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Abstract 
We present, for the first time, a unified description of adiabatic collision chan-
nels and the Wannier channel in electron-atom scattering. We identify the 
Wannier channel as the solution of a recently presented partial differential 
equation of parabolic type. The kernel of that equation has been constructed 
near the ionization threshold. Its eigenstates are shown to be members of a 
Banach space. For the purpose of demonstration, this paper embeds one adia-
batic channel into a Bannach space. The full set of an adiabatic spectrum will 
be embedded into the Wannier continuum of a Banach space in a forthcom-
ing paper. This technique delivers amended non-adiabatic collision channnels 
with ebergy-dependent potentials. That dependence manifests itself as ener-
gy-dependent discontinuity at the threshold. The branch above threshold de-
scribes the double escape of electrons, whereas the branch below threshold 
replaces an infinity of strongly coupled adiabatic channels by one new chan-
nel. The present paper is restricted to two-electron atoms consisting only of s2 
1S configurations. Our model shows new unexpected effects including an 
electron-electron attraction similar to a Cooper pair except that our electron 
pair couples only to one nucleus at rest rather than to a vibrating lattice. Our 
electron-electron attraction stems from a dynamic deformation of the poten-
tial surface. 
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Dominant Correlation, Nonseparable Wave Equations, Embedding of a  
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1. Introduction 

Standard problems in quantum mechanics confirm that normalizable eigenstates 
of a Hermitian operator span a Hilbert space. This is doubtless true for one-di- 
mensional systems described by an ordinary differential equation, and for se-
parable more-dimensional systems. The present paper shows that a Hilbert space 
over the set of real numbers   is too small for multiplying excited atoms. 
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Therefore we need an extension to a vector space over the set of complex num-
bers  , i.e. the norm of an element is no longer real positive. Such vector spac-
es are usually referred to as Banach spaces. 

A powerful strategy to solve the stationary wave equation for a many-electron 
atom is the employment of hyperspherical coordinates [1]. Also in these coordi-
nates, the wave equation is non-separable, but an accurate method to calculate 
multiply excited energy levels has been presented long ago by Macek [2], Klar et 
al. [3]. To this end, we use a two-step method as follows. First, we solve the 
problem at constant values of the hyperradius 

2
iiR r= ∑                           (1)  

We apply this amended BO method to a simplified two-electron atom. That 
step leads to collision channels and static potentials which deliver resonance le-
vels as matrix eigenvalues. Thus the second step requires the calculation of ei-
genvalues in a static potential. We did that for two-electron atoms like He and 
H− but the generalization to more electrons is obvious. Klar et al. [3] did such 
calculations making advantage of technical details. Both groups obtained surpri-
singly good results except for very highly excited channels close to the ionization 
limit. Thus we got the suspicion that Macek’s two-step method which is basically 
a Born-Oppenheimer (below shortly BO) treatment is too simple. Klar [4] pre-
sented recently an amended BO-method which removes all first-order channel 
coupling. That method describes in the molecular case electronic eigenstates in a 
moving nuclear frame where fictitious forces may occur. We apply this here for 
the purpose of demonstrating the amended BO method to a simplified two-electron 
atom. To this end, we disregard any angular correlation but we treat properly 
radial correlation. Clearly, we are now confronted to treat in the first step an 
evolution equation rather than a simple linear matrix eigenvalue equation. This 
novel channel equation resembles the well-studied heat equation. In our prob-
lem, its fundamental solution folded which an initial state function delivers ei-
gen-evolutions but not yet the desired improved potentials. The present paper de-
rives exactly the evolution near zero-energy and calculates exact eigenstates. 
These eigen-evolutions manifest themselves as members of a Banach space that 
replaces a familiar Hilbert space.  

The present article embeds, therefore, the Hilbert space of static BO-channels 
into a new Banach space spanned by the evolution continuum. Many years ago 
Fano [5] presented a prototype embedding of one Hilbert space into another one. 
Basically, we adopt Fano’s procedure with necessary modifications. To our know-
ledge, the present way to attack the problem of resonance formation is entirely 
new since we present here, for the first time, a unified description of Feshbach 
and Wannier resonances. 

