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Abstract 
In this paper, we state and prove the conditions for the non-singularity of the 
D matrix used in deriving the continuous form of the Two-step Butcher’s hy-
brid scheme and from it the discrete forms are deduced. We also show that 
the discrete scheme gives outstanding results for the solution of stiff and 
non-stiff initial value problems than the 5th order Butcher’s algorithm in pre-
dictor-corrector form. 
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1. Introduction 

This paper focuses on finding numerical approximations to stiff and non-stiff 
initial value problems of the type  

 ( ) ( ) ( ) [ ]0 0, , on the interval , , and .y x f x y y x y x c d y′ = = ∈ ∈�     (1) 

Numerical methods for the solution of IVPs are vast such as the Runge-Kutta 
and Backward Differentiation Formulae (BDF). Similar work to this present one 
was done by [1] and [2] but while both authors used the same D matrix, neither 
did they investigate its non-singularity nor plotted the region of absolute stabili-
ty. The non-singularity of the D matrix is necessary not only because only 
non-singular matrices have inverses but also guides us on permissible values the 
step size should take. Besides, we used the fast vector-based approach proposed 
by [3] in calculating the order of the derived discrete schemes unlike in the 
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works of [1] [2] where each discrete scheme’s order was calculated one by one. 
In addition, we extended the interval of integration from [ ]0,1  in [2] albeit the 
availability of computer and software environments like wxMaxima/Maple [4] [5] 
and octave/Matlab [6] [7]. To the best of our knowledge, this is the first attempt 
at proving the non-singularity of the D matrix. Existing discrete schemes derived 
from their continuous counterparts for linear multistep methods in literature [1] 
[2] [3] [8] [9] [10] [11] [12] only assumed its non-singularity. The assumption 
on the non-singularity of the D matrix is not only limited to the earlier men-
tioned articles but also [13]-[18] and a host of others too numerous to mention. 

2. Methodology 

In this section, we re-derived1 the continuous formulation of the Two-Step 
Butcher’s scheme and use it to deduce the discrete ones. We shall find the order, 
error constant, investigate the zero stability and consistency of the derived dis-
crete schemes and the 5th order Butcher’s algorithm in Lambert [19].  

2.1. Derivation of Multistep Collocation Methods 

For the derivation of the continuous schemes, we apply the method of Onu-
manyi et al., onu1, where a k-step multistep collocation method with m colloca-
tion points was obtained as  

 ( ) ( ) ( ) ( ) ( )( )
1 1

0 0
, ,

t m

j n j j j j
j j

y x x y x h x f x y xα β
− −

+
= =

= +∑ ∑           (2) 

where ( )j xα  and ( )j xβ  are the continuous coefficients of the method. We 
define ( )j xα  and ( )j xβ  as  

 ( )
1

, 1
0

,
t m

i
j j i

j
x xα α

+ −

+
=

= ∑                        (3) 

and  

 ( )
1

, 1
0

,
t m

i
j j i

j
h x h xβ β

+ −

+
=

= ∑                      (4) 

and n jx +  for 0,1, , 1j t= −� . The ( )0t t k< ≤  in (2) are arbitrarily chosen in-
terpolation points taken from { }0 1, , , n kx x x +�  and jx  for 0,1,2, , 1j m= −�  
are the m collocation points belonging to { }0 1, , , n kx x x +� . To get ( )j xα  and 

( )j xβ , Onumanyi [20] arrived at a matrix equation of the form DC I=  where I 
is the ( )t m+  by ( )t m+  identity matrix while D and C are matrices defined by  

 
( )

( )

2 3 1

2 3 1
1 1 1 1

2 3 1
1 1 1 1

2 1
0 0

2 1
0 1 1

1
1

.1
0 1 2 3 1

0 1 2 3 1

t m
n n n n

t m
n n n n

t m
n t n t n t n t

t m
n

t m
m m

x x x x
x x x x

D x x x x
x x t m x

x x t m x

+ −

+ −
+ + + +

+ −
+ − + − + − + −

+ −

+ −
− −

 
 
