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Abstract 
In this paper, a three-parameter lifetime distribution named power Hamza 
distribution (PH) is proposed. The PH distribution is a useful generalization 
of the Hamza distribution which accommodates heavy-tailed, upside-down 
bathtub and J-shaped hazard rates making it more flexible than the Hamza 
distribution for modelling various kinds of lifetime data. A comprehensive 
account of the properties of this distribution is presented. The maximum 
likelihood estimators of the unknown model parameters are discussed. Fi-
nally, a real-life data is analyzed for illustrative purpose proving that the PH 
outperforms the Hamza distribution and several other lifetime distributions. 
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1. Introduction 

The Hamza distribution was introduced by [1] with the cumulative distribution 
function (cdf) and the corresponding probability density function (pdf) respec-
tively given by 
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for 0y > , 0θ >  and 0α > .  
It may be observed that the Hamza distribution was obtained by compound-

ing the exponential distribution having scale parameter θ  and the gamma dis-
tribution having shape parameter 7 and scale parameter θ , with mixing propor-
tions ( )5 5 120p αθ αθ= +  and ( )5 5 120q αθ αθ= +  such that 1p q+ = .  

[1] studied the properties and applications of this distribution in the context 
of lifetime analysis, showing that the distribution is superior to Lindley distribu-
tion due to [2], Ishita distribution by [3] and Pranav distribution by [4], respec-
tively.  

The aim of this paper is to introduce a new distribution, called the power 
Hamza distribution, which is a direct generalization of the Hamza distribution. 
Some of the distributions proposed using the power transformation include the 
power Lindley due to [5], power Akash and Shanker proposed by [6] [7], power 
Ishita and power Aradhana due to [8] [9], power Rama and power Garima due 
to Abebe et al. [10] [11], power Pranav due to [12], power Sujatha by [13], power 
Prakaamy by [14]. From the literature reviewed in this paper, all the power 
transformed distributions were shown to be more flexible than their corres-
ponding baseline distributions and more useful for analyzing complex data 
structures in various fields of life.  

The rest of the paper is organized as follows. The pdf, cdf and hazard rate func-
tion of the new distribution is given in Section 2. Section 3 provides a comprehen-
sive account of the properties of the distribution including the moment generating 
function, moments, skewness, kurtosis, mean residual lifetime, mean deviations, 
Bonferroni and Lorenz curves, stochastic ordering, entropy measure, stress-strength 
reliability, distributions and moments of order statistics. In Section 4, the maxi-
mum likelihood estimates of the parameters of the distribution are given. Also, 
Section 5 gives the asymptotic confidence intervals. Section 6 illustrates the pro-
posed model in two real-datasets. The paper is concluded in Section 7. 

2. The Power Hamza (PH) Distribution 

The probability density function, cumulative distribution function and hazard 
function of the power Hamza distribution having parameters θ , α  and β  
are provided in as Propositions 1, 2 and 3. 

Proposition 1. A random variable X is said to have a PH distribution if its pdf 
is of the form 
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− − = + +  

; 0x > , 0θ > , 0α > , 0β >  (3)  

Proof. Given the distribution of the Hamza random variable Y defined in (2). 
Assume that another random variable X is related to Y by the power function 

( ) 1X g Y Y β= = . Then the distribution of X is the power Hamza distribution. 
To derive the distribution of X, we notice that X is a one-to-one function of Y 
and so, 0x =  when 0y =  and x = ∞  when y = ∞ , which implies that the 
support of the distribution of X is ( )0,∞ .  
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Letting ( ) 1x g y y β= = , and ( )1y g x xβ−= =  in (2), gives  
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, 0x >             (4) 

According to [15], the probability density function of a continuous random 
variable ( )X g Y=  is gotten by 
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d
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x

−=                        (5) 

Substituting (4) and 1d dy x xββ −=  into (5), one obtains  
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Further simplification of (6) yields the pdf of the power Hamza random varia-
ble X defined in (3), and the proof of Proposition 1 is complete.  

