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Abstract

This paper is considered the existence of positive solutions for a class of ge-
neralized quasilinear Schrédinger equations with nonlocal term in R" which
have appeared from plasma physics, as well as high-power ultrashort laser in
matter. We use a charge of variables and obtain the existence of solutions via
minimization argument.
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1. Introduction

In this paper, we consider investigating the existence of solutions for the follow-

ing generalized quasilinear Schrédinger equation with nonlocal term

~div(g® (u)Vu)+ g(u)g’(u)|Vu]* +V (x)u

(1.1)
= A7 +lul? ol us Al
N-2 2N - 2N -
where N>3, O<u<N, f< N ,1SqSN_2, N#Sp< N—Zﬂ’

the function V e C(RN ,R+), gisa C' function with g'(t)<0 forall t>0,
g(0)=0, lim__ g(t)=a.

When g(u)=1, (1.1) boils down to the so called nonlinear Choquard or
Choquard-Pekar equation

—Au+V (x)u =2} #lul® JJul* u Bl (1.2)
Such like equation has several physical origins. The problem
—Au +u:[|x|fl*|u|2Ju, (1.3)
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appeared at least as early as in 1954, in a work by Pekar describing the quantum
mechanics of a polaron at rest [1]. In 1976, Choquard used (1.3) to describe an
electron trapped in its own hole and in a certain approximation to Hartree-Fock
theory of one component plasma [2]. In 1996, Penrose proposed (1.3) as a model
of self-gravitating matter, in a program in which quantum state reduction is un-
derstood as a gravitational phenomenon [3]. In this context, equation of type
(1.3) is usually called the nonlinear Schrédinger-Newtonequation. The first in-
vestigations for the existence and symmetry of the solutions to (1.3) go back to
the works of Lieb [2] and Lions [4]. In [2], by using symmetric decreasing rear-
rangement inequalities, Lieb proved that the ground state solution of Equation
(1.3) is radial and unique up to translations. Lions [4] showed the existence of a
sequence of radially symmetric solutions. Ma and Zhao [5] considered the gene-

ralized Choquard equation

—Auu =l P u(g = 2), (1.4)

and proved that every positive solution of it is radially symmetric and monotone
decreasing about some fixed point, under the assumption that a certain set of
real numbers, defined in terms of N, and ¢, is nonempty. Under the same as-
sumption, Cingolani, Clapp, and Secchi [6] gave some existence and multiplicity
results in the electromagnetic case and established the regularity and some decay
asymptotically at infinity of the ground states. In [7], Moroz and Van Schaftin-
gen eliminated this restriction and showed the regularity, positivity and radial
symmetry of the ground states for the optimal range of parameters and derived
decay asymptotically at infinity for them as well. Moreover, they [8] also ob-
tained a similar conclusion under the assumption of Berestycki-Lions type non-
linearity. We point out that the existence, multiplicity, and concentration of such
like equation have been established by many authors. We refer the readers to [9]
[10] for the existence of sign-changing solutions, [11] [12] for the existence and
concentration behavior of the semiclassical solutions and [13] for the critical
nonlocal part with respect to the Hardy-Littlewood-Sobolev inequality. For more
details associated with the Choquard equation, please refer to [14] [15] [16] and
the references in. Li, Teng, Zhang, Nie [17] investigate the existence of solutions
for the following generalized quasilinear Schrodinger equation with nonlocal

term
—div(g2 (u)Vu)+ g(u)g’(u)+|Vu|2 +V (x)u

(1.5)
= i[|x|_" =x<|u|pJ|u|p_2 u, xeRN

and prove the existence of solution.

