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Abstract 
The Hamilton-Jacobi formalism is used to discuss the path integral quantiza-
tion of the double supersymmetric models with the spinning superparticle in 
the component and superfield form. The equations of motion are obtained as 
total differential equations in many variables. The equations of motion are 
integrable, and the path integral is obtained as an integration over the canon-
ical phase space coordinates. 
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1. Introduction 

Supersymmetric particles “superparticles” were stimulated by dynamical devel-
oping research in the supersymmetry in the present decade with such new mod-
els presented by: Brink-Schwarz [1] and Siegel [2]. This aspect of the superpar-
ticle models makes that they are instructive toy models used to understand the 
superstrings and the variety of their covariant quantization procedures [3] [4]. It 
is known that the puzzle of covariant quantization of the model can be addressed 
in two respects: the problem of quantizing the infinitely reducible first-class 
constraints, and the problem of quantizing the infinitely reducible second-class 
constraints. Since the first-class constraints trend to reduce (directly or indirect-
ly) the phase space eliminating the constraints, while, the second trend, quite 
opposite to the first one, implies extending the initial phase space by auxiliary 
variables to convert the original second-class constraints into effective first-class 
ones in the extended manifold [1] [5] [6]. The Hamiltonian formulation of con-
strained systems was initiated by Dirac [7] [8]. The main feature of this method 
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is to consider primary constraints initially, then all constraints are obtained by 
using the consistency conditions. Hence the equations of motion of a singular 
Lagrangian system are obtained by the consistency conditions. An alternative 
Hamilton-Jacobi formalism for constrained systems, based on Carathéodory’s 
equivalent Lagrangians methods [9] is developed by GÜler [10] [11]. In Hamil-
ton-Jacobi formalism, we have no difference between first and second class con-
straints and we do not need gauge-fixing term because the gauge variables are 
separated in the processes of constructing an integrable system of total differen-
tial equations. The path integral quantization serves as a basis to develop per-
turbation theory and to find out the Feynman rules. The path integral quantiza-
tion of singular theories with first-class constrains in canonical gauge was given 
by Faddeev and Popov [12]. The generalization of the method to theories with 
second-class constraints is given by Senjanovic [13]. Moreover, Fradkin and 
Vilkovisky [14] [15] considered quantization to bosonic theories with first-class 
constraints and it is extension to include fermions in the canonical gauge. When 
the constrained dynamical system possesses some second-class constraints there 
exists another method given by Batalain and Fradkin the BFV-BRST operator 
quantization method, which implies extending the initial phase space by auxiliary 
variables to convert the original second-class constraints into effective first-class 
ones in the extended manifold. Recently, a new scheme of path integral quanti-
zation [16]-[24], depends on the Hamilton-Jacobi treatment of constrained sys-
tems. According to Hamilton-Jacobi formalism, the equations of motion are ob-
tained as total differential equations in many variables which require investigat-
ing the integrability conditions. The canonical path integral quantization is ob-
tained directly as integration over the canonical phase-space coordinates without 
any need to enlarge the initial phase-space by introducing extra-unphysical va-
riables. The advantage of the Hamilton-Jacobi formalism is that we have no dif-
ference between first and second class constraints and we do not need gauge-fixing 
term to reduce or enlarge the physical phase-space. A better understanding of 
these features arises by applying the Hamilton-Jacobi formalism for supersym-
metric constraint systems [25]-[30], which are subject to mixed fermionic first 
and second-class constraints in an arbitrary space-time dimension.  

The work is organized as follows: In Section 2, Hamilton-Jacobi Formulation 
is presented. The motion doubly supersymmetric model [31] [32] [33] is ana-
lyzed by using Hamilton-Jacobi Formulation and the path integral is obtained as 
an integration over the canonical phase space coordinate in Section 3. In section 
4, the conclusion is given. 

2. Hamilton-Jacobi Formalism of Constrained Systems 

The system that is described by the Lagrangian ( ), ,i iL q q t� , 1, ,i n= � , is con-
strained system if the Hessian matrix  

2

, 1, , ,ij
i j

LA i j n
q q
∂

= =
∂ ∂� �

�                     (1) 
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has a rank ( )n r− , r n< . In this case, we have r momenta are dependent on 
each other. The generalized momenta ip  corresponding to the generalized 
coordinates iq  are defined as, 

1, , ,a
a

Lp a n r
q
∂

= = −
∂

�
�

                      (2) 

1, ,Lp n r n
qµ
µ

µ∂
= = − +
∂

�
�

                    (3) 