This article is organized as follows. In Section 2 we summarize the use of 
hyperspherical coordinates in atomic structure calculations. Section 3 puts the 
focus on the Wannier phenomenon and derives an exact fundamental solution 
(also referred to as kernel). The embedding procedure of one BO collision 
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channel into the Wannier continuum is the subject of Section 4. Section 5, final-
ly, summarizes the present development and discusses aspects for future work. 

2. Hyperspherical Coordinates 

We consider a not too heavy atom with N electrons, and denote their body-fixed 
positions with , 1, ,ir i N=

�
�  and parametrize these vectors by 

( )ˆi ir Rn ω=
�                            (2) 

where R is the hyperradius given by (1), and ˆin  are unit vectors on the surface 
of the unit sphere 3 4N − . ω  stands for a set of 3N − 4 spherical angles, see for 
instance [1]. We exclude here any overall rotation because that has nothing to do 
with our principle aim. The kinetic energy of all electrons in the nucleus frame 
reads then 

( )
2

3 1 3 1
2

1
2 2

N NT R R
R R R

− − −∂ ∂ Λ
= − −

∂ ∂
                (3) 

where 2Λ  is the generator of rotations in the space 3 4N −  [1], also refered to 
as grand angular momentum. 

The electrostatic potential for light atoms reads 

1
i i j

i ij

ZV
r r<

= − +∑ ∑                       (4) 

with the nuclear charge Z and ijr  being the electron-electron separations. In 
hypershericals, the function V gets the simple pleasent structure 

( )C
V

R
ω

=                            (5)  

where ( )C ω  depends only on a set ω  of 3N − 4 angles . 
The stationary wave equation has then the form 

( ) ( ) ( )( )
22

3 1 2
2 2

11 0
2 2

NC
E R

RR R
λ λ ω − Λ − +∂ − − + − Ψ = 

∂  
        (6) 

with  

( )3 1
2

N
λ

−
=                           (7) 

Equation (6) is, of course, still nonseparable. 
In order to solve it, Macek [2] starts from a channel expansion 

( )( ) ( ) ( )3 1 2 ;NR F R E Rµ µµ ω− Ψ = ∑                  (8) 

We [4] replace now in the channel equation the first derivative of the radial 
function F(R) by its logarithmic one and use the Sommerfeld approximation for 
the logarithmic derivative1 

( )F iK R
F
′
=                          (9) 

 

 

1Sommerfeld used that Abstrahlungsbedingung for light; we do it here for electrons. 

https://doi.org/10.4236/jamp.2021.912211


H. Klar 
 

 

DOI: 10.4236/jamp.2021.912211 3233 Journal of Applied Mathematics and Physics 
 

to get an improved channel equation 

( ) ( )
2

22
C

iK E V R E
R RR µ µ

ω ∂ Λ − + + = 
∂  

               (10) 

The desired separation is now, except for the second-order coupling term 
2

2

E
R

µ∂

∂
  

complete because Equation (9) depends no longer on the unknown radial func-
tion. That 2nd order coupling is not relevant for us because it operates in the 
inner reaction zone rather than in the Coulomb zone. 

To this end, we arrive at the recently presented eigen-evolution equation [6]   

( ) ( )
2

22
E C

iK V R E
R RR
µ

µ

ω∂  Λ
= + − 

∂  
                (11) 

Equation (11) resembles the heat equation. Actually, the lhs of (11) may be re-
garded as a time-derivative provided we treat the hyperradius as classical coor-
dinate as function of time, say R(t). The momentum K is then K R= � , i.e.  

K
R t
∂ ∂

=
∂ ∂

. But it is here not necessary to employ classical mechanics.  