 
 
 

=  
 + − 
 
 + − 

�
�

� � � � � �
�
�

� � � � � �
�

      (5) 

 

 

1We used brute force in doing so in [2], but here we show the Maxima codes for doing so. 
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The matrix in (5) is the collocation matrix of size ( )t m+  by ( )t m+ . The C 
matrix is also of size ( )t m+  by ( )t m+  whose columns give the continuous 
coefficients and it is defined as follows:  

 

0,1 1,1 1,1 0,1 1,1

0,2 1,2 1,2 0,2 1,2

0, 1, 1, 0, 1,

,

t m

t m

t m t m t t m t m m t m

h h
h h

C

h h

α α α β β
α α α β β

α α α β β

− −

− −

+ + − + + − +

 
 
 =
 
 
  

� �
� �

� � � � � �
� �

        (6) 

where t is the number of interpolation points while m is the number of colloca-
tion points used. In deriving the continuous and discrete forms of the Two-Step 
Butcher’s Scheme, we took 2t = , 4m =  and 0 nx x= , 1 1nx x += , such that (2) 
becomes  

 
( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 1

0 1 1 2 2 3 3
2 2

.

n n

n n n n

y x x y x y

h x f x f x f x f

α α

β β β β

+

+ +
+

= +

 
+ + + + 

 

      (7) 

Thus, the matrix D in (5) becomes  

 

2 3 4 5

2 3 4 5
1 1 1 1 1

2 3 4

2 3 4
1 1 1 1

2 3 4
2 2 2 2

2 3 4
3 3 3 3
2 2 2 2

1
1
0 1 2 3 4 5

.0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

n n n n n

n n n n n

n n n n

n n n n

n n n n

n n n n

x x x x x
x x x x x

x x x x
D x x x x

x x x x
x x x x

+ + + + +

+ + + +

+ + + +

+ + + +

 
 
 
 
 

=  
 
 
 
 
 

           (8) 

Since only non-singular matrices have inverses, we need to show that the matrix 
D is indeed non-singular if the step size h is not too small. Otherwise, we cannot 
invert the matrix. This is stated in the form of the following theorem.  

Theorem 2.1. If the step size h is not too small, then the matrix D given by (8) 
is non-singular.  

Proof: If we replace 1n nx x h+= − , 2 1n nx x h+ += +  and 3 1
2

1
2nn

x x h+
+

= +  in 

(8), then  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 4 5
1 1 1 1 1

2 3 4 5
1 1 1 1 1

2 3 4
1 1 1 1

2 3 4
1 1 1 1

2 3 4
1 1 1 1

2

1 1 1

1

1

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 1 10 1 2 3 4
2 2 2

n n n n n

n n n n n

n n n n

n n n n

n n n n

n n n

x h x h x h x h x h

x x x x x

x h x h x h x h
D x x x x

x h x h x h x h

x h x h x h

+ + + + +

+ + + + +

+ + + +

+ + + +

+ + + +

+ + +

− − − − −

− − − −
=

+ + + +

     + + +    
     

3 4

1
15
2nx h+

 
 
 
 
 
 
 
 
 
 
  +   

  

 

Replace row two with row two minus row one to give  
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( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( )

2 3 4 5
1 1 1 1 1

2 4 4
1 1 1 1

2 2 2 2 3
1 1 1

3 3 3 2
1 1

4 4 5
1

2 3 4
1 1 1 1

2 3 4
1 1 1 1

1

1
0 2 3 4 5

3 6 10
4 10

5

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3

n n n n n

n n n n

n n n

n n

n

n n n n

n n n n

n n

x h x h x h x h x h
h x h h hx hx hx

h x h x h x
h h x h x

h h x h

x h x h x h x h
x x x x

x h x

+ + + + +

+ + + +

+ + +

+ +

+

+ + + +

+ + + +

+ +

− − − − −
−

− − −
+ + +

− − +

− − − −

+



( ) ( ) ( )2 3 4
1 1 1

2 3 4

1 1 1 1

.