Since the rank of the Hessian matrix is ( )n r− , one may solve (2) for aq�  as 

( ), , .a a i aq q q pµω=� �                         (4) 

Substituting (4) into (3), we obtain relations in , ,i aq p qν�  and t in the form 

( ), , , , .
a a

i a a a

q

Lp H q q q p t
qµ µ ν
µ ω

ω
=

∂
= = − =
∂

�

� �
�

             (5) 

The canonical Hamiltonian 0H  is defined as 

( )0 , , , .i a a a a p H
H L q q q t p q p

ν ν
ν µ µω ω

=−
= − = + +� � �           (6) 

The set of Hamilton-Jacobi partial differential equations (HJPDE) is expressed 
as 

; ; ; 0, , 0, 1, , ,a a
a

S SH q q p p n r n
q qα β α

α

α β
 ∂ ∂′ = = = = − + ∂ ∂ 

�      (7) 

where 

0 0 0 ;H p H′ = +                          (8) 

.H p Hµ µ µ′ = +                         (9) 

with 0q t=  and S being the action. The equations of motion are obtained as 
total differential equations in many variables such as, 

 d d ,a
a

H
q t

p
α

α

′∂
=
∂

                      (10) 

  d d ,
H

p t
q
α

β α
β

′∂
=
∂

                      (11) 

d d .a
a

H
Z H p t

p
α

α α

′ ∂
= − + ∂ 

                  (12) 

where ( ), aZ S t qα= . These equations are integrable if and only if [34] [35] 

 0d 0,H ′ =                         (13) 

 d 0, 1, , .H n r nµ µ= = − + �                 (14) 

If the conditions (13) and (14) are not satisfied identically, we consider them 
as new constraints and we examine their variations. Thus repeating this proce-
dure, one may obtain a set of constraints such that all the variations vanish, then 
we may solve the equations of motion (10) and (11) to get the canonical phase- 
space coordinates as 
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( ) ( ), , , , 1, , .a a a aq q t t p p t t rµ µ µ≡ ≡ = �               (15) 

In this case, the path integral representation may be written as 

1
Out In d d exp d ,

n r ta a
at

a a

H
S q p i H p t

p
α

α

α
α α

− ′

=

 ′ ∂
= − +  ∂   
∏∫ ∫      (16) 

1, , , 0, 1, , .a n r n r nα= − = − +� �  

We should notice that the integral (16) is an integration over the canonical 
phase space coordinates ( ),a aq p . 

3. Hamilton-Jacobi Formulation of Doubly Supersymmetric  
Models 

The supersymmetric invariant action reproduces to desired a new class of super-
string models that possess both spacetime and world-sheet supersymmetries [31] 
[32] [33]. 

( ) ( )21 2 11 d 2 2 .
2

m m m m
mS t e e i eω ψλ ω ω ψλ ϕγ ϕ ϕγ ϕ λλ− − = − − − − +  ∫ �� � �  (17) 

where ( )d d d d , 1,2,3, , 1m m m mx i m dω θγ θ θγ θ= − − = −� .  

The Lagrangian is 

( ) ( )
( ) ( )

2

2

1 1
2

1 .
2 2

m
m m m m m m

m m m m m
m

L x i x i
e e

ei x i

θγ θ θγ θ ψλ θγ θ θγ θ

θγ θ θγ θ ψλ ϕγ ϕ ϕγ ϕ λλ

   = − − − − −      

 − − − − − +  

� �� �

��

�

�

�

�
    (18) 

The canonical momenta defined in (2) and (3) take the forms 

( )( )1 1 ,m m m m m m
m

LP x i i
x e e

θγ θ θγ θ ψλ ϕγ ϕ∂
= = − − − −
∂

��
�

�         (19) 

,m
m

L iP Hθ θπ γ θ
θ
∂

= = − = −
∂ �

                   (20) 

,m
m

L i P Hθ θπ θγ
θ

∂
= = = −
∂ �

                   (21) 

0 ,LP Hψ ψψ
∂

= = = −
∂ �

                       (22) 

0 ,e e
LP H
e
∂

= = = −
∂ �

                        (23) 

0 ,L Hϕ ϕπ
ϕ
∂

= = = −
∂ �

                       (24) 

0 ,L Hϕ ϕπ
ϕ
∂

= = = −
∂ �

                       (25) 

1 .
2

L Hλ λπ λ
λ
∂

= = = −
∂ �

                       (26) 

We can solve Equation (19) for mx�  in terms mP  of other coordinates as 
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( ) .m
mm m mmeP ix ieθγ θ θγ θ ϕ ϕψλ γ−= + + +���              (27) 