The above development merits one more comment. Equation (11) is an ex-
tension of the familiar BO approximation. Disregarding the derivative on the lhs 
of (11) we fall back to the standard eigenvalue problem of BO. Our (11), howev-
er, describes an evolution along the coordinate R. Therefore we work here with 
angular modes on a breathing sphere in contrast to all previous works which 
work on a static sphere. In the molecular case, we would arrive at electronic 
functions on a moving nuclear frame. Here we treat angular functions on the 
surface of a breathing sphere.  

The next Section 3 exactly calculates the evolution departing from any initial 
two-electron state. 

3. The Wannier Mode as Evolution 

We start now looking into the potential surface of a two-electron atom-like He. 
This shows one saddle point. But only its unstable component describing radial 
correlation leads to an unusual ionization cross-section [7] and is expected to 
cause surprises also below threshold in agreement with our previous studies [6]. 
In order to explore radial correlation effects, we freeze below the angular corre-
lation and study the unstable radial correlation alone. That restriction eliminates 
also the l-degeneracy which has nothing to do with the Wannier phenomenon. 

Hypesperical coordinates are very suitable for that because they have an impor-
tant property. Let us consider a Shere n . That can be mapped with n polar an-
gles. n − 1 of them are meridian angles on intervals [ ]0,π  and one azimuth angle 
running on the hyperspherical equator with range [ ]0,2π . We denote that angle 
with [ ]0,2ϕ ∈ π . According to Sommerfeld [6] ϕ  is in our situation given by  

2 2
1 1 2

1 2

tan
2

r r
r r

ϕ − −
=                         (12) 
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The charge function reads then  

( ) 1 1 1
1 sin 1 sin 1 cos

C Zϕ
ϕ ϕ ϕ

 
= − + +  − + − 

         (13) 

That function has a smooth maximum located at ϕ = π , and may be approx-
imated there by  

( ) ( )2
0 2C C Cϕ ϕ= − − − π                     (14) 

with the coefficients [3] 

0
4 1

2
ZC −

=                           (15) 

and 

2
12 1

4 2
ZC −

=                          (16) 

We come now to the evolution Equation (10). The wavenumber K(R) is related 
to the conservation of energy on the top of the potential ridge by 

2 01
2

C
E K

R
= −                          (17) 

At threshold for double escape E = 0 the electron pair is in equilibrium on the 
top of the ridge where the kinetic radial energy compensates their potential 
energy. From (17) we get immediately  

02C
K

R
=                           (18) 

see also Wannier [7]. For high energy, we would find from (17) of course  

2K E=  whereas in the discrete target spectrum we find ZK i
n

= . Moreover,  

the Sommerfeld angle ϕ  is a cyclic coordinate in the Laplacian. That simplifies 
the further investigation. Actually, our centrifugal term reads simply  

2
2

24
ϕ
∂

Λ = −
∂

                         (19) 

see [3] with putting there 0ψ = . 
Thus we arrive at the wave equation for the evolution 

( )
2

20 0 2
2 2

2 2C C CE Ei E E WE
R R R RR

ϕ
ϕ

∂ ∂
+ + + − π =

∂ ∂
          (20) 

In order to solve it, we put 

( ) ( ){ }, expE R i RDϕ ϕ=                    (21) 

and get for the function ( )D ϕ  the relation  

( ) ( ) ( )2 23 20 0 22 2
2

C C CD D iR D W R
R R R R

ϕ−′ ′′− − − + + − π =        (22) 

That we solve with the Ansatz 
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( ) ( )2D ϕ κ λ ϕ= + − π                       (23) 

and find for the coefficients 

02Cκ =                            (24) 

and for λ  we get from  

2 0 21 0
8 2 8

C C
λ λ+ − =                       (25) 

two real solutions are given by 

0 2 0
1

321 0
16 2 2

C C C
λ

 +
= + >  

 
                 (26) 

0 2 0
2

431 0
16 2 2

C C C
λ

 +
= − + <  

 
                (27) 

The λ  in (25) describes a potential surface deformation. Surprisingly that is 
different for outgoing waves ( 1λ ) and incoming waves ( 2λ ), respectively. 