Corollary 1. Let X be a power Hamza random variable, then the function de-
fined by Equation (3) is a pdf. 

Proof. We show that ( ) 0PHf x x≥ ∀  and ( )
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By setting 1x y β=  in the above integral and noting that  
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Henceforth, a random variable X that follows the distribution in (3) is symbo-
lized by ( )~ , ,X PH θ α β . The power Hamza distribution reduces to the Ham-
za distribution when 1β = .  

Proposition 2. For 0x > , 0θ > , 0α >  and 0β > , the cdf of  
( )~ , ,X PH θ α β  is given by 
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Proof. [15] defines the cdf of a continuous random variable X as 
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Substituting (3) into (8) leads to 
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Letting 1x u β= , u xβ= , 1d du x xββ −= , the integral (9) becomes  
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Applying direct integration to the first part of the square bracket in (10) and 
integration by parts to the second part the square bracket in (10) gives  
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respectively. Substituting (11) and (12) into (10), we obtain 
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Further simplification of (13) gives (7), which completes the proof of Proposi-
tion 2. 

Proposition 3. Let ( )~ , ,X PH θ α β , then the hazard rate function of X is 
given by 
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Proof. The proof of Proposition 3 follows from using (4) and (7) in the rela-
tion 
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F x
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Figure 1 and Figure 2 demonstrate the graphs of the pdf and hazard function 
of the PH distribution for different values of θ , α  and β . 
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(a)                          (b) 

Figure 1. (a) pdf plot of power hamza distribution; (b) pdf plot of 
power hamza distribution. 

 

 
(a)                             (b) 

Figure 2. (a) hazard plot of power hamza distribution; (b) hazard plot of 
power hamza distribution. 

3. Properties of the Power Hamza (PH) Distribution 
3.1. Moment Generating Function 

Proposition 4. Let ( )~ , ,X PH θ α β , then the moment generating function 
of X is given by 
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Proof. The moment generating function of ( )~ , ,X PH θ α β  is obtained as 
follows 
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Letting 1x y β= , y xβ=  and ( ) 1d 1 dx y yββ −= , (17) reduces to 
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Further simplification of (18) gives (16), which completes the proof of Propo-
sition 4. 

3.2. Non-Central Moment  

Proposition 5. Let ( )~ , ,X PH θ α β , then the rth non-moment of X is given 
by 
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Proof. The rth moment of ( )~ , ,X PH θ α β  is obtained as follows 
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Putting 1x y β= , y xβ=  and ( ) 1d 1 dx y yββ −=  into (20), yields  
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Simplifying (21) a little bit, we get (19), hence the proof of Proposition 5. 
Corollary 2. The first four non-central moments of ( )~ , ,X PH θ α β  are 
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Proof. The proof of (22)-(25) follows directly from Proposition 5 by substi-
tuting 1,2,3r =  and 4 into (19). 

3.3. Variance  

Apart from the non-central moments, variance of a distribution is always rele-
vant for measuring the spread from the mean. So, we provide the variance of the 
PH distribution in Proposition 6. 

Proposition 6. Let ( )~ , ,X PH θ α β , then the variance of X is given by 
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Proof. The variance of a random variable X can be computed using the rela-
tion 
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The proof of (26) follows directly from substituting (22) and (23) into (27)  
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3.4. Coefficient of Variation and Index of Dispersion 

The coefficient of variation is given by 
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The index of dispersion is given by 
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3.5. Central Moment  

Proposition 7. Let ( )~ , ,X PH θ α β , then the central moment of X is given 
by 
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Proof. The rth moment of the ( )~ , ,X PH θ α β  can be obtained from the 
relation 
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Using (22) and (19) in (32) gives (31) and the proof of Proposition 7 is com-
plete. 

