generation operator approach as described by Van den Driessche and 
Watmough [14] as follows. 

Denote the infectious compartments as ( )T, ,x X E I= . Let  

( ) ( ) ( ) ( )( )T
1 2 3

1
, ,

0

aN X
wN

F x F x F x F x SXβ

 
 + 

= =  
 
 

 

and  

( ) ( ) ( ) ( )( )
2

1
T

1 2 3 1

2

, ,
d X mX

V x V x V x V x E
I E
µ

µ γ

 +
 

= =  
 − 

 

represent the rate of appearance of new infection, the transfer rate between 
compartments, respectively. The Jacobian matrix of F and V with respect to x at 

0P  are given below 

( ) ( )
1

1

2

0 0 0 01
0 0 , 0 0 .

0 0 0 0

aK
dwK

x K xβ µ
γ µ

 
   +   = =   
   −   

          (2.6) 

Using the next generation matrix approach, the basic reproduction number 

0  is the spectral radius of 1− , i.e., 

( )0
1 1

aK
d wK

=
+

                        (2.7) 

According to [14], we have following result.  
Theorem 2. If 0 1< , the disease-free equilibrium 0P  local asymptotically 

stable, and if 0 1> , the disease-free equilibrium 0P  is unstable.  

2.2. The Existence of Endemic Equilibrium  

We obtain the endemic equilibrium ( )* * * * *, , ,P X S E I  by setting the right 
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hand side of system (2.2) to zero as following: 

2
1

1

2

0,
1

0,
0,

0.

aN X d X mX
wN

K SX S
SX E
E I

µ β µ
β µ
γ µ

− − =
+
− − =
− =

− =

                      (2.8) 

By simple calculation, it follows from the equations of (2.8), we get  

 
( )

( )

( ) ( )( )
( )( )

**
* *

1*

* * *
2 1 2* *

* *
1

, ,
1

1
, ,

1

K NaNX d I
bm wN

K N m wN K N
E S

b b aN d m wN

µ

µµ µµ µ

γ βγ

−
= − =

+

− + −
= =

− +

         (2.9) 

where * * * *N S E I= + + . Substituting * * *, ,S E I  in (2.9) into * * * *N S E I= + + , 
we have  

 ( ) ( )2* * *
0 1 2 0,f N a N a N a= + + =                  (2.10) 

where  

 

( ) ( )( )
( ) ( )( ) ( )( )
( )( )

0 1 2 1 2

1 1 2 2 1 1 2

2 1 2 1 2

,

1 ,

.

a a wd b mw

a m wK K a wd d b

a K d m

β γ µ µ γ µµ µ

µµ µ µ β µ γ β γ µ µµ

µ β µ γ µ µ

= − + + +

= − − + − − + +

= + −

 (2.11) 

It is easy to obtain that 0 0a >  and 1

1

0
d

a d w
>

−
 if 0 1> . In order to ensure 

the positivity of *X , it follows from (2.9), we have  

 1

1

0.
dK N

a d w
≥ ≥ >

−
                    (2.12) 

By calculating, we get  

 
( )( )

( )
( ) ( )( )

1 2 1 01
2

1 1

1 0

1 1
0

1 1 0

am d wKdf
a d w a wd

f K rbK d wK

µµ µ

β

+ − 
= − < − − 

= + − >





       (2.13) 

From (2.12) and (2.13), we have that Equation (2.10) has a unique positive solu-

tion 
2

* 4
2

b b acN
a

− + −
=  in the interval 1

1

,
d K

a d w
 
 − 

. Consequently, we can 

get the following theorem.  
Theorem 3. System (2.2) always has a disease-free equilibrium ( )0 0, ,0,0P K . 

In addition, when 0 1> , it also has a unique endemic equilibrium  
( )* * * * *, , ,P X S E I . 

3. Stability of Equilibria  

In this section, we will discuss the global stability of the disease-free equilibrium 

0P  and the local stability of the endemic equilibrium *P .  
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Theorem 4. If 0 1< , the disease-free equilibrium 0P  of system (2.2) is 
globally asymptotically stable.  

Proof. Let ( )x S t= ∈  denote the uninfected compartment and  
( ) ( ) ( )( ) 3, ,y X t E t I t= ∈  denote all infected compartments. System (2.2) can 

be rewritten as  

 
( )

( )

d , ,
d
d , ,
d

x G x y
t
y H x y
t

 =

 =


                        (3.1) 

where ( ),G x y K SXµ β µ= − − , and  

( ) ( )

2
1

1

2

1
, , ,0 0.

aN X d X mX
wN

H x y SX E H x
E I

β µ
γ µ

 − − + 
= − = 
 − 

 

The disease-free equilibrium is now denoted by ( )0
0 ,0P x , where 0x K= . Ac-

cording to [15], we know that the disease-free equilibrium of system (2.2) is 
globally asymptotically stable provided that the following two conditions hold: 

(H1) For ( )d ,0
d
x G x
t
= , 0x  is globally asymptotically stable; 

(H2) ( ) ( )ˆ, ,H x y Ay H x y= − , ( )ˆ , 0H x y ≥  for ( ),x y ∈Ω , where  

( )0 ,0yA D H x=  is an M-matrix. 