4 5

1 1 1 10 1 2 3 4 5
2 2 2 2

n n

n n n n

h x h x h

x h x h x h x h

+ +

+ + + +

 
 
 
 
 
 
 
 
 
 
 
 

+ + + 
 

        + + + +                

(9) 

Next, we perform the following row operations with respect to row two as 
follows  

3 3 2
1R R R
h

↔ −  

4 4 2
1R R R
h

↔ −  

5 5 2
1R R R
h

↔ −  

6 6 2
1 .R R R
h

↔ −  

These yields  

( ) ( ) ( ) ( )
( )

2 3 4 5
1 1 1 1 1

2 4 4
1 1 1 1

2 2 2 2 3
1 1 1

3 3 3 2
1 1

4 4 5
1

2 2 3
1 1 1

2 2 2
1 1

3 3
1

4

1
0 2 3 4 5

3 6 10
4 10

5
0 0 2 3 6 10

8 20
3 15

4
0 0 3

n n n n n

n n n n

n n n

n n

n

n n n

n n

n

x h x h x h x h x h
h x h h hx hx hx

h x h x h x
h h x h x

h h x h
h h hx hx hx

h x h x
h h x

h
h h

+ + + + +

+ + + +

+ + +

+ +

+

+ + +

+ +

+

− − − − −
−

− − −
+ + +

− − +
− − − −

+ +
− −

+


2 3
1 1 1

2 2 2 2
1 1

3 3
1

4

2 3
1 1 1

2 2 2 2
1 1

3 3
1

.

6 10
4 10

5

0 0 3 9 18 30
2 8 20

5 25

n n n

n n

n

n n n

n n

n

x hx hx
h h x h x

h h x
h

h hx hx hx
h h x h x

h h x

+ + +

+ +

+

+ + +

+ +

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − − −
 + 
 −
 

+ 
 + + +
 

+ +  

 

We perform the following row operations with respect to row three  

4 4 3R R R↔ +  

5 5 33R R R↔ +  

6 6 22 .R R R↔ +  
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These yields  

( ) ( ) ( ) ( )
( )

2 3 4 5
1 1 1 1 1

2 4 4
1 1 1 1

2 2 2 2 3
1 1 1

3 3 3 2
1 1

4 4 5
1

2 2 3
1 1 1

2 2 2
1 1

3 3
1

4

2

1
0 2 3 4 5

3 6 10
4 10

5
0 0 2 3 6 10

8 20
3 15

4
0 0 0

n n n n n

n n n n

n n n

n n

n

n n n

n n

n

x h x h x h x h x h
h x h h hx hx hx

h x h x h x
h h x h x

h h x h
h h hx hx hx

h x h x
h h x

h
h

+ + + + +

+ + + +

+ + +

+ +

+

+ + +

+ +

+

− − − − −
−

− − −
+ + +

− − +
− − − −

+ +
− −

+

2 2 2
1 1

3 3
1

4

2 2 2 2
1 1

3 3
1

4

2 2 22
1 1

.

4 10
2 10

3
0 0 0 8 32 80

4 20
16

30 600150 0 0
4 2 16

n n

n

n n

n

n n

h x h x
h h x

h
h h x h x

h h x
h

h x h xh

+ +

+

+ +

+

+ +

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 + 
 
 

− − 
 +
 
 
  

 

Furthermore, we perform the following row operations with respect to row 
four  

5 5 48R R R↔ −  

6 6 4
15 .
4

R R R↔ −  

These gives the following  

( ) ( ) ( ) ( )
( )