In this paper, our main ideas come from [18] and the assumption of g from
[19]. Our purpose is to search for the existence of nontrivial solutions of (1.1) by
implicit function theorem. For convenience, we introduce several notations: C de-

notes a positive (possibly different) constant, LP (]RN ) denotes the usual Lebesgue

1
space with norms ||u||Lp(RN) = (_[]RN |u|p dx)p , 1< p<w, Cf (RN ) be the collec-
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tion of smooth functions with compact support. Next, we introduce the energy

functional of Equation (1.1)

u)=lf N[gz(u)|Vu|2 +V(x)u2de
2= (L6)
. [|x|_” *|u|pJ|u|p dx—%j&N Ju*" dx

however, /is not well defined in H* (RN ) because of the term -[RN 9° (u)|Vu|2 dx .
To overcome this difﬁculty, we make a change of variable constructed by Shen
and Wang in [20]: J g(s)ds, then,

J(v):—j N[|Vv| +V (X |G’ v| }dx
2p &N (D | ! | )|p}|G_l(V)|pjdx+ it |:ﬁ|G_1(V)q+l:|dX
[ v (0l )] Jox (17)

G "o ' a
_ij N | (V(y))| | (V(X))| dxdy—f N{ip_l(v)q }dx
2pr |X_y|ﬂ =N g+1
We say that uis a weak solution of (1.1), if
<I’(u),go>:_[RN(gz(u)VuV¢+g(u)g’(u)|Vu|2(p+V(x)U(p)dx

=[] ol g = B ol g

(1.8)

1
for all peCy (]RN ) Let = [WV/], by [20], we know that the above for-

mula is equivalent to
i)
TCR
—1 [|x|*2 *|Gil (V)|p HG{ (V)|p72 i dx (1.9)
RN g (G—l (V)) ’
SRR

e )

forall yeCy (RN ) . Therefore, in order to find the solution of (1.1), it suffices

<J'(v),y/> = J]RN VW +V (X)

wdx

to study the solution of following equation:
o) MR e
X

9(67(v) 9(67(v)

-2

G (v)

(1.10)

Jis defined on the space
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H, (]RN )= {v e Hl(]RN ): j]RN VW[ +V (x)v2dx < +oo}
we can define the norm on H_ (RN ) by
"V”ZH\} (RN) = .[]RN |Vv|2 +V (X)VZdX

then, H, (RN ) is a Banach space. In the following, we always assume
VeC (RN ,R*) and inf_, V (X)>1. Let us consider the following assumptions
of potential function V ( X) :

(V) Iim‘x‘wv (X) =403

(V3) V(x) isradially symmetric.

Next, we will introduce the properties of some functions.

Lemma 1.1. [19] The function g(t), G (t),G(t) enjoys the following prop-
erties.

(g) the function G(t) and G™(t) are strictly increasing and odd,

(&) [|<|c™(t)|<lt/a forall teR;

(g) G™ (t)/t is nondecreasing forall teR and lim_,G™ (t)/t =1,
lim_,,, G (t)/t=1/a;

(g) t"<(t/g(1))G(t)<t*/a forall teR.

Next, we set forth some preliminary results.

2. Preliminary Results

To begin with, we prove some functions are continuous, more detailed see [21].
Lemma 2.1 If ||Vn _V"H$ (RN) — 0, then

JonV ()67 (v) =V ()G (v)" dx - 0.

Proof: By sobolev imbedding inequality, Lemmal.l and definition of g we

" [V ()G (v, ) =V (x)G(v) dx
=2V () fG(<9;();)) (1, V)
g%jRNV(x)|v+6(vn—v) v, —v|dx
<2 [V (0 v &1V (v 0y, ~v)f o
Sa—zz TV (0l v ([, V (x)v2ds [V ()|, " i)
< 2 Vg ) [ © 4l Vg sy | > 01 > 4
where 0¢(0,1). .

Lemma 2.2. The map. V—>G™(v) from H, (RN) into L' (RN) is con-
tinuous for 2<r<2".

Proof: By the definition of g, we have
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G*(v,)-G™ (v)|r dx< [,
1 r r
<o (l +Jax

G™(v,)-G™(v)| dx

fio

Assume V, >V in H} (RN ), moreover, the imbedding from H, (RN) into
L (RN ) is compact where r e [2, 2" ) , from Lemma 3.4 [22], we get the result. ®

Next, we introduce some minimization with corresponding energy functional

and define
m, = inf E(u)
ueMy
where
M, ={u & HY(RY):[ul s =b}, a>0
and
1 2 2 2 ,3 q+1
E(u):EIRN[g (u)[Vu[" +V (x)u ]dx—ijNM dx.
We also define
@, = inf F(v)
veW,
where
W, :{VE Hy (RN):"G‘l(v) e =b}, b>0
and
1 . . +1
F(V)ZEIJRN (IVv|2+V(X)G 1(V)2)dx_$jm GH(v)[" dx

