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Abstract 
We analyze the propagation of electromagnetic fronts in unbounded electric 
conductors. Our analysis is based on the Maxwell model of electromagnetism 
that includes the displacement current and Ohm’s law in its simplest forms. A 
weak electromagnetic front is a propagating interface at which the electro-
magnetic field remains continuous while its first- and higher-order deriva-
tives experience finite jump discontinuities. Remarkably, analysis of such 
fronts can be performed autonomously, i.e. strictly in terms of the quantities 
defined on the front. This property opens the possibility of establishing exact 
analytical solutions of the exact Maxwell system along with the evolution of 
the front. 
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1. Introduction 

Maxwell’s theory of electromagnetism was initially met with skepticism. How-
ever, upon Hertz’s experimental verification of some of its key predictions, it 
began gaining traction and eventually became the dominant model for electricity 
and magnetism. Subsequently, numerous treatises have been written on Max-
well’s equations which represent the analytical crux of the model. 

Maxwell’s equations are a system of four PDEs. The system admits various 
classes of exact analytical solutions. However, one common shortcoming of many 
of the exact solutions, typically found in the form infinite series or integral ex-
pressions, is their analytical complexity. As a result of this complexity, exact so-
lutions often offer less insight than the original equations themselves. Thus, a 
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class of exact solutions that are free from overwhelming analytical complexity is 
of great interest. Propagating wavefronts offer an opportunity for such solutions. 
It is important to note that the value of exact analytical solutions has not dimi-
nished since the advent of the computational revolution. On the contrary, their 
value has increased since they provide a means of testing the validity of numeri-
cal methods. 

The electromagnetic fields in many of the essential applications of Maxwell’s 
theory are well described by linearized equations. On the other hand, linear 
analysis is inadequate for many of the important modern applications, such as 
nonlinear optics. Needless to say, nonlinear problems pose a much greater chal-
lenge—analytically as well as numerically—compared to their linear counter-
parts. Thus, of particular value are solutions to the nonlinear version of the equ-
ations. 

In this regard, of considerable interest are exact wavefronts, i.e. moving sur-
faces along which the electromagnetic field experiences discontinuities. This pa-
per is devoted to weak wavefront solutions, where the electromagnetic field itself 
is continuous while its derivatives are discontinuous. Pioneering analysis of 
propagating discontinuities can be found in the monographs by Hadamard [1], 
Levi-Civita [2], Thomas [3], Luneburg [4], Born and Wolfe [5], and Keller [6].  

Exact solutions to Maxwell’s equations, i.e. solutions found without making 
approximations of any kind, are of great value since they exhibit the essential 
features of the system that include various symmetries and conservation laws. 
These critical features are typically not preserved by approximation procedures, 
such as linearization. Fortunately, while the nonlinearities inherent in Maxwell’s 
equations pose a considerable challenge in the pursuit of exact solutions, this 
challenge can be overcome in wavefront solutions. 

The key tool in the analysis of wavefronts is compatibility conditions, origi-
nally developed by Hadamard [1], Levi-Civita [2], and Thomas [3]. The first 
systematic approach to compatibility conditions is found Luneburg [4]. Recently, 
compatibility conditions were employed by the authors of this paper in the anal-
ysis of the simple and double layers in potential theory [7], where the interested 
reader can find further references and historic discussions.  

The method of compatibility conditions, though applicable to nonlinear prob-
lems, faces its own difficulties and limitations. One of those difficulties stems 
from the technical complexity of the conditions themselves. As it often happens, 
tensor calculus proves effective at overcoming numerous of analytical difficulties. 
We are indebted to Thomas [3] for his crucial contributions to the development 
of the relevant tensorial methods. The tensorial aspects of the theory of compa-
tibility conditions have been discussed in detail in [8] where the technique re-
ceived further analytical development. 

2. The Master System of Equations 

We assume that there are no unbalanced charges within the conductor and con-
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sider electric currents iI  governed by the Maxwell equations 

0i
i E∇ =                           (1.1) 

0i
i H∇ =                           (1.2) 

1 i
ijk

j k
H z E

c t
∂

= − ∇
∂

                      (1.3) 

4
i

i ijk
j k

E I cz H
t

∂
+ = ∇π

∂
,                    (1.4) 

where c is a speed of light, iE  is the electric field, iH  is the magnetic field, 
and iI  is the electric current. Furthermore, we assume that the electric field 

iE  and electric current iI  are connected by Ohm’s law 
i iI E= σ                           (1.5) 

where σ  is the electroconductivity constant. 
Eliminating the electric current iI  in Equations (1.4) and (1.5), we find 

4
i

i ijk
j k

E E cz H
t

π
∂

+ = ∇
∂

σ .                  (1.6) 