Clearly, ( )d ,0
d
x G x K S
t

µ µ= = − , and 0x K=  is globally asymptotically 

stable. 

( )
1

0
1

2

0 0
1

,0 0
0

y

aK d
wK

A D H x Kβ µ
γ µ

 − + 
= = − 

 − 

 

and 

�

�

� ( )

2
1

2

3

1 1ˆ

0

aK aNH X mX
wK wN

H H
K S X

H
β

    − +    + +   = =
 − 
     

 

It is easy to see that (H1) and (H2) are satisfied if 0 1> . Thus we can conclude 
that 0P  is globally asymptotically stable for 0 1< .                    □ 

Then, we examine the local stability of the endemic equilibrium *P . The Ja-
cobian matrix at the endemic equilibrium ( )* * * * * *, , , ,P S E I X Y  is  

 

( )
*

*
2*

*

*
* * *1

1*

2

0 0
1

0 0 .

0 0

aXmX
wN

b
E X X X

X

µ

µ
β β µ β

γ µ

 
− 

+ 
 

− − =
 
 − − −
 
 − 

           (3.2) 
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By calculating, the characteristic equation of matrix *  is  

 4 3 2
1 2 3 4 0,b b b bλ λ λ λ+ + + + =                     (3.3) 

where  

 

( )

( )
( )

* *

* * *
2 2

1

2
*

3
*

* * 1
4 1 2 2*

, ,

, ,

0,
0,

0,

0.
1

A mX B m X

C X D X r X

b A C
b AC B D

b AD BC br X

ab Eb m X X
wN

µ µ

β µ µ µ β µ β

β

γµ
µ µ β µ

= + =

= + + = + +

= + >
= + + >

= + + >

= + + >
+

           (3.4) 

It is easy to get ( ) *
1 2 3 0b b b A C AC AB CD br Xβ− = + + + − > . By Routh-Hurwitz 

criterion, *P  is local asymptotically stable if and only if ( ) 2
1 2 3 3 1 4 0b b b b b b− − > . 

Thus, we obtain the following result.  
Theorem 5. If 0 1>  and ( ) 2

1 2 3 3 1 4 0b b b b b b− − > , the endemic equilibrium 
*P  is locally asymptotically stable.  

4. Uniformly Persistence  

The uniformly persistence of system (2.2) is studied in this section.  
Theorem 6. System (2.2) is uniformly persistent provided that 0 1> , that is, 

there exists a constant 0 0η > , such that  

( ) ( ) ( ) ( )0 0 0 0liminf , liminf , liminf , liminf .
t t t t

X t S t E t I tη η η η
→∞ →∞ →∞ →∞

≥ ≥ ≥ ≥  

Proof. Denote the following three sets:  

 

( ){ }
( ){ }

4

4
0

0 0

, , , : 0, 0, 0, 0 ,

, , , : 0, 0, 0, 0 ,

\ .

X S E I R X S E I

X S E I R X S E I

χ

χ

χ χ χ

= ∈ ≥ ≥ ≥ ≥

= ∈ > ≥ > >

∂ =

        (4.1) 

In order to illustrate that system (2.2) is uniformly persistent, we need only to 
show that 0χ∂  repels uniformly the solutions of 0χ . 

Set  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ){ }0 00 , 0 , 0 , 0 : , , , , 0 .M X S E I X t S t E t I t tχ χ∂ = ∈∂ ∈∂ ∀ ≥ (4.2) 

We claim that  

 ( ){ }0, , , , 0, 0, 0 .M S E I S E I∂ = ≥ ≥ ≥                (4.3) 

Obviously, ( ){ }0, , , , 0, 0, 0S E I S E I M ∂≥ ≥ ≥ ⊆ . Next we want to show  

( ){ }\ 0, , , , 0, 0, 0M S E I S E I∂ ≥ ≥ ≥ = ∅ . If it does not hold, there exists a point 

( ) ( ){ }0 0 0 0, , , \ 0, , , , 0, 0, 0X S E I M S E I S E I∂∈ ≥ ≥ ≥ . In the following, we di-
vide into three cases to discuss: (i) 0 0X > , 0 0E = , 0 0I = , (ii) 0 0X > , 

0 0E > , 0 0I = , and (iii) 0 0X > , 0 0E = , 0 0I > . 
For case (i), i.e., 0 0X > , 0 0E = , 0 0I = . From the first equation of system  
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(2.2), we have 2
1

d
d
X d X mX
t
≥ − − , which means that ( ) 0X t >  for any 0t > . 

It follows from the third equation of system (2.2) that ( ) ( )
0

d 0 0 0
d t

E S X
t

β
=

= > . 

There exists 0 0τ > , such that ( ) 0E t > , for ( )00,t τ∈ . Let 1 0 2τ τ= , we have 

( )1 0X τ > , ( )1 0S τ > , ( )1 0E τ > . If ( )1 0I τ > , then ( )0 0 0 0, , ,X S E I M ∂∉ . 