Therefore, we have following fact.
Lemma 2.3. m, =, forevery a>0.
Proof: Forany veW,,let U=G"(v), from the definition of g we get

v 2
J'RN |VU|2 dX:J‘RN 2| V|

0°(G*(v))

J'RN u’dx < J'RN V (x)G™ (V)" dx < +oo,

dx < a—lszN |Vv|2 dx < +oo,

so ueM,. It follows that F(V)=E(G‘l(v))=E(u)2mb, hence @, >2m,,
moreover, forany ue M, ,let v=G(u), then U=G71(V).We assume
E(u)<+oo,since ueHé(RN), 2<Qq+1<2",then ueLQ+1(RN).Wehave

1 2 ﬂ +1
EIRN[QZ(U)|VU| +V(X)u2}dx=E(u)+m_[RN|u|q dx < +0 .

Then .[RN \ (X)G'1 (V)2 = jRN \ (x)uzdx < +oo . It shows that veW,, which im-
plies that E(u)=E (G'1 (v)) =F (V)2 @,, hence m, >@,, this completes the
proof. [ ]
Lemma 2.4.1) F (V) is well defined and continuous for 2<r<2".
2) F(V) is Gateaux-differentiable. For Ve H; (RN ) , the G-derivative F'(V)

is a continuous function, and F'(V) is continuous in v in the strongly-weak
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topology; that is, if v, —V stronglyin H, (RN ), then F'(v,)— F'(v) weakly.
Proof: (1) Forany ve H& (RN ) , we have
[w]G™(v) ™ dx < Clo V""" dx < +o0, then

(V)= 2 [V +V ()62 () a2 |

q+1

B dx

_1 IRN

q+
LI
(q+1)a%* ="

< 2_12ka [V +V (x)v2dx +
a

G (v)

1 2 2 q+1
= N .
< e IR [VV[” +V (x)vZdx + IV dx < +o0

with the proof of continuity, note that / consists of three terms. By Lemma 1.1,

we need to check the superlinear term only.

1 1 q+1 B q+1
mRNG (n) dx —m RNG (V) dX‘
_ J,O dtIRN |Gfl (v+t(vn ))| - (V+t(vn —V)) o
(G v+t v, —v )

v| |v —v|dtdx

s”|v+t (v, —v)

LZ(RN) "Vn _V"LZ(JRN)

<Clv, -Vl

where 1<q<

N-2
For (2) we consider the second and the third terms of the functional /, we see

for geH, (RN ) , using Holder inequality, we get

1 1 2 -1 2 V(X)Gil(v)
EIRNV(X)(G (V+tg) =G (v) )dx—jRNm¢dx

_ Eds RNV(X){ G (v+tsg) G l(v J¢dx o

g(G‘l(v+ts¢) 9(G™(v))

N

1

<I:dS[IRNV(X)| G'l(v+tsg) G 11(V) | dx I:dS(IRNV(X)¢ZdX)E

‘g G+ v+ts¢) 9(G™(v) )‘
Using the definition of gand Lemma 1.1, we know

| Gt (v+tsg) ~ G(v) |2

‘g(G’l (v+ts¢)) g(G’ (v))‘

< |G’1 (V+tsg)+G™ (v)|2

<C (|G’l (v+ts¢)|2 +|G’l (v)|2)
<C v+ tsgf + )
< C(|v|2 +|¢|2).
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By the dominated convergence theorem

S T (v+tsg) ~ G(v) y
deRN { ( (v+ts¢)) g(Gl(v))J¢d

-0 (t—0)

For the third term, we have
G v)q_1 G (v)

O D

Idf [|G (veis) "G (veisg) |6 g(v)| GI(V)J¢dX

|G

( (v+ts¢)) (G (v ))

Similarly to above, by the dominated convergence theorem

6 (vtsg) 67 (v)G(v)

!Tf}tj- ] [( v+ts¢))_ (G (v)) ]¢dxo

The Gateaux derivative J '(V) has the form
V()GY) o G (v)[ e (v)
g (G’l (v)) g (G’l (v))

<C "V"H\} (]RN) "¢"H\}(RN) +C ”Gi1 V) qu(]RN) ||¢||L2(RN)