Differentiating Equation (1.6) with respect to t yields 
2

2
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i i
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E E c E

tt
∂ ∂

+ − ∇ ∇
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π =σ .               (1.7) 

Similarly, differentiating Equation (1.3) with respect to t yields 
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c tt
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.                   (1.8) 

Therefore, according to Equation (1.6), 
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as implied by the chain of identities 
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Equations (1.7), (1.9) are sometimes referred to transport equations.  
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3. Compatibility Conditions for Jump Discontinuities of  
Derivatives 

We assume that there is a smooth weak front Σ  inside the conductor, at which 

the fields ( ) ( ) ( ), , , , ,i i iE z t H z t I z t  remain continuous while their first and 
second spatial and temporal derivatives experience finite jump discontinuities. 
Let the surface Σ  be referred to the Gaussian coordinates αξ  and be de-

scribed by the equations of the surface ( ),i iz z t= αξ . Whenever possible, we 

will not omit the indices in the function arguments. The tensor ( ).
. ,iz tα ξ , de-

fined by the derivatives ( ) ( ).
. , ,i iz t z t≡ ∂ ∂α α
α ξ ξ ξ  is known as the shift tensor. 

We the help of the shift tensor, we are able to define the surface covariant metric 

tensor ( ) ( )( ) ( ) ( ). .
. ., , , ,i j

ijt z x t z t z t≡αβ α βξ ξ ξ ξ ξ . The contravariant surface metric 

tensor ( ), tαβξ ξ  is defined as the matrix inverse of ( ), tαβξ ξ . We use the sur-
face metric tensors for juggling surface indices as well as for defining the surface 

covariant differentiation ∇α . Let ( ),iN tξ  be the unit normal field to Σ , and 

( ),b tαβ ξ  be the second form of the surface. Let ( ),C tξ  be the velocity of the 
front.  

Introduce the jump discontinuity vectors  
( ) ( ) ( ) ( ), , , , , , ,i i i i

E H E Hf t f t F t F tξ ξ ξ ξ  as follows: 

( ) ( )

( ) ( )

, , , ,

, , ,

i i m i i m
E m H m

i i m n i i m n
E n m H n m

f t E N f t H N

F t E N N F t H N N

+ +

− −

+ +

− −

   ≡ ∇ ≡ ∇   

   ≡ ∇ ∇ ≡ ∇ ∇   

ξ ξ

ξ ξ
      (2.1) 

With the help of the vectors ( ) ( ) ( ) ( ), , , , , , ,i i i i
E H E Hf t f t F t F tξ ξ ξ ξ , we are able 

to express all components of the first and second derivatives of  
( ) ( ), , ,i iE z t H z t  in terms of the temporal and surface derivatives of  
( ) ( ) ( ) ( ), , , , , , ,i i i i

E H E Hf t f t F t F tξ ξ ξ ξ  along with the geometrical and kinematical 
characteristics of the front. In particular, for the first derivatives of the electric 
and magnetic fields the first-order compatibility conditions read 
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For the second-order derivatives, we have 
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and  
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In Equations (2.3), (2.4), tδ δ  is the symbol of the invariant time-derivative 
on the moving surface [3] [8] [9]. 

4. The Velocity of Weak Electromagnetic Fronts and Jump  
Discontinuity Vectors 

Calculating the jump discontinuities of Equations (1.1 - 1.3, 1.6) across a weak 
front, we find  

0i
i E

+

−
 ∇ =                          (3.1) 

0i
i H

+

−
 ∇ =                          (3.2) 

1 i
ijk

j k
H z E

c t

+
+

−
−

 ∂  = − ∇   ∂ 
                   (3.3) 

i
ijk

j k
E cz H
t

+
+

−
−

 ∂  = ∇   ∂ 
,                   (3.4) 

With the help of the first-order compatibility conditions Equation (2.2), we 
can transform Equations (3.1) - (3.4) as follows: 

0i
E if N =                          (3.5) 

0i
H if N =                          (3.6) 

0i ijk
H j Ek

C f z N f
c

− =                      (3.7) 

0i ijk
E j Hk

C f z N f
c

+ =                      (3.8) 

Equations (3.5) - (3.8) directly imply that the three vectors , ,i i i
E Hf f N  are 

pairwise orthogonal. Eliminating the magnetic jump discontinuity vector i
Hf  

between Equations (3.7), (3.8) and using Equation (3.6), we arrive at a linear eq-
uation with respect to the electric jump discontinuity vector, i.e. 