3.6. Conditional Moment 

A function that is useful in deriving the mean residual life function of a compo-
nent as well as the mean deviations is the conditional moment. Given that X fol-
lows a power Hamza distribution with parameters θ , α  and β , then  
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Plugging (35) and (36) into (33), we have the conditional moment as 
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3.7. Mean Residual Life Function 

In many life testing experiments, it is always of interest to know the additional 
lifetime given that a component has survived until a certain amount of time. To 
achieve this purpose, the mean residual life function (MRL), which refers to the 
expected remaining life, X x− , given that the item has survived up to time x, is 
required. It may be observed from (37), that the MRL function is derived from 
the conditional as follows 

( ) ( )Xm x E X x X x x= − > −                    (38) 

Putting 1n =  in (37) and substituting the result into (38), we obtain MRL 
function as  

( )
( ) ( )

( ) ( )

5

5 5 4 4 3 3 2 2 5

1, 7, e

6 30 120 360 720 6 120

x

X

x x
m x x

x x x x x x

ββ β θ

β β β β β β β

αθ β θ β θ

θ θ θ θ θ θ αθ θ

 Γ + + Γ + = −
 + + + + + + + 

 (39) 

3.8. Mean Deviations 

In statistical modelling, it is often an interest to measure the spread in a popula-
tion from either the mean or the median. To achieve this, two indices, namely 
mean deviation about the mean ( )dµ  and mean deviation about the median 
( )dM  are used. Let µ  denote the mean and M, the median of a power Hamza 
distributed random variable X. The values of dµ  and dM  can be calculated 
using the relationships 

( ) ( ) ( )1
0

d 2 2 2d PHx f x x F Jµ µ µ µ µ µ
∞

= − = − +∫          (40) 

and  

( ) ( )1
0

d 2d PHM x M f x x J M µ
∞

= − = −∫              (41) 

respectively. By replacing x with µ  and M in (7) and (35), yields the following 

( )
( )

( ) ( ) ( )( )
( )

5 5 4 4 3 3 2 2

5

5 5

5

6 30 120 360 720
2 1 1 e

120

2 6 120 1, 7,

6 120

d
β

β β β β β β
θµ

β β β

β

θµ θ µ θ µ θ µ θ µ θµ
µ µ

αθ

µ αθ θ αθ β θµ β θµ

αθ θ

−
  + + + + +
  = − +
  +  
 + − Γ + + Γ + −

+

 (42) 

( ) ( ) ( )
( )

5 5

5

2 1, 7, 3 120

3 120d

M M
M

β β β

β

αθ β θ β θ µ αθ θ

αθ θ

 Γ + + Γ + − + =
+

    (43) 
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3.9. Bonferroni and Lorenz Curves  

It has been found that the Bonferroni curve proposed by [16] and Lorenz curve 
proposed by [17] have applications in the fields of economics, reliability, demo-
graphy, insurance, medicine, among others. So, if ( )~ , ,X PH θ α β , the Bon-
ferroni and Lorenz curves are respectively given by 

( ) ( )
0

1 d
q

PHB p x f x x
pµ

= ∫                     (44) 

and  

( ) ( )
0

1 d
q

PHL p x f x x
µ

= ∫                     (45) 

where ( )E Xµ =  and ( )1q F p−= , 0 1p< < . Hence, for the power Hamza 
pdf (3), one gets 

( )
6

6 1
5

0 0

6
7

5
0 0

d e d
6120

e d e d
6120

q q
x

PH

q q
x x

x f x x x x x x

x x x x

β

β β

β β θ

β θ β θ

βθ θα
αθ

βθ θα
αθ

− −

− −

 = + +  

 
= + 

+  

∫ ∫

∫ ∫

       (46) 

Letting w xβθ= , ( )1x w βθ= , ( )( )1 1 1d 1 1 dx w wβ ββ θ −=  and noting that 
( )0,x q∈  implies ( )0,w qβθ∈ , (1) becomes 

( )
0

1 11 176 1 7 1

5
0 0

1 176

5

d

1 1e d e d
6120

1 1 1 1, 7 ,
6120

q

PH

q q
w w

x f x x

w w w w

q q

β ββ βθ θβ ββ ββ β

β β
β ββ β

θ θα
θ θαθ

θ θα β θ β θ
θ β θ βαθ

      + +   + − + −      − −   

   
+ +   

   