(J ’(v),¢> = J.]RN VVV gdx +IRN

@dx

from Sobolev imbedding theorem, we get J'(V) is a continuous linear func-
tional on H; (RN )
Finally, the continuity with strong-weak topology is easy to check, as v, >V
in Hy (]RN),for any ¢eH; (RN),
G™(v G (v
J‘RN vV (X) ( n ) ( )

g (G—l (Vn )) -V (X) g (G_l (V))

Remark 2.5. Lemma 2.4 does not show that F (v) is C”, so we cannot use

dx — 0. [

the Lagrange multiplier theorem. But we can get our conclusion we want exactly
by a similar argument for the Lagrange multiplier theorem. Next, we state our

main conclusion. The idea of our proofis based on the work in [18] [22] [23].

3. Main Conclusion

Theorem 3.1. Let N>3, 1<qg< N , 2N_'Ll£p<2N ad , BeR and
N-2 N N-2

q < p. Assume (V;) or (V;) holds. Then for every b >0, there exists A(b)eR

such that Equation (1.1) with A= /I(b) has a positive weak solution ueM, .

Remark 3.2. From the assumption of V, we know H, (RN ) embedding into
LP (RN ) is compact. In the process of the proof of theorem 3.1, it is important for

us to construct auxiliary function, then by implicit function theorem to prove it and

lemma 3.4 [22] play a great role in this paper. Moreover, when — 2 <q<?2
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is a open question for Equation (1.1), someone could do it if they are interested.

Proof of Theorem 3.1: Step 1: By the assumptions of (1}) or (V,), @, is
achieved at some 0<v, <W, with v, #0. Let {v,} €W, be a minimizing se-
quence for @,. Set U, =G™ (Vn). Then {un} € M, is a minimizing sequence
for m,. We can assume u, >0. It shows that E(u,)—>m,, so there exists
C >0 such that

C>E(u,)

(
g +
= [gz (uy)[Vu,|* +V (x)u,ﬂdx _ﬁIR” Ju, " dx

1

2

1 .
>[I0l +un ] x—q%j 0, dx.

By Holder inequality,

Jalu,

A(q+1) (1-2)(a+1)

™ dx < (IRN |u, | dx)T (IRN Ju | dx) P

< MLRN |un |2 dx +WJRN |un|p+1 dx

2 p+1
— /’L(q—i_l)J' |U |2 dx_,’_(l_ﬂ’)(q-'_l)apﬂ
2 RN p+1
__2p-9)
where i—(q+l)(p_1).Then
>E(u,)
1 2 2
>E-[RN [|Vun| +V(x)uanx
_L[ﬂ(q—i_l) NV(X)|Un|2dX+(l_ﬂ)(q+1)ap+lj
q+1l 2 °® p+1
E_M 2 2 _M p+l
(3o eIt v eonr o) e
Because of f3 < N_Z, 1 _Alr-9) >0. It implies that u,(X) is bounded

2N 2 (gq+1)(p-1)

in H; (RN ) By the compact embedding result from H, (RN ) into L (RN)
for 2<r<2'.Wemayassume that u, —u, in H; (RN ), u, > Uu, in
Lr(RN) for 2<r<2" and u,(X)—>u,(x) ae xeR". Hence u,eM,,
since u, >0,u; 20 and u, #0.

Using the same argument as the process of the proof of Lemma 2.1 in [20] and
noting that u, —u, in L% (RN ) We have

m, = limE(u,)

n—oo

.. 1 2 2 g+1
zllrnn_wf{gjw[g (U )[Vu,|" +V (x)u }dx—q%_[ |u, | dx}

> E(u,)

Hence m, isachievedat u, and
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V, =G (u,) eW,, F(v)=E(G™(v))=E(u,)=a,
and the property of gimplies v, 20 and v, #0.
e (ve)'le vy’

x=y["

Step 2: Set h, = inzN dxdy for

2p
ZNN_‘U <p< ZNN—_Z/J .Then h (v)e Cl(Hé (RN )R) . Actually, for any
peH; (RN ), by Sobolev inequality and Hélder inequality, we get
4" +[6 ) e (vO)f “ 6 (u(x)
9(6™ (v(x)))
S U0 )
- IRN.[]RN |x—y|”

