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Abstract 

At very high energies, pair production formation ( N e eγ + −+ → ) exhibits a 
variety of intriguing properties. Analytically and quantitatively, the formation 
of Electron-Positron pairs in the Electro-Magnetic field of light nuclei has 
been calculated. In Ultra-Relativistic (UR) areas of incident photon energy, 
applying the resulting formulas to the energy distribution of the ( ),e e− +  op-

eration. When we compare the results, we can observe that the Magnetic field 
of the target nucleus is more efficacious than the Electric field of the nucleus 

in the ( ),e e− +  operation. Furthermore, we can show that in Pair Production 

operation, the Differential Cross Section (DCS) owing to the target nucleus’s 
Electric Quadrupole (EQ) and Magnetic Octupole (MO) are bigger than the 
Differential Cross Section (DCS) attributable to the target nucleus’s Electric 
Charge (EC) distribution and Magnetic Dipole (MD). 
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1. Introduction 

There are numerous particles in nature, each of which is accompanied by its 
field as it moves. They are split into Pheromones and Bosons. Pheromones are 
divided into Leptons and quarks. The Electron, Muon, and Tau are three charged 
Leptons, and neutrinos are three neutral Leptons [1]. Both the Electron and the 
Positron will be studied. The Electron was discovered in 1897 by J.J. Thomson, 
and it is still the prototypical elementary particle. Anderson saw Pair Production 
for the first time in 1932 when he exploited the operation to find the Positron [2]. 
Bethe and Heitler’s work shaped our present theoretical understanding of Pair 
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Production [3]. 
Nishina and others [4], Bethe, and Heitler [5] were the first to theorize the 

theoretical treatment of ( ),e e− +  Pair photon production in 1934. In 1936, 
Jaeger and Hulme [6] established that Pair Production Differential Cross Section 
(DCS) calculations produce better outcomes at high incident photon energy. 
Hubbell [7] provides a historical overview of the ( ),e e− +  by photons from Di-
rac’s prediction of the position in 1928 until 2006. The (DCS) results for ( ),e e− +

-Hubbell and Seltzer [8] revealed photon-based Pair Production. 
Electron and Positron formation has been studied through high-energy colli-

sions on the Nitrogen nucleus, with Atomic Number 7 and Mass Number 14, 
and is generated using Electric and Magnetic fields through high energies of in-
cident photons (from 2 to 6 GeV). The results are given in tables and figures to 
show the difference in the energy distribution of ( ),e e− + -Pairs. The obtained 
results are discussed in detail. 

2. Formulation of the Problem  

We are studying the effect of high energies on a light nucleus in the Pair Produc-
tion operation. 

3. Research Objectives  

In this research, we present some new ideas for developing Electro-Magnetic 
operation and their various applications. This is done by studying the Elec-
tro-Magnetic (DCS) of nucleus Nitrogen and studying the extent of their impact 
on producing photons using high energies.  

4. Research Methodology 

The interaction of a photon with the nucleus of an atom produces Pairs of Elec-
trons and Positrons. The ( ),e e− +  operation produced in the interaction of the 
γ -photon field with the field of nuclei (N), can be written: [9] [10] [11] (Figure 
1). 

( ) ( ) ( ) ( )Nk Ze e p e pγ − +
− ++ → + −  

Figure 2 depicts the Feynman Diagrams for the issue of Leptonic Pair Pro-
duction in the Electro-Magnetic field of nuclei [12]. 

Where q p k p− += − +  indicates the momentum transmitted to the nucleus.  
 

 
Figure 1. Simplified representation of the collision of a photon with a Nitrogen nucleus 
to the ( ),e e− + . 
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Figure 2. Feynman diagrams for the ( ),e e− +  pair production process. 