 
    = +    +      

      = Γ + + Γ +      +       

∫

∫ ∫

( )

2 1
2 2

6 6

6 5

1 1 7 16 , ,

6 120

q q
β
β β β β

β

β βθ αθ θ θ θ
θ β β

θ αθ

+

 
 
 
  

    + +  Γ + Γ     
      =

+

 (47) 

Substituting (46) and (47) into (44) and (45), we obtain the Bonferroni and 
Lorenz curves, respectively, for the power Hamza distribution as  

( ) ( )

2 1
2 2

6 6

6 5

1 1 7 16 , ,

6 120

q q
B p

p

β
β β β β

β

β βθ αθ θ θ θ
θ β β

θ µ αθ

+
    + +  Γ + Γ     

      =
+

    (48) 

( ) ( )

2 1
2 2

6 6

6 5

1 1 7 16 , ,

6 120

q q
L p

M

β
β β β β

β

β βθ αθ θ θ θ
θ β β

θ αθ

+
    + +  Γ + Γ     

      =
+

    (49) 

https://doi.org/10.4236/jamp.2022.101004


S. U. Enogwe et al. 
 

 

DOI: 10.4236/jamp.2022.101004 41 Journal of Applied Mathematics and Physics 
 

3.10. Stochastic Ordering  

In this section, we discuss the comparative behaviour of the power Hamza ran-
dom variable using the stochastic ordering. In line with [18], a power Hamza 
random variable X is said to be smaller than another random variable Y in the 1) 
stochastic order ( )stX Y≤  if ( ) ( )X YF x F x x≥ ∀ , 2) hazard rate order 
( )hrX Y≤  if ( ) ( )X Yh x h x x≥ ∀ , 3) mean residual life order ( )mrlX Y≤  if 

( ) ( )X Ym x m x x≥ ∀  and 4) likelihood ratio order ( )lrX Y≤  if ( ) ( )X Yf x f x  
a decreasing function of x. To show the flexibility of the power Hamza distribu-
tion, we present the following Proposition. 

Proposition 8. Let ( )1 1 1~ , ,X θ α β  and ( )2 2 2~ , ,Y θ α β  be two indepen-
dent random variables. If 1) 1 2θ θ> , 1 2α α=  and 1 2β β= ; 2) 1 2α α> , 

1 2θ θ= , 1 2β β= ; 3) 1 2β β< , 1 2θ θ= , 1 2α α=  and 4) 1 2θ θ> , 2 1α α< , 

1 2β β< , then lrX Y≤ , hrX Y≤ , mlrX Y≤  and stX Y≤ . 
Proof. The likelihood ratio is 

( )
( )

( )
( )

( )1 1 21 21 2
2

6 5 6
1 1 2 21 1 1 1 1

66 5
2 2 2 2 22 2 1 1

120; , , 6
e

; , , 6120
x xX

Y

f x xx
f x x

β ββ
θ θβ β

β

β θ α θθ α β α θ
θ α β α θβ θ α θ

− −−
+  +

=  
++  

 (50) 

The log-likelihood ratio is 

( )
( )

( )
( ) ( )

( )
1

1 2
2

6 5
1 1 2 21 1 1

1 26 5
2 2 2 2 2 1 1

6
1 1

1 26
2 2

120; , ,
ln ln ln

; , , 120

6
ln

6

X

Y

f x
x

f x

x x x
x

β
β β

β

β θ α θθ α β
β β

θ α β β θ α θ

α θ
θ θ

α θ

 +    = + − 
 +    

 +
+ − − 

+ 

     (51) 

Differentiating the log-likelihood with respect to x, we get 

( )
( )

( ) ( ) ( )

( )( )
( ) ( )