The canonical Hamiltonian 0H  takes the form 

( )22
0

1 .
2 2

m m m
m m

eH ep P iePψλ ϕγ ϕ ϕγ ϕ= + + +             (28) 

Following the Hamilton-Jacobi formalism, we obtain the set of HJPDE’s as 

( )22
0 0

1 ,
2 2

m m m
m m

eH P ep P iePψλ ϕγ ϕ ϕγ ϕ′ = + + + +          (29) 

,m
mH iPθ θπ γ θ′ = +                       (30) 

,m
mH i Pθ θπ θγ′ = −                       (31) 

,H Pψ ψ′ =                           (32) 

,e eH P′ =                           (33) 

,Hϕ ϕπ′ =                           (34) 

,Hϕ ϕπ′ =                           (35) 

1 .
2

Hλ λπ λ′ = −                        (36) 

The equations of motion read as 

[ ] ( )d d d d ,m m m m m mx eP ie t iψλ ϕγ ϕ θγ θ θγ θ= + + + −         (37) 

d 0,mP =                          (38) 

( )d d ,m
miPθπ γ θ=                      (39) 

( )d d ,m
mi Pθπ γ θ= −                     (40) 

( )d d ,m
mP P tψ λ= −                      (41) 

( )221 1d d ,
2 2

m m
e mP p iP tϕγ ϕ ϕγ ϕ = − + +  

           (42) 

d d ,m
mieP tϕπ ϕγ = −                     (43) 

d d ,m
mieP tϕπ γ ϕ = −                     (44) 

and 

( )d d .mP tλπ ψ= −                      (45) 

To check the integrability conditions of the system, let us evaluate the total vari-
ations of the set of (HJPDE)’s, the variations of 

0d 0,H ′ =                          (46) 

d 0,Hθ′ =                          (47) 

d 0,Hθ′ =                          (48) 

are identically zero, whereas 

( )d d d ,m
mH P t H tψ ψλ′ ′′= − =                  (49) 
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( )221 1d d d ,
2 2

m m
e m eH p iP t H tϕγ ϕ ϕγ ϕ ′ ′′= − + + =  

        (50) 

d d d ,m
mH ieP t H tϕ ϕϕγ ′ ′′= − =                  (51) 

d d d ,m
mH ieP t H tϕ ϕγ ϕ ′ ′′= − =                  (52) 

( )d d d .mH P t H tλ λψ′ ′′= − =                   (53) 

are not identically zero, and hence we obtain the following new constraints 

,m
mH Pψ λ′′ = −                        (54) 

( )221 1 ,
2 2

m m
e mH p iP ϕγ ϕ ϕγ ϕ ′′ = − + +  

             (55) 

,m
mH iePϕ ϕγ ′′ = −                       (56) 

,m
mH iePϕ γ ϕ ′′ = −                       (57) 

( ).mH Pλ ψ′′ = −                       (58) 

We notice that the total differential of new set of constraints (54)-(58) vanish 
identically, i.e. 

d 0,Hψ′′ =                          (59) 

d 0,eH ′′ =                          (60) 

d 0,Hϕ′′ =                          (61) 

d 0,Hϕ′′ =                          (62) 

d 0.Hλ′′ =                          (63) 

Thus, the equations of motion (37)-(45) and the new constraints (54)-(58) 
represent an integrable system. According to (12) the action can be written as 

( )221 d .
2

mS eP e tϕγ ϕ λλ = − +  ∫ �                 (64) 

in this case, the path integral of the system takes the form 

( )221, ; , d d exp d .
2

m m m mmx t x t x P i eP e tϕγ ϕ λλ  ′ ′ = −    
+∫ ∫ �    (65) 

4. Conclusion 

In this paper, we have addressed the path integral quantization for constrained 
systems, to the derivation of quantum physics from classical physics. We have 
examined the double supersymmetric models with the spinning superparticle in 
the component and superfield form by applying the Hamilton-Jacobi formula-
tion. One notices that our formalism does not depend on the N-extended super-
symmetric which introduces extra degrees of freedom. In Hamilton-Jacobi for-
malism of the classical constraints, no need for gauge fixing of first-class con-
straints, no need to eliminate second-class constraints, such as in Dirac method, 
consequently there is no difficulty in treating the constraints. As a strategy, we 
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first work out the constraints as a set of Hamilton-Jacobi partial differential equ-
ations (HJPDE), then we obtained the equations of motion as total differential 
equations in many variables, which require the investigation of integrability con-
ditions. The canonical path integral quantization has been done, since the sys-
tem is integrable, the integration is taken over the canonical phase space. 
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