( )2 2 0i
EC c f− = .                      (3.9) 

Equation (3.9) implies that the nonvanishing jump vector i
Ef  can exist only 

if  

C c= ± .                         (3.10) 

Meanwhile, Equation (3.10) in concert with Equations (3.5) - (3.8), implies 
the relationship 
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i i
E Ei H Hif f f f= .                      (3.11) 

Let us represent vectors ,i i
E Hf f  in the form 

( ) ( ) ( ) ( ), , , , ,i i i i
E E E H H Hf t A t f t A t= ∆ = ∆ξ ξ ξ ξ ,       (3.12) 

where ,i i
E H∆ ∆  are unit vectors known as the directors, and ,E HA A  are the 

magnitudes of the jump discontinuity vectors. 
Using the decomposition in Equation (3.12), we can rewrite Equation (3.11) 

in the form 
2 2
E HA A= .                        (3.14) 

We can arbitrarily choose any orientation of the vector i
E∆  in the plane or-

thogonal the unit vector iN . The associated vector i
H∆  should satisfy the rela-

tionship  
j k

Hi ijk Ez N∆ = ∆                      (3.15) 

The components of the normal are given by the equation 
i ijk

Ej HkN z= ∆ ∆                     (3.16) 

We will see later that the choice of the director i
E∆  at 0t =  dictates the en-

tire evolution as long as the front remains smooth. 

5. Fronts and Rays 

It is intuitively clear that if the position of the weak front is known at 0t =  
then it can be determined for at all later times since we know that its velocity 
C c= ± . It is true for the initially smooth front, at least, within a finite interval 
0 ct t≤ ≤ , where ct  is the moment of appearance of caustics at the front [5]. Let 

( ): ,i iS z z t= ξ  be the Gaussian equation of the front at time t, and let 
( ) ( ): ,0i i iS z z z= ≡ ξ ξ  at 0t = . Let ( )in  ξ  be the field of unit normal 

vectors of the surface ( )S  ξ . Then the surface S is described by equation of the 
surface 

( ) ( ) ( ): ,i i iS z t z cn t= ± ξ ξ ξ ,                (4.1) 

where we assume that the ambient coordinate system is affine. 
If we fix the moment t, we can treat the function ( ),i iz z t= ξ  in Equation 

(4.1) as the corresponding position of the front at moment t. At the same time, if 
we fix the Gaussian coordinates αξ  of a point on the surface, then, with chang-
ing t, we get a straight line, called a ray, as shown in Figure 1.  

If we choose a certain area ( )dS  ξ  on the initial front and consider all the 
rays emanating from ( )dS  ξ , we get a tube of rays. The area dS , intercepted 
by the rays emanating from the current surface S differs from ( )dS  ξ  if the 
initial interface is not flat. When the tube is infinitesimally small, the ratio 
( ),J t dS dS≡ ξ , called the ray’s divergence, satisfies the equation 

1 J Cb
J t
∂

= −
∂

α
α .                       (4.2) 
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Figure 1. Geometry of rays and front. 

 
Equations (4.1), (4.2) are valid in the case of uniform, isotropic media. Other-

wise, they must be replaced with more general relationships [8] [9]. 
Figure 1 clearly demonstrates that the rays can intersects at 0t > , beyond 

which the analysis fails. Extending the analysis beyond this point requires addi-
tional physics. 

6. Evolution of the Jump Discontinuity Vectors along Rays 

We now proceed with calculating the jumps discontinuities of the terms in Equ-
ation (1.7). We find 

2
2

2 4 0
i i

k i
k

E E c E
tt

+ +
+

−
− −

   ∂ ∂  + − ∇ ∇ =     ∂∂   
πσ .            (5.1) 

Using the compatibility Equations (2.2), (2.3), we find 

( )2 22 4 0
i

i i i i iE
E E E E E

f CF C C f Cf c F f b
t t

− − − − − =π α
α

δ δ σ
δ δ

        (5.2) 

If we choose Equation (3.1), then the tδ δ -derivative coincides with the par-
tial t∂ ∂ -derivative. Using Equation (3.10), we can rewrite Equation (5.2) in the 
form  

22 4 0
i

i i iE
E E E

f CC f Cf c f b
t t
+ + −π =α

α
δ δ σ
δ δ

             (5.3) 

Using Equation (3.10), we can rewrite Equation (5.3) as follows  

22 4 0
i

i iE
E E

fc Cf c f b
t

π+ − =α
α

δ
σ

δ
                 (5.4) 

We the help of the decomposition Equation (3.12), we can rewrite Equation 
(5.4) in the form 

12 0
2

i
i i iE E
E E E E E E

A A A cb A
t t

π
∂ ∂∆

∆ + + ∆ − ∆ =
∂ ∂

α
ασ .         (5.5) 

Contracting Equation (5.5) with the unit vector Ei∆ , we find  

12 0
2

E
E E

A A cb A
t

∂
+ − =π

∂
α
ασ                  (5.6) 

Using Equation (4.2), we can rewrite Equation (5.6) as  

dS

dS ˚
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( )4 2e 0t
EJA

t
π∂

=
∂

σ ,                     (5.7) 

as implied by the following chain of identities: 