1 21 2

1 2

1 2

1 1 1

2 2 2

6 16 1 6 1
1 2 1 2 1 2 1 2 1 2

6 6
1 1 2 2

1 2 1 1
1 1 2 2

; , ,d ln
d ; , ,

36 6 6

6 6

X

Y

f x
x f x

x x x

x x

x x
x

β ββ β

β β

β β

θ α β
θ α β

θ α β θ α β θ θ β β

α θ α θ

β β
θ β θ β

− −− −

− −

  
 
  

+ + −
=

+ +

−
+ − −

     (52) 

Since ( )
( )

1 1 1

1 1 1

; , ,d ln 0
d ; , ,

X

X

f x
x f x

θ α β
θ α β

   < 
  

 for conditions 1), 2), 3) and 4), then 

lrX Y≤  and hence, hrX Y≤ , mlrX Y≤  and stX Y≤ , which completes the 
proof of Proposition 8. 

3.11. Rényi Entropy 

To quantify the amount of information (such as the diversity, uncertainty, or 
randomness) contained in a random sample drawn from a population, the en-
tropy is utilized. It may be noted that a large value of entropy indicates that the 
data contains greater uncertainty. Several studies have applied entropy in the 
fields of physics, probability and statistics, communication theory, economics, 
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among others. Therefore, we derive one of the commonly used entropies, name-
ly the Rényi entropy. For 0ρ >  and 1ρ ≠ , the Rényi entropy due to [19] is 
defined for a continuous random variable as  

( )
0

1 log d
1 PHE f x x

ρ

ρ ρ

∞ 
=  −  

∫                    (53) 

Using the pdf (3) in (53), we obtain 

( )

( )
( )

6
6 1

5
0

6
16

5
0

6
6 1

51 0

1 log e d
1 6120

1 log e d
1 6120

1 log e d
1 6 120

ix
i i

x

j j
x

jj

E x x x

x x x

x x
j

β

β

β

ρ
θβ β

ρ

ρ ρ
ρ ββ θρ

ρ ρ ρρ
β ρ β θρ

ρ

βθ θα
ρ αθ

βθ θα
ρ αθ

ρ θ α β
ρ αθ

∞
−−

∞
− −

∞+ −
+ − −

=

    = +  − +     

     = +   − +     

   =   −   +  

∫

∫

∑ ∫

 

( )
( )

6 1
6 1 1 1

51 0

1 6log e d
1 120

j j j
j y

j
y y

j

ρ ρ ρρ
ρ ρ β θρ

ρ

ρ θ α β
ρ αθ

∞− + − −
+ − + − −

=

   =   −   +  
∑ ∫  y xβ=  

( )
( )
( )

6 1

6 1 151

6 1 11 6log
1 120

j j j

j
j

j
E

j

ρ ρ ρρ

ρ ρ ρ ρ β

ρ ρ βρ θ α β
ρ θραθ

− + − −

+ − +
=

 Γ + − +  =   −   +  
∑     (54) 

3.12. Distribution of Order Statistics for the PH Distribution 

Suppose ( ) ( ) ( )1 2 nX X X< < <  constitutes the order statistics for a random 
sample 1 2, , , nX X X  drawn from the power Hamza distribution with pdf (3) 
and cdf (7). Then the pdf of the rth order statistic ( )rX  can be written as  

( )
( ) ( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( )
( )

( )
( )

1

6
1 6

5
0

1
5 5 4 4 3 3 2 2

5

! 1 ; 1,2, ,
1 ! !

! 1 e
6120 1 ! !