The eigenvalues are then given by 

( ) ( )3 2

4W R i
R
λ

= −                        (28) 

Imaginary eigenvalues (28) are not acceptable for potential energy. An eigenva-
lue of a Hermitian operator is manifestly real. 

An earlier treatment of the present problem based on matrix calculus showed 
the same difficulty except for the ground channel which carries only singly ex-
cited bound states [8]. 

The evolution folded with an asymptotic state is certainly a member of a vec-
tor space with scalar product and a norm. We conclude from (28) that we are 
confronted here with a norm over the field of complex numbers  . This is in 
contrast to a familiar Hilbert space whose norm runs over positive real numbers 
 . The evolutions constitute therefore elements of a Banach space. That result is 
rather unusual in atomic structure theory since textbooks generally teach that 
the eigenstates of physically meaningful operators span a Hilbert space. That 
standard statement is in fact correct as long as the wave equation is either 
one-dimensional or it is a separable partial differential equation. Our situation 
treats however a non-separable partial differential equation of parabolic type. 

4. Embedding of one Hilbert Space Element into a Banach  
Space 

Embeddings are nontrivial procedures. Although Fano [5] embedded one Hil-
bert space into another larger Hilbert space we are allowed to adopt his general 
procedure to go ahead with substantial changes necessary for our problem, 
however. For the purpose of illustration, we embed in this paper only one Hil-
bert space element into a Banach space.  

Below we employ a more compact description of the basic equations. To this 
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end, we identify an improved electron-atom/ion potential as an eigenvalue of the 
reduced Hamiltonian 

0 1h h h= +                             (29)   

where 0h  is the adiabatic Hamiltonian, and 1h  is the non-adiabatic coupling 
given by  

( )1h iK R
R
∂

= −
∂

                         (30) 

0h  creates a descrete spectrum of channel potentials, whereas 1h  opens a con-
tinuum [10]. 

The present paper studies the simplest case of only one descrete channel iden-
tified by its channel wavefunction Φ and its potential eigenvalue ( )U R , i.e. we 
write 

h UΦ Φ =                          (31) 

The evolution folded with any initial value function leading to a real potential W 
we denote that state by ( )WΓ , and rewrite (28) in the form 

( ) ( )
( ) ( )

( ) 3 2

4W h W
W R

RW W
λ′Γ Γ

= =
′Γ Γ

                (32) 

with the necessary Banach norm 

( ) ( )( ) ( )| RW W i W Wδ′ ′Γ Γ = − −
π

                 (33) 

We have already seen that the modified ridge curvature λ  has two eigenvalues, 

1 0λ >  and 2 0λ < . Therefore we treat separately the functions  
( ) ( )10W WΓ > = Γ , and ( ) ( )20W WΓ < = Γ . We will see shortly that W > 0 

describes expanding three-body complexes whereas W < 0 delivers shrinking 
complexes. Thus we modify (32) to 

( ) ( ) ( ) ( ) ( )i j i i j ijW h W W R W W δ′ ′Γ Γ = Γ Γ          (34) 

, 1, 2i j = , and with the norm analogous to (33). 
With these ingredients, we attack now the eigenvalue equation 

( )h V RΨ = Ψ                          (35) 

To this end, we diagonalize h in the basis given by Φ  and the two , 1, 2j jΓ = . 
Therefore we express the solution ( )RΨ  as a linear combination [5] [9] 

( ) ( ) ( ) ( )0
1 20

, d , dA B W W W W B W W W W
∞

−∞
′ ′ ′ ′ ′ ′Ψ = Φ + Γ + Γ∫ ∫     (36) 

We stress there is only one single function ( ),B W W ′ , but it enters in (36) on 
different energy segments.  