2 3 4 5
1 1 1 1 1

2 4 4
1 1 1 1

2 2 2 2 3
1 1 1

3 3 3 2
1 1

4 4 5
1

2 2 3
1 1 1

2 2 2
1 1

3 3
1

4

2

1
0 2 3 4 5

3 6 10
4 10

5
0 0 2 3 6 10

8 20
3 15

4
0 0 0

n n n n n

n n n n

n n n

n n

n

n n n

n n

n

x h x h x h x h x h
h x h h hx hx hx

h x h x h x
h h x h x

h h x h
h h hx hx hx

h x h x
h h x

h
h

+ + + + +

+ + + +

+ + +

+ +

+

+ + +

+ +

+

− − − − −
−

− − −
+ + +

− − +
− − − −

+ +
− −

+


2 2 2
1 1

3 3
1

4

3 3
1

4

3
3 1

4

.
4 10

2 10
3

0 0 0 0 12 60
8

240
0 0 0 0 3

16
63
16

n n

n

n

n

h x h x
h h x

h
h h x

h
h x

h

h

+ +

+

+

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 + 
 
 

− 
 
 
 
 
 −
    
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Finally, we replace row six with four times row six minus row five i.e.,  

( 6 6 5
1
4

R R R↔ − )  

( ) ( ) ( ) ( )
( )

2 3 4 5
1 1 1 1 1

2 4 4
1 1 1 1

2 2 2 2 3
1 1 1

3 3 3 2
1 1

4 4 5
1

2 2 3
1 1 1

2 2 2
1 1

3 3
1

4

2

1
0 2 3 4 5

3 6 10
4 10

5
0 0 2 3 6 10

8 20
3 15

4
0 0 0

n n n n n

n n n n

n n n

n n

n

n n n

n n

n

x h x h x h x h x h
h x h h hx hx hx

h x h x h x
h h x h x

h h x h
h h hx hx hx

h x h x
h h x

h
h

+ + + + +

+ + + +

+ + +

+ +

+

+ + +

+ +

+

− − − − −
−

− − −
+ + +

− − +
− − − −

+ +
− −

+


2 2 2
1 1

3 3
1

4

3 3
1

4

4

.

4 10
2 10

3
0 0 0 0 12 60

8

310 0 0 0 0
16

n n

n

n

h x h x
h h x

h
h h x

h
h

+ +

+

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 + 
 
 

− 
 
 −
  

 

Therefore, since the matrix D has been reduced to an upper triangular matrix by 
elementary row operations, the determinant is the product of the diagonal ele-
ments. Hence,  

( ) ( )
4

3 4 1131 93det 12 ,
16 4

hD h h h
 

= − × × − = 
 

 

where det means determinant. The determinant of D is non-zero iff 1193
4

h  is  

strictly greater than zero. This result implies that if h is too small, then the 
determinant will be zero or less than macheps and D will be singular and 
non-invertible.                                                     

We have shown that the D matrix is non-singular if the step size is not too 
small from the above theorem. Now, we can find the inverse matrix C from 
DC I=  where I is the six by six identity matrix. We use the following wxMax-
ima(maple) codes to invert the D matrix as shown in the Appendix. 

We are only interested in the first row of the C matrix which are,  

( )5 4 2 3 3 2
1 1 1 1

11 5

24 15 40 30

31
n n n nx hx h x h x

c
h

+ + + +− + − −
=  

5 4 2 3 3 2 5
1 1 1 1

12 5

24 15 40 30 31
31

n n n nx hx h x h x h
c

h
+ + + ++ − − +

=  

( )5 4 2 3 3 2
1 1 1 1

13 4

96 91 98 89

372
n n n nx hx h x h x

c
h

+ + + +− + − −
=  

( )5 4 2 3 3 2 4
1 1 1 1 1

14 4

28 2 57 4 31

31
n n n n nx hx h x h x h x

c
h

+ + + + +− + − − +
=  
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( )5 4 2 3 3 2
1 1 1 1

15 4

16 21 6 11

124
n n n nx hx h x h x

c
h

+ + + +− − − +
=  

5 4 2 3 3 2
1 1 1 1

16 4

48 32 80 64
.