6 30 120 360 720
1 1 e

120

r

r n r
X PH PH PH

n r u x

u

r u

x

nf x f x F x F x r n
r n r

n rn x x
ur n r

x x x x x x

β

β

β θ β

β β β β β β
θ

βθ θα
αθ

θ θ θ θ θ θ

αθ

− −

−
− −

=

+ −

−

= − =
− −

−   = − +   
+ − −   

  + + + + +
  × − +
  +  

∑



 (55) 

Putting 1r =  into (55) gives the pdf of the first order statistic ( )1X  as 

( )
( )

( )
( )

1

6
1 6

5

1
5 5 4 4 3 3 2 2

5

e
6120

6 30 120 360 720
1 e

120

x
X

n

x

nf x x x

x x x x x x

β

β

β θ β

β β β β β β
θ

βθ θα
αθ

θ θ θ θ θ θ

αθ

− −

−

−

 = + +  

  + + + + +
  × +
  +  

 (56) 

Putting r n=  into (55) gives the pdf of the nth order statistic ( )nX  as 
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( )
( )

( )
( )

6
1 6

5

1
5 5 4 4 3 3 2 2

5

e
6120

6 30 120 360 720
1 1 e

120

n

x
X

n

x

nf x x x

x x x x x x

β

β

β θ β

β β β β β β
θ

βθ θα
αθ

θ θ θ θ θ θ

αθ

− −

−

−

 = + +  

  + + + + +
  × − +
  +  

 (57) 

4. Maximum Likelihood Estimators of the Power Hamza  
Distribution 

Let 1 2, , , nX X X  denote a random sample of size n from the PH distribution 
having parameters θ , α  and β . To estimate the parameters θ , α  and β  
using the maximum likelihood method, we define the likelihood function of the 
random sample form the PH distribution as 

( ) ( ) 1
6

6 1
5

1 1
, , ; , , e

6120

n
i

i

nn nx

i i i
i i

L f x x x
βθ

β ββθ θθ α β θ α β α
αθ

=
−

−

= =

∑   = = +   +   
∏ ∏  (58) 

Taking the natural log of (58), we obtain the log-likelihood function as 

( ) ( ) ( ) ( )

( )

5 6

1

1 1

ln , , ln 6 ln ln 120 ln
6

1

n

i
i

n n

i i
i i

L n x

x x

β

β

θθ α β β θ αθ α

β θ

=

= =

  = + − + + +    

+ − −

∑

∑ ∑
  (59) 

Differentiating (59) with respect to θ , α  and β  respectively and equating 
the resulting derivatives to zero, one obtains  

( ) 64

5 6
1 1

ln , , 6 5 0
120 6

n n
i

i
i ii

L xn n x
x

β
β

β

θ α β αθ
θ θ αθ α θ= =

∂
= − + − =

∂ + +∑ ∑       (60) 

( ) 5

5 6
1

ln , , 6 0
120 6

n

i i

L n
x β

θ α β θ
α αθ α θ=

∂ −
= + =

∂ + +
∑            (61) 

( ) ( ) ( ) ( )
6

6
1 1 1

lnln , ,
6 ln ln 0

6

n n n
i i

i i i
i i ii

x xL n x x x
x

β
β

β

θ α β
θ θ

β β α θ= = =

∂
= + + − =

∂ +
∑ ∑ ∑     (62) 

The above non-linear systems of equations are solved by numerical iteration 
technique and maximum likelihood estimates are obtained. Since the maximum 
likelihood estimates for θ , α  and β  are not in closed form we use the large 
sample behaviour of maximum likelihood estimators to obtain the confidence 
intervals for model parameters.  

5. Asymptotic Confidence Intervals of the Power Hamza  
Distribution 

In this section, we present the asymptotic confidence intervals for the parame-
ters of the PH distribution. Let ( )Tˆ ˆˆ ˆ, ,θ α β=ψ  be the maximum likelihood es-
timate of ( )T, ,θ α β=ψ . Under the conditions that the parameters are in the 
interior of the parameter space, but not on the boundary, the asymptotic distri-
bution of ( )ˆn −ψ ψ  is ( )( )1

3 ,N −I0 ψ , where ( )I ψ  is the expected Fisher 
information matrix. The asymptotic behaviour of the expected information ma-
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trix can be approximated by the observed information matrix, denoted by ( )ˆnI ψ . 
The observed information matrix of the power Hamza distribution is given by  