 
This operation was studied by the scientist Bethe and Hitler. Therefore, the final 
form of the (DCS) of the operation of producing the Leptonic Pair of the nucleus 
is as follows: [3] [13] [14] 
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It is the Bethe-Hitler equation for the (Electron-Positron) Pair Production 
operation, and it can be written in an abbreviated form so that it is applicable, 
using the following symbols: 

( )
2 3
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4
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+ − + 
= = − π 

 

where ,p p p p+ + − −= =
��� ���

. 
ω  is the energy of the colliding photon where E Eω + −= + . We can write 

Equation (1) as: 

 ( ) ( ) ( ) ( ) ( )1, , , , 1 2 11 22d E Ze Q d E d E d E d Eµ Ω = + + + .       (2) 

( ) ( )11 8d E E dηφ= π Ω                     (3) 
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, , ,IZe Qµ Ω  are the (EC), the (MD), the (EQ), and the (MO) moments of the 
target nucleus. ( ) ( ) ( ) ( )1 2 11 22, , ,E E E Eφ φ φ φ  in the case of high energies  

2
0,E E m c′�  [3] [13] [14]. 
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are the (MD), (EQ), and the (MO) coefficients of the nucleus with spin. 

5. Results and Discussion  

The (EC) 1d , (MD) 2d , (EQ) 11d , (MO) 22d , total Electric dE , and total 
Magnetic dM  Differential Cross Section(DCS) for the ( ),e e− +  using formu-
las for the energy distribution are obtained for the nucleus 14

7N  and for differ-
ent values of incident photon energies ( )2 GeV,4 GeV,6 GeVγε = , where  

289.109558 10m −= × . 
From Table 1, we can get the following results: 
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● The (DCS) 1, 2d d  for ( 14
7N ) nucleus is decreased with increasing energies. 

● The (DCS) 11, 22d d  for ( 14
7N ) nucleus is increasing with increasing ener-

gies. 
From Figures 3-8, we conclude that 

● The (DCS) 1d  and 2d  for ( 14
7N ) nucleus are decreased with increasing 

energies for the ( ),e e− + , which the (DCS) 11d  and 22d  for ( 14
7N ) nuc-

leus are increased with increasing energies for the ( ),e e− + . 
 

Table 1. Differential cross-section of the energy distribution of the 14
7N -nucleus.  

ε  1d  2d  11d  22d  

2000 371.19712 10−×  361.73779 10−×  384.51215 10−×  193.28019 10−×  

4000 381.4964 10−×  379.41793 10−×  389.02431 10−×  182.84168 10−×  

6000 394.43377 10−×  376.56291 10−×  371.35365 10−×  171.00201 10−×  

 

 
Figure 3. Electric charge 1d . 

 

 
Figure 4. Magnetic dipole 2d . 
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Figure 5. Electric quadrupole 11d . 

 

 
Figure 6. Magnetic octupole 22d . 

 

 
Figure 7. Total electric dE . 
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Figure 8. Total magnetic dM . 

 
● The (DCS) of the ( ),e e− + , (EQ) 11d , and (MO) 22d  is larger than the 

(DCS) of (EC) 1d  and (MD) 2d  of the target nucleus. 
For the Total Electric 1 11dE d d= +  and the Total Magnetic 2 22dM d d= +  

(DCS) we have also the following result: 
● The (DCS) 11d  is more efficacious than the (DCS) 1d  for the (DCS) dE , 

i.e., 1dE d≈ . 
● The (DCS) 22d  is more efficacious than the (DCS) 2d  for the (DCS) 

dM , i.e., 22dM d≈ . 
● The Differential Total Magnetic Cross Section dM  for ( ),e e− + -Pair Pro-

duction is more efficacious than the Differential Total Electric Cross Section 
dE . 

6. Conclusion  

Compared to reference [13], we found that the operation of producing an 

( ),e e− +  Pair in a Nitrogen nucleus of lighter mass is more effective than in a 
Sodium nucleus of higher mass. We conclude from this that the lower the mass 
number, the better the production of the pair. Moreover, we can see that in Pair 
Productions ( ),e e− + , the Magnetic field of the target nucleus is more effica-
cious than the Electric field of the nucleus. The effect of the (QE) and (OM) 
(DCS) is more influential in the Lepton Pair’s production than the (EC) and 
(MD).  

Perspectives  

We studied the creation of the ( ),e e− +  Pair for the Nitrogen nucleus through 
the relation of the energy of the photon falling on the nucleus and the Elec-
tro-Magnetic fields, and it can be studied in the future: 
● The relation between the creation of the ( ),e e− +  Pair by the angle of the 
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incident photon. 
● The Production of the Lepton Pair by taking into account the polarization of 

the incident photons. 
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