93
n n n nx hx h x h x

c
h

+ + + +− − +
=  

Hence, we obtained the continuous coefficients  

( )
5 4 2 3 3 2

0 5

24 15 40 30
31

h h hx
h

ω ω ω ωα − − + +
=  

( )
5 4 2 3 3 2 5

1 5

24 15 40 30 31
31

h h h hx
h

ω ω ω ωα + − − +
=  

( )
5 4 2 3 3 2

0 4

96 91 98 89
372

h h hh x
h

ω ω ω ωβ − − + +
=  

( )
5 4 2 3 3 2 4

1 4

28 2 57 4 31
31

h h h hh x
h

ω ω ω ω ωβ − − + + −
=  

( )
5 4 2 3 3 2

2 4

16 21 6 11
124

h h hh x
h

ω ω ω ωβ − + + −
=  

( )
5 4 2 3 3 2

3 4
2

48 32 80 64 .
93

h h hh x
h

ω ω ω ωβ − − +
=  

If we substitute the above into (7), then we obtain the continuous scheme  

 

( )
5 4 2 3 3 2

5

5 4 2 3 3 2 5

15

5 4 2 3 3 2

4

5 4 2 3 3 2 4

14

5 4 2 3 3 2

4

24 15 40 30
31

24 15 40 30 31
31

96 91 98 89
372

28 2 57 4 31
31

16 21 6 11
124

n

n

n

n

h h hy x y
h

h h h h y
h

h h h f
h

h h h h f
h

h h h
h

ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω ω ω ω

ω ω ω ω

+

+

 − − + +
=  
 
 + − − +

+  
 
 − − + +

+  
 
 − − + + −

+  
 
− + + −

+ 


2

5 4 2 3 3 2

34
2

48 32 80 64 .
93

n

n

f

h h h f
h

ω ω ω ω

+

+





 − − +
+  
 

      (10) 

We evaluated (10) at 3, ,
2 4
h hhω ω ω= − = − = −  and its derivative at 3

4
hω = − .  

We obtained the following four discrete schemes which constitutes the block 
method  

2 1 1 3 2
2

3 1 1 3 2
2 2

7 1 1 3 2
4 2

1 32 12 64 15
31 31 93

37 459 39 648 480 27
496 496 1984

243 7693 231 7644 16464 441
7936 7936 31744

n n n n n nn

n n n n nn n

n n n n nn n

hy y y f f f f

hy y y f f f f

hy y y f f f f

+ + + +
+

+ + +
+ +

+ + +
+ +

 
= − + + − + + + 

 
 

= + + + + − 
 

 
= + + + + + 

 
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 1 1 3 7 2
2 4

315 315 179 1169 2156 1984 546 .
992 992 1984n n n n nn n

hy y f f f f f+ + +
+ +

 
− = − + − − + − + 

 
(11) 

2.2. Convergence Analysis 

We examine the order, error constant, zero stability and convergence of the dis-
crete schemes in this paper.  

3 70 1 2
2 4

1 32
31 31

0 0 137 459
1 0 0496 496, , , , ,

243 7693 0 1 0
7936 7936 0 0 0
315 315
992 992

   −   
            − −               = = = = =            − −                  
   −
   

α α α α α  

and  

3 70 1 2
2 4

1 12 64 15
93 93 93 93

039 648 480 27
01984 1984 1984 1984, , , ,

231 7644 16464 0 4
31744 31744 31744 1

179 1169 2156
1984 1984 1984

     −     
             −        = = = = =                    −      
     − −
     

β β β β β .
41

31744
546

1984

 
 
 
 
 
 
 
 
 
 
 

 

Lemma 2.1: The order of each of the discrete schemes in the Two-Step Butcher’s 
scheme in block form (11) is uniformly 5.  

Proof: In finding the order and error constant of the block scheme, we subs-
tituted the above vectors in the following formula.  