Now we perform the diagonalization, and multiply (35) from left with ( )j W ′Γ  
and integrate over the ridge angle ϕ . This step leads to 

( ) ( ) ( ), jV W B W W iX W′ ′ ′− =                   (36) 

1,2j = . From (36) we get the solutions 
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( ) ( )1,
X W

B W W i
V W

′
′ =

′−
P                      (37) 

for W > 0, and  

( ) ( )2,
X W

B W W i
V W

′
′ =

′−
P                      (38) 

for W < 0, respectively. The symbol P  stands for the Cauchy principal value 
and jX  is given by the coupling 

( )( )j jX W h= Γ Φ                       (39) 

Now we multiply (35) with Φ and integrate again over ϕ , and now we subs-
titute the above values for ( ),B W W ′ . With the coupling 

( ) ( )( )j jY W h W= Φ Γ                     (40) 

we arrive at improved potentials  

( ) ( )1 1
1 0

1

X W Y W
V U i

V W
∞ ′ ′

= +
′−∫P                  (41) 

above the ionization threshold, and 

( ) ( )0 3 2
2

2

X W Y W
V U i

V W−∞

′ ′
= −

′−∫P                  (42) 

below threshold. In (40), (41) the principle value integrals represent a shift of the 
adiabatic potential due to the coupling to the Wannier continuum. That shift is 
real as may be sen as follows. In order to return to observable quantities we must 
devide all potential contribution by the Banach normalization given by Ri−

π
. 

That cancels the factor i in front of the integrals in Eqns. (41) and (42).  
Remarkably we get above and below threshold different potentials. But this is 

not unexpected because 1) the potential surface deformation depends on the di-
rection of flow, and 2) because any description beyond an adiabatic treatment 
should be energy-dependent. Actually our 1V  and 2V  describe a shift above/ 
below threshold. An alternative statement reads that the improved potential has 
a discontinuity at threshold (E = 0). 

5. Summary and Conclusions 

This paper has presented a new collision channel equation beyond a static BO 
approximation. A partial differential equation of parabolic type has been used to 
treat inelastic electron-atom scattering near an ionization threshold. The solu-
tion of that equation has been identified as Fresnel distribution [10]. This dis-
tribution folded with any atomic asymptotic state delivers collision channels for 
electron scattering from excited atoms. In contrast to standard treatments the 
Fresnel-eigenstates span a Banach space rather than a Hilbert space. That larger 
space contains besides the standard Feshbach inelastic channels of the reaction 

( )*ne A E+ , also the Wannier channel present near ionization thresholds. Embed-
ding of the Hilbert space generated by ordinary Feshbach channels into the nov-
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el Banach space leads, for the first time, to a unified description of all collision 
channels of one system. The embedding leads to improved electron-atom* po-
tentials beyond static models. The potential of the Wannier channel is as ex-
pected energy-dependent. That potential energy dependence manifests itself as 
discontinuity at threshold. Below threshold the Wannier channel delivers a po-
tential given by 

2
2

4
0W

R
λπ

= <                           (43) 

where R is the hyperradius of both excited electrons, and above threshold 

1
2

4
0W

R
λπ

= >                           (44) 

where the iλ  are generalized potential surface curvatures for shrinking and ex-
panding modes of the excited complex **A . Equations (43) and (44) represent 
unusual centrifugal describing the electrostatic potential of a dominantly corre-
lated electron pair in the field of a nucleus. Above threshold, our Wannier 
channel delivers the Wannier ionization threshold law [7].  

The problem treated in this paper was a hot topic for decades. But a convinc-
ing solution to it was not found. Under these circumstances, the community has 
lost interest in further investigations. The present paper has presented an out-
standing solution. The experimentalists are invited to perform highly accurate 
measurements slightly below the ionization threshold (not more than 3 eV be-
low) to search for narrow resonances. Also, theoreticians are invited to do new 
computational work.  

In summary, this paper has opened an entirely new field of atomic structure 
theory. Standard Feshbach resonances and the new Wannier resonances are treated 
in one single Banach space. 
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