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2

2 2 2

2

2 2 2

2

ln , , ln , , ln , ,
ˆ ˆ ˆˆ

ln , , ln , , ln , ,
ˆ

ˆ ˆˆˆ ˆ

ln , , ln , , ln , ,
ˆ ˆ ˆ ˆˆ

n

L L L

L L L

L L L

θ α β θ α β θ α β
θ θ α θ β

θ α β θ α β θ α β
αα θ α β

θ α β θ α β θ α β

β θ β α β

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ =
 ∂∂ ∂ ∂ ∂
 
∂ ∂ ∂ 

 
∂ ∂ ∂ ∂ ∂ 

I ψ     (63) 

Thus, 

( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11

ˆ ˆ ˆ ˆˆvar cov , cov ,

ˆ ˆˆ ˆ ˆ ˆ ˆcov , var cov ,

ˆ ˆ ˆ ˆˆcov , cov , var

n n

θ θ α θ β

α θ α α β

β θ β α β

−−

 
 
 = =  
 
 
 

I Iψ ψ       (64) 

Taking the second order derivatives of (59) with respect to θ , α  and β  
are, respectively, we obtain the entries of (63) as follows 

( ) ( )
( ) ( )

3 52 12

2 2 25 61

5 480ln , , 6

120 6

n
i

i
i

nL xn

x

β

β

αθ αθθ α β
θθ αθ α θ=

−∂
= − + −

∂ + +
∑     (65) 

( )
( ) ( )

2 10

2 2 25 61

ln , , 36

120 6

n

i
i

L n

x β

θ α β θ
α αθ α θ=

∂
= −

∂ + +
∑          (66) 

( ) ( )
( )

( )
6 22

2
2 2 261 1

lnln , ,
216 ln

6

n n
i i

i i
i i

i

x xL n x x
x

β
β

β

θ α β
αθ θ

β β α θ= =

∂
= − + −

∂ +
∑ ∑  (67) 

( )
( ) ( )

2 64

2 25 61

ln , , 600 6
120 6

n
i

i
i

L xn

x

β

β

θ α β θ
α θ αθ α θ=

∂ −
= −

∂ ∂ + +
∑           (68) 

( ) ( )
( )

( )
62

261 1

lnln , ,
36 ln

6

n n
i i

i i
i i

i

x xL
x x

x

β
β

β

θ α β
α

β θ α θ= =

∂
= −

∂ ∂ +
∑ ∑          (69) 

( ) ( )
( )

62

261

lnln , ,
36

6

n
i i

i
i

x xL

x

β

β

θ α β
α β α θ=

∂
= −

∂ ∂ +
∑               (70) 

The expectations in the Fisher information matrix can be obtained numeri-
cally. The multivariate normal distribution with mean vector ( )T0,0,0  and co-
variance matrix ( )1−I ψ  can be used to construct confidence intervals for the 
model parameters. The approximate ( )100 1 %η−  two-sided confidence inter-
vals for θ , α  and β  are determined by 

( )2
ˆ ˆvarZηθ θ± , ( )2ˆ ˆvarZηα α±  and ( )2

ˆ ˆvarZηβ β±      (71) 

respectively, where 2Zη  is the upper ( )2 thη  percentile of a standard normal 
distribution. 
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6. Applications 

In this section, we provide an application to real data set to demonstrate the 
importance and flexibility of the PH distribution.  

The data set is on the breaking strength of carbon fibres of 50 mm length 
(GPa). The data has been previously used by [20] and [21]. The data is as fol-
lows:  

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 
2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 
2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 
3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 
3.75, 4.20, 4.38, 4.42, 4.70, 4.90.  

We fitted the PH distribution to the data set by using the method of maxi-
mum likelihood and the results are compared with five other competitive life-
time distributions namely,  

1) Hamza distribution (HD) defined in Equation (2), 
2) Weighted Weibull distribution (WWD): 

( )
( )

( )
1 11 e; , ; 0, 0, 0, 1
1

cc xxf x x c
c

ββ θθβθ β θ β
+ −+ −

= > > > > −
Γ +

, 

3) Two-Parameter Weibull distribution (TPWD): 

( ) 1; , e ; 0, 0, 0xf x x x
ββ θθ β θβ θ β− −= > > > , 

4) Pareto distribution (PD): 

( ) 1; ; 0, 0m

m

x
f x x

x

α

α

α
α α+= > > , 

5) Exponential distribution (ED): 

( ); e ; 0, 0xf x xθθ θ θ−= > > . 