( )

( )

( )

2

2
2

4 2

12 4 0

ln
4 0

4 0

e 0

E
E E

E

E
E

t
E
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JA

t
JA

JA
t

JA
t

π

π

π

∂ ∂
+ + = →

∂ ∂
∂

+ = →
∂

∂
+ = →

∂
∂

=

π

∂
σ

σ

σ

σ

                (5.8) 

Contracting Equation (4.5) with unit vector Hi∆ , we get  

0
i
E

Hit
∂∆

∆ =
∂

                         (5.9) 

Furthermore, differentiating the identity  

0, 1i i
E i E EiN∆ = ∆ ∆ =                    (5.10)  

yields 

0, 0
i i
E E

Hi Eit t
∂∆ ∂∆

∆ = ∆ =
∂ ∂

.                (5.11) 

Summarizing, we arrive at the relationship 

0
i
E

t
∂∆

=
∂

                         (5.12) 

In view of Equation (5.8), the directors i
E∆  and i

H∆  remain the same along 
each of the rays. 

7. Conclusions 

We analyzed the propagation of electromagnetic fronts in an unbounded electric 
conductor with the isotropic electric conductivity constant σ . The weak elec-
tromagnetic front is a moving surface at which the electric and magnetic fields 
remain continuous while their first- and higher-order derivatives experience fi-
nite jumps. We demonstrated that all of the discontinuity jumps across the weak 
front can be expressed in terms of the jump discontinuity vectors along with 
their derivatives with respect to time and the surface coordinates. In particular, 
the jumps of all or the first- and second-order derivatives can be expressed in 
terms of the discontinuity vectors ( ) ( ) ( ) ( ), , , , , , ,i i i i

E H E Hf t f t F t F tξ ξ ξ ξ  defined 
by Equation (2.1). The jump discontinuities of the first-order derivatives are 
given in Equation (2.2), while the jump discontinuities of the second-order de-
rivatives are given by the second-order compatibility conditions in Equation 
(2.3). 

Remarkably, the evolution of the fields ( ) ( ) ( ) ( ), , , , , , ,i i i i
E H E Hf t f t F t F tξ ξ ξ ξ  

can be separated from the analysis of the electric field iE  and magnetic field 
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iH  in the domains of smoothness. In this sense, the analysis of weak fronts ap-
pears to be autonomous. This autonomous character of the weak fronts appears 
to have tremendous utility since the bulk equation contains four independent 
variables, whereas the autonomous system only three. 

Applying the first-order compatibility Equations (2.2) to the Maxwell system, 
(1.1) - (1.4) along with Ohm’s law Equation (1.5), we arrived at the linear ho-
mogeneous system (3.5) - (3.8). Analysis of Equations (3.5) - (3.8) directly im-
plies that 1) the velocity C of the weak front is equal to ±c, where c is the speed 
of light in vacuum; 2) The three vectors , ,i i i

E Hf f N  are pairwise orthogonal and 
satisfy the relationship i i

E Ei H Hif f f f=  captured in Equation (3.11), 3) the veloc-
ity C of the weak front does not depend on the electroconductivity σ .  

The position of the weak front ( ): ,iS z tξ  is defined in an affine coordinate 
system by the Equation (4.1): ( ) ( ) ( ),i i iz t z cn t= ± ξ ξ ξ , where  

( ) ( ): ,0i i iS z z z= ≡ ξ ξ  at 0t =  and ( )in  ξ  is the field of unit normal 
vectors of the surface S  . If we fix the moment of time t, then we can treat the 
function ( ),i iz z t= αξ  in Equation (4.1) as the corresponding position of the 
front at moment t. At the same time, if we fix a pair of the Gaussian coordinates 

αξ  then with changing t, we get a straight line, called a ray, as shown in Figure 
1. Consequently, ( ) ( ) ( ),i i iz t z cn t= ± ξ ξ ξ  delivers the Gaussian equation of 
the weak front in the special “ray” coordinates.  

Applying the second-order compatibility Equations (2.4) to the transport Eq-
uations (1.7), (1.9), we establish our main result ( )4 2e 0t

EJA tπ∂ ∂ =σ  in Equa-
tion (5.9). This equation describes how the amplitude of the jump discontinuity 
changes along the ray. It shows that the jump intensity grows when the ray di-
vergence decays and vice versa. Furthermore, there is an additional mechanism 
of exponential decay due to Ohm’s resistance dissipation. Finally, Equation (5.12) 
shows that the director vector i

E∆  remains constant along the ray. 
Ray constructions also appear when considering high frequency asymptotics 

[4] [5]. However, the method of weak fronts is equally applicable in nonlinear 
problems, and it is exact rather than asymptotic. 
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