G (v(x))

Kh;’ (V),(p>‘ - .[]RN

o|dx

|¢p| dydlx

p-1

p LP"(]RN) ||¢||Lp'(RN)

LP'(JRN)

<cle(v(y)

<Clfun o

<C "q)"H\l, (RN)

where r =

and 22 pr<2’,s0 (v)<(H (E"))

Let v, >V in Hy (]RN ) Up to a subsequence, we can assume V, —>V a.e.
in R and v, >V in Lr(RN) for 2<r<2".Hence

(g ()= ().
[ {[|x|”*|el(vn>"}|el(vn>

"6 (y,)

9(G(v))

el oo )
o(c7 () ’

| X +(je ) -Je ) ot ()
I 9(67(w))

[ e (V)H{'G ()6 () fe (e (V)}odx

+

9(G™(v,)) 9(G™(v)

Gt
U(rY) (Vn )

)t w) fermTerw))
9(67(v,)) 9(67(v)

(3.1)

p-1

<C LPr (RN ) ||¢||Lpr (RN )

o (w)

p_|G_1(V)|p

e (o

L(rY)
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Since v, >V in H} (RN ), we get ||Vn||H\1,(RN) <C, 2<pr<2° and by defini-
tion g then

p-1
LPr ]RN ||¢||Lpr RN)

|-

(Vn) ' _|G_1 (V)|p
(¥l o)+ M) )

then by Lemma 3.4 [22] and assumption, we get

G (v)

(R

H|Gfl (V )p _|Gfl (V)|p L,(RN) Gt (v ) :prl(]RN "(p"l_pr ]RN) — 0, n— +oo.
Similarly,
Lo ) e w) fet ) e v)
"G (V) L () [ g(G’l (Vn )) - g(G’l (V)) Q - —0, n—> +oo,

2N —pu 2N —pu
1 1 N
Hence, follows that h (v)eC (HV (R )R) for LA
Step 3: For any b >0, there exists A(b)eR such that 0<u, = G (v,)eM,
is a weak solution of Equation (1.1) with 4 = A(b). In fact, by Lemma 2.4,

V()G G (v) e (v)
9(6 () 9(G™(v))
and F(v)e(H}(R")) for all veH(R"). Since hy(v)eC(HE(R")R
and v, eW,, the implicit function theorem implies that for all ve N ( (V)
(the null space of h{(V,)), there exista C'-map g :[0,1] >W, such that
f(0)= Va and 9'(0) =v. Now, we prove <F (Vb),v> =0 forall

0&{\/ .Indeed, for every t>0, f(t)=v, +v+0(t)eW,, where

—0 as t—)O Let

<F (V),(p> = IRN VW + -[IRN _ﬂ.[ X

o(r)= F(vb +r(tv+0(t)))
By Lemma 2.4
&' (r) = lim O(r+6)-o(r)

-0

o () (vro(1) - F (v +r(v--o(t))

50 )
:<F’(vb + r(tv+o(t))),tv+o(t)>.

Hence there existan 0 € (0,1) such that

F(vb+tv+o(t))—F(vb)=<F’(vb+¢9(tv+o tv+o(t >

:t<|:'(vb+9(tv+o(t))),v>+t<F (v +0(tv+o(t ))) Ot )>

Take limit t — 0, by Lemma 2.4, one has F'(v, +6(tv+0(t))) — F'(v,) weak-
ly. It follows that <F'(vb +0(tv+ o(t))),v> —(F'(v,),v) and
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o(t)

{F'(vb + 9(tv+ o(t)))} is bounded. Since S —0 as t— 0, wehave

<Fb'(vb+9(tv+o( ))) (t)>
Since F(V,)=a,, one has
0<F(v, +tv+o(t))=F(v,)

:t<F (v, +0(tv+o(t)) +t<F v, +0(tv+o(t))), T>
Hence

O<< (v +0(tv+o t)

v +0(tv+o( t))) @>

By arbitrariness of v; one has
( ) > 0, for every VGN( ,’)(Vb)) Set
,V’> =1, forevery peH, (RN ) let