We used the goodness-of-fit test based on the Kolmogorov-Smirnov test due 
to ([22] [23] [24] [25]) with its corresponding p-value to verify that the data set 
under consideration actually follow the proposed distribution. The computa-
tional formula for this goodness-of-fit test is given by 

( )( ) ( )( ) 1ˆ ˆKS max ,i i
i iF x F x
n n

− = − − 
 

               (72) 

where ( )ˆ
iF x  is the estimated distribution function under the ordered data. 

Since there is more than one distribution to be compared, the distribution with 
the largest KS p-value will be more appropriate to fit the given sample. 

We shall also determine the appropriate model from among all models com-
pared for the real data set by considering three discrimination criteria, based on 
the log-likelihood function evaluated at the maximum likelihood estimates, the 
Akaike information criterion (AIC) due to [26] and the Bayesian information 
criterion (BIC) due to [27], respectively. To compute the AIC and BIC, the fol-
lowing formulae are used 
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Table 1. Parameter estimates, standard errors, log-likelihood values and goodness-of-fit 
measures. 

Model Parameter Estimates S.E -LL AIC BIC KS p-value 

HD 
α = 0.0214 0.0237 

89.4837 182.9673 187.3466 4.5059 0.0000 
θ = 2.4995 0.1185 

PHD 

α = 0.4189 0.6854 

86.3233 178.6467 185.2157 0.0684 0.9172 β = 1.3588 0.1678 

θ = 1.6560 0.3409 

WWD 

θ = 2.2611 0.2157 

87.4061 180.8121 187.3811 0.7612 0.0000 β = 0.0004 0.8067 

c = 0.1759 0.0850 

TPWD 
α = 0.9363 0.1153 

132.8473 269.6945 274.0738 0.3373 0.0000 
θ =2.7593 0.3510 

PD α = 1.0562 0.1300 124.8820 251.7640 253.9536 1.7185 0.0000 

ED θ =2.7595 0.3397 132.9944 267.9887 270.1784 0.3581 0.0000 

 
AIC 2 2l k= − +                         (73) 

( )BIC 2 logl k n= − +                       (74) 

where l denotes the log-likelihood function evaluated at the maximum likelihood 
estimates, k is the number of parameters in the statistical model and n is the 
sample size of the fitted data respectively. All the computations for (72)-(74) 
were performed using R software. Generally, for the given data-sets, we consider 
a distribution to be best among all competing distributions if it has smallest AIC 
value, the smallest BIC value, the smallest log-likelihood value and the largest 
p-value.  

As shown in Table 1, the PH distribution has the largest KS p-value and 
smallest AIC, BIC and log-likelihood values as compared to other fitted distribu-
tions. Hence, the PH distribution is better than the other distributions in Table 
1 for fitting the data under consideration. 

7. Conclusion 

This study introduced a new distribution, called the power Hamza distribution 
using power transformation method. The contribution of this paper has to do 
with addition of skewness to the Hamza distribution, which depends only on 
one parameter. The density function of the power Hamza distribution can take 
various forms depending on its shape parameter. The hazard rate function of the 
power Hamza distribution exhibits heavy-tailed shape, upside-down bathtub 
shape and J-shape, which implies that the distribution can be used for analyzing 
lifetime and survival time datasets. A detailed discussion of the properties of the 
proposed distribution has been given. Estimates of the three unknown parame-
ters of the PH distribution are obtained using the maximum likelihood estima-
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tion method. The PH distribution was fitted to a real dataset and compared to 
five distributions and the results showed that the proposed distribution outper-
formed all of them in modelling the data under consideration.  
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