3 70 0 1 2
2 4

= + + + + =C 0α α α α α  

3 7 3 71 1 2 0 1 2
2 4 2 4

3 72
2 4

      = + + + − + + + + =           
C 0α α α α β β β β β  

3 7 3 71 2 1 2
2 4 2 4

2 2
2

2
1 3 7 3 72 2
2! 2 4 2 4

            = + + + − + + + =                       
C α α α α β β β β 0  

3 71 2
2 4

3 71 2
2 4

3 3
3

3

2 2
2

1 3 72
3! 2 4

1 3 72
2! 2 4

b

      = + + +      
       

      − + + + =      
       

C

0

α α α α

β β β

 

3 71 2
2 4

3 71 2
2 4

4 4
4

4

3 3
3

1 3 72
4! 2 4

1 3 72
3! 2 4

      = + + +      
       

      − + + + =      
       

C

0

α α α α

β β β β
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3 71 2
2 4

3 71 2
2 4

5 5
5

5

4 4
4

1 3 72
5! 2 4

1 3 72
4! 2 4

      = + + +      
       

      − + + + =      
       

C

0

α α α α

β β β β

 

3 71 2
2 4

3 71 2
2 4

6 6
6

6

5 5
5

1 3 72
6! 2 4

1
5580
21

1 3 7 1587202
1475! 2 4

10158080
231

253952

      = + + +      
       

 − 
 
 

        − + + + =        
         

 
 
 −
 

C α α α α

β β β β

 

The above formula showed that 0 1 2 3 4 5= = = = = =C C C C C C 0  and  

1
5580
21

158720Error Constant .
147

10158080
231

253952

 − 
 
 
 

= ≠ 
 
 
 
 −
 

0  

This implies that the order of each of the discrete schemes in the Two-step 
Butcher’s scheme in block form is 5.       

The block method (11) can be represented as  

1 2

3 2 3 2

7 4 1

2

32 0 0 1
31

1 0 0 0459 1 0 0 0 1 0 0496
7693 0 0 1 00 1 0
7936 0 0 0 1
315 0 0 0
992

1 4 64 50
93 31 93 31

39 81 15 270
1984 248 62 1984
231 1911

31744

n n

n n

n n

n n

y y
y y
y y
y y

h

+ −

+ −

+ −

+

 − 
       −           =       −            
 −
 

−

−
+

1 3

3 2 2

7 4 1

2

10 0 0
93

390 0 0
1984 .

1029 441 2310 0 0 0
7936 1984 31744 31744

179 1169 539 273 1791 0 0 0
1984 1984 496 992 1984

n n

n n

n n

n n

f f
f f

h
f f
f f

+ −

+ −

+ −

+

   −   
                  +                     
   − − − −
   

 

In addition, we need the following matrices in analysing the zero stability of the 
block method,                                                      
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( ) ( )0 0

32 10 0 1 0 0 0
31 31

459 371 0 0 0 0 0
496 496, and .
7693 2430 1 0 0 0 0
7936 7936
315 3150 0 0 0 0 0
992 992

A B

   −   
   
   − −   

= =   
   − −
   
   
   −
   

 

The characteristic polynomial corresponding to (11) is given as  

( ) ( ) ( )( )
4 3

0 0

32 10 0
31 31

459 370
315 315496 496det 0.

7693 243 9920
7936 7936
315 3150 0
992 992

R R

R R
R RR RA B

R R

R

ρ

− −

−
+

= − = = =
−

− −

 

The roots of the characteristic equation ( ) ( )4 3 3 1 0R R R R Rρ = + = + =  are 
0R =  (thrice) and 1R = − . This leads to the following result.  

Lemma 2.2: The Two-step Butcher’s scheme in block form (11) is zero stable, 
consistent and hence convergent.  