M, (%))
Then t//eN(h;(vb)).Itmeans < "(v )t//> 0, ie
(F’(vb),q)):(F (Vo) v><h (Va),go>.
Put A= l(b)z( (Vb),v'>,wehave

<F’(Vb),gz)>:/1<h;J (Vb),go>,

l

Take limit t — 0, we get < (V)
<F'(Vb) —V> >0. It follows that <

v
F
v’eHV< )besuchthat< v)

a

namely,

IRN Vv, Vedx + IRN v

— A |} o

|G*1(vb)|Q’1G*l<vb>

9(G™*(w))

It implies that U, =G™(V,)e M, isa weak solution of Equation (1.1). Moreo-

+ B

ver, the maximum principle implies u, >0. [

Acknowledgements

This work is supported by the Natural Science Foundation of China (11961081).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1]  Pekar, S. (1945) Untersuchungen iiber die Elektronentheorie der Kristale. Akademie

DOI: 10.4236/jamp.2022.102027

357 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.102027

P. Liao et al.

(3]

(4]

(5]

(6]

(7]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Verlag, Berlin.

Lieb, E.H. (1977) Existence and Uniqueness of the Minimizing Solution of Cho-
quard’s Nonlinear Equation. Studies in Applied Mathematics, 57, 93-105.
https://doi.org/10.1002/sapm197757293

Penrose, R. (1996) On Gravity’s Role in Quantum State Reductions. General Rela-
tivity and Gravitation, 28, 581-600. https://doi.org/10.1007/BF02105068

Lions, P.L. (1980) The Choquard Equation and Related Questions. Nonlinear Anal-
ysis. Theory, Methods & Applications, 4, 1063-1072.
https://doi.org/10.1016/0362-546X(80)90016-4

Ma, L. and Zhao, L. (2010) Classification of Positive Solitary Solutions of the Non-
linear Choquard Equation. Archive for Rational Mechanics and Analysis, 195, 455-467.
https://doi.org/10.1007/s00205-008-0208-3

Cingolani, S., Clapp, M. and Secchi, S. (2012) Multiple Solutions to a Magnetic
Nonlinear Choquard Equation. Zejtschrift fiir Angewandte Mathematik und Physik,
63, 233-248. https://doi.org/10.1007/s00033-011-0166-8

Moroz, V. and Van Schaftingen, J. (2013) Groundstates of Nonlinear Choquard Equa-
tions: Existence, Qualitative Properties and Decay Asymptotics. Journal of Functional
Analysis, 265, 153-184. https://doi.org/10.1016/j.jfa.2013.04.007

Moroz, V. and Van Schaftingen, J. (2015) Existence of Groundstates for a Class of
Nonlinear Choquard Equations. Transactions of the American Mathematical So-
ciety, 367, 6557-6579. https://doi.org/10.1090/S0002-9947-2014-06289-2

Clapp, M. and Salazar, D. (2013) Positive and Sign Changing Solutions to a Nonli-
near Choquard Equation. Journal of Mathematical Analysis and Applications, 407,
1-15. https://doi.org/10.1016/j.jmaa.2013.04.081

Ghimenti, M. and Van Schaftingen, J. (2016) Nodal Solutions for the Choquard Equa-
tion. Journal of Functional Analysis, 271, 107-135.
https://doi.org/10.1016/j.jf2.2016.04.019

Wei, J.C. and Winter, M. (2009) Strongly Interacting Bumps for the Schroding-
Newton Equation. Journal of Mathematical Physics, 50, Article ID: 012905.
https://doi.org/10.1063/1.3060169

Moroz, V. and Van Schaftingen, J. (2015) Semi-Classical States for the Choquard
Equation. Calculus of Variations and Partial Differential Equations, 52, 199-235.
https://doi.org/10.1007/s00526-014-0709-x

Moroz, V. and Van Schaftingen, J. (2015) Groundstates of Nonlinear Choquard
Equations: Hardy-Littlewood-Sobolev Critical Exponent. Communications in Con-
temporary Mathematics, 17, Article ID: 1550005.
https://doi.org/10.1142/S0219199715500054

Cassani, D. and Zhang, J. (2018) Choquard-Type Equations with Hardy-Littlewood-
Sobolev Upper-Critical Growth. Advances in Nonlinear Analysis, 8, 1184-1212.
https://doi.org/10.1515/anona-2018-0019