This is a contradiction. If ( )1 0I τ = , we have ( )
1

1
d 0
d t

I E
t τ

γ τ
=

= > , then there 

exists ( )2 1 0,τ τ τ∈ , ( ) 0I t >  for all ( )1 2,t τ τ∈ . This is a contradiction. 

Similarly, we can prove the other cases. Based on the above analysis, we have 

( ){ }\ 0, , , , 0, 0, 0M S E I S E I∂ ≥ ≥ ≥ = ∅ . This proves (4.3). 
Clearly, ( )0 0, ,0,0P K  is the unique equilibrium of system (2.2) in M ∂ . We 

shall prove that ( )0 0, ,0,0P K  repels the solutions in which initial values are 
taken in 0χ . 

Since 0 1> , we can choose a small enough positive constant ε , satisfied  

 
( )
( ) 1 1 2 .

1
a K

d m
w K

ε
ξ ε

ε
−

− = >
+ −

                   (4.4) 

Suppose ( ) ( ) ( ) ( )( ), , ,X t S t E t I t  is the solution of system (2.2) with initial 
value ( )0 0 0 0, , ,X S E I  in 0χ . Let 2 2ξ ε= . We claim that  

 ( ) ( ) ( ){ } 2limsup max , ,
t

X t E t I t ξ
→∞

>                 (4.5) 

If (4.5) does not hold, then there exists 1 0T >  such that  

 ( ) ( ) ( )2 2 2 1, , , for .X t E t I t t Tξ ξ ξ≤ ≤ ≤ >              (4.6) 

From (2.4) and (4.6), we have 
( )

2

d
d

N t
K N

t
µ µ µξ≥ − − . Solving the inequality,  

we have ( ) ( )( )2 0 2e tN t K N Kµξ ξ−≥ − + − − . It means that exists a 2 1T T> , for 
any 2t T≥ , ( )N t K ε≥ − . From the first equation of system (2.2) and (4.4), we  

have 
( ) ( ) ( )2d

2
d

X t
m X t mX t

t
ε≥ − . Solving the inequality, we have  

( ) ( )
( ) ( )( ) ( )2

2
2

2 2

2

e 2m t T

m X T
X t

m mX T mX Tε

ε

ε− −
≥

− +
. Thus, there exists a 3 2T T> , for  

any 3t T≥ , ( ) 22X t ε ξ> = . This is a contradiction with (4.6), and the claim 
holds. Thus, ( )0 0

sW P χ = ∅∩ . Every forward orbit of system (2.2) converges 
to 0P . By Theorem 4.6 of [16] we can draw a conclusion that the system (2.2) is 
uniformly persistent with respect to ( )0 0,χ χ∂ . This completes the proof.   □ 

5. Numerical Simulation  

In this section, numerical experiments are given to verify our theoretical results, 
and the control measures are evaluated. 

The parameters in model (2.2) are chosen as 3.5a = , 0.5w = , 5.5d = , 
3.2δ = , 0.4η = , 0.03m = , 0.1µ = , 100K = , 0.01β = , 0.25γ = , 0.2b = , 
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and the initial condition is taken as ( )0 100X = , ( )0 80S = , ( )0 50E = , 
( )0 50I = . By computing, we get 0 0.9249 1= < . From Figure 1, we can ob-

serve that the disease will die out.  
Let 5.4a = , 6.2δ = , and other parameters are taken as Figure 1. Thus, 

0 1.1484 1= > , the disease will be uniformly persistent (see Figure 2). Figure 3 
shows the time series of the infected host with different initial values. By the 
numerical simulation, we would give a guess that the endemic equilibrium is 
global stable when 0 1> .  

Figure 4 shows the comprehensive effects of insecticide resistance η  and 
killing rate of insecticide δ  on the basic reproduction number. Numerical re-
sult illustrates that increasing the killing rate δ  results in significant reduction  
 

 
Figure 1. Time series of system (2.2) when 0 1< . 

 

 
Figure 2. Time series of system (2.2) when 0 1> . 

https://doi.org/10.4236/jamp.2022.102028


C. M. Zeng et al. 
 

 

DOI: 10.4236/jamp.2022.102028 369 Journal of Applied Mathematics and Physics 
 

 
Figure 3. Time series ( )I t  of system (2.2) with different initial values when 0 1> . 

 

 
Figure 4. The effects of insecticide resistance η  and killing rate of pesticides δ  on 0 . 

 
in 0  to below unity when the resistance η  is low. But when resistance η  is 
large, increasing the kill rate δ  has no significant effect on 0  increasing the 
killing rate δ . Therefore, reducing resistance is a valuable method to control 
disease.  

6. Conclusion  

In this paper, we formulated a plant disease transmission model incorporating 
plant-dependent saturated reproduction function, insecticides spraying and their 
resistance. We discussed the stability of equilibria and permanence of the model. 
We carried out the numerical simulations to illustrate the analytical results and 
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evaluate the effect of chemical control and insecticide resistance on the spread of 
plant disease. Theoretical analysis and numerical simulation results show that 
the resistance of insecticides has a great impact on the control or elimination of 
plant diseases. Therefore, timely pesticides switching, biological control, and in-
tegrated control are effective measures for prevention and control of plant dis-
eases. 
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