Li, Q.Q., Teng, K. and Zhang, J. (2020) Ground State Solutions for Fractional Cho-
quard Equations Involving Upper Critical Exponent. Nonlinear Analysis, 197, Ar-
ticle ID: 111846. https://doi.org/10.1016/j.na.2020.111846

Seok, J. (2018) Limit Profiles and Uniqueness of Ground States to the Nonlinear
Choquard Equations. Advances in Nonlinear Analysis, 8, 1083-1098.
https://doi.org/10.1515/anona-2017-0182

Li, Q.Q., Teng, K.M., Zhang, J. and Nie, J.J. (2020) An Existence Result for a Gene-
ralized Quasilinear Schrédinger Equation with Nonlocal Term. Journal of Functional

DOI: 10.4236/jamp.2022.102027

358 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.102027
https://doi.org/10.1002/sapm197757293
https://doi.org/10.1007/BF02105068
https://doi.org/10.1016/0362-546X(80)90016-4
https://doi.org/10.1007/s00205-008-0208-3
https://doi.org/10.1007/s00033-011-0166-8
https://doi.org/10.1016/j.jfa.2013.04.007
https://doi.org/10.1090/S0002-9947-2014-06289-2
https://doi.org/10.1016/j.jmaa.2013.04.081
https://doi.org/10.1016/j.jfa.2016.04.019
https://doi.org/10.1063/1.3060169
https://doi.org/10.1007/s00526-014-0709-x
https://doi.org/10.1142/S0219199715500054
https://doi.org/10.1515/anona-2018-0019
https://doi.org/10.1016/j.na.2020.111846
https://doi.org/10.1515/anona-2017-0182

P. Liao et al.

(18]

(19]

(20]

(21]

(22]

(23]

Spaces, 2020, Article ID: 6430104. https://doi.org/10.1155/2020/6430104

Chen, S.X. (2013) Existence of Positive Solutions for a Class of Quasilinear Schrédin-
ger Equations on R". Journal of Mathematical Analysis and Applications, 405,
595-607. https://doi.org/10.1016/j.jmaa.2013.04.031

Li, Q.Q. and Wu, X. (2016) Multiple Solutions for Genneralized Quasilinear Schrédin-
ger Equations. Mathematical Methods in the Applied Science, 40, 1359-1366.
https://doi.org/10.1002/mma.4050

Shen, Y.T. and Wang, Y.J. (2013) Soliton Solutions for Genneralized Quasilinear
Schrodinger Equations. Nonlinear Analysis, 80, 194-201.
https://doi.org/10.1016/.na.2012.10.005

Liu, J.Q., Wang, Y.Q. and Wang, Z.Q. (2003) Soliton Solutions for Quasilinear
Schrodinger Equations: I1. Journal of Differential Equations, 187, 473-493.
https://doi.org/10.1016/S0022-0396(02)00064-5

Chen, S.X. and Wu, X. (2019) Existence of Positive Solutions for a Class of Quasili-
near Schrédinger Equations of Choquard Type. Journal of Mathematical Analysis and
Applications, 475, 1754-1777. https://doi.org/10.1016/j.jmaa.2019.03.051

Liu, J., Wang, Y. and Wang, Z.Q. (2003) Soliton Solutions for Quasilinear Schrodin-
ger Equations: I. Proceedings of the American Mathematical Society, 131, 441-448.
https://doi.org/10.1090/50002-9939-02-06783-7

DOI: 10.4236/jamp.2022.102027

359 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.102027
https://doi.org/10.1155/2020/6430104
https://doi.org/10.1016/j.jmaa.2013.04.031
https://doi.org/10.1002/mma.4050
https://doi.org/10.1016/j.na.2012.10.005
https://doi.org/10.1016/S0022-0396(02)00064-5
https://doi.org/10.1016/j.jmaa.2019.03.051
https://doi.org/10.1090/S0002-9939-02-06783-7

	Positive Solutions for a Class of Quasilinear Schrödinger Equations with Nonlocal Term
	Abstract
	Keywords
	1. Introduction
	2. Preliminary Results
	3. Main Conclusion
	Acknowledgements
	Conflicts of Interest
	References