Proof: By definition, a Linear Multistep Method is said to be zero-stable if 
none of the roots of its characteristic polynomial has modulus greater than one 
and each of the roots with modulus one must be distinct. This is immediate from 
above. As shown in Lemma 2.1 the order of the Two-step scheme is 5p =  
which is greater than one. Therefore, consistency is established [21]. Since it is 
both zero-stable and consistent, by definition, it is convergent.               

2.3. Region of Absolute Stability 

To plot the region of absolute stability of the Two-step Butcher’s scheme we 
used the following stability matrix equation  

( ) ( ) 1 ,M z C zB I zA D−= + −  

then we substituted it into the stability polynomial in line with Chollom [3]  

( ) ( )( ), det ,r z rI M zρ = −  

where I is the identity matrix of size ( )M z . We then used Newton’s method in 
finding the roots of the stability polynomial and plotted the resultant roots 
where the region of absolute stability of the method is defined as  

( ) ( ){ }: , 1, 1 .E z z r z rρ= ∈ = ≤�  

The region of absolute stability of the Two-Step Butcher’s scheme is as shown in 
Figure 1. We obtained the matrices , ,A B C  and D  from the discrete 
schemes in this fashion:  
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Figure 1. Region of absolute stability of the Two-Step Butcher’s scheme. 
 

1 1

3 2 3 2

7 4 7 4

2 2

2 2

1 1

,

n n

n n

n n

n n

n n

n n

n n

n n

y hf
y hf

y hf
y hf

A D
y hf

B C

y y
y y
y y

+ +

+ +

+ +

+ +

+ +

+ +

   
   
   
   
   
       =      − − − − − − − −   
   
   
   
   
   

 

where the matrices are respectively  

0 0 0 0 0
1 4 64 50
93 31 93 31

39 81 15 270 ,1984 248 62 1984
231 1911 1029 4410

31744 7936 1984 31744
179 1169 539 2731
1984 1984 496 992

A

 
 
 −
 
 
 −=  
 
 
 
 
− − −  

 

179 1169 539 2731
1984 1984 496 992

,1 4 64 50
93 31 93 31
0 0 0 0 0

B

 − − − 
 

=  − 
 
 
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315 3150
992 992

,1 11
31 31

0 0 1

C

 − 
 

=  − − 
 
 

 

and  

0 0 1
32 11
31 31

459 370 .496 496
7693 2430
7936 7936
315 3150
992 992

D

 
 
 − −
 
 
 =  
 
 
 
 

−  

 

So far, we have discussed in great detail the Two-step Butcher’s hybrid scheme 
in block form. The 5th order Butcher’s algorithm in Lambert [19] consists of 
three sets of equations, the first two are used as predictors while the last 
(Two-step Butcher’s scheme) is used as a corrector. In a nutshell, the 5th order 
algorithm is as follows  

 

[ ] ( )

( ) ( )

( )

3 2 1

2 1 1 3 2

2 1 1 3 2
2

9 3 Predictor
8

1 228 23 30 13 16 Predictor
5 15
1 32 12 64 15 Corrector
31 31 93

n n n n

n n n n n n

n n n n n nn

hy y f f

hy y y f f f

hy y y f f f f

+ +

+ + + +

+ + + +
+

− = +

 − − = − − + 

 
+ + = − + + + 

 

 (12) 

It is not self starting unlike the former relying on good initial guesses. Now, no-
tice that  

30 1 2
2

1 0 1 0
, , , ,23 28 0 1

5 5

−          = = = =      −          

α α α α  

and  

30 1 2
2

3 9 008 , , , .8 3226 04 1515

           = = = =         −−         

β β β β  

Lemma 2.3: The order of each of the discrete schemes (predictors) in the 5th 
order Butcher’s algorithm in block form (12) is 3.  

Proof: In finding the order and error constant of the block scheme, we subs-
tituted the above vectors in the following formula.  

30 1 2
2

0 = + + + =C 0α α α α  

3 31 2 0 1 2
2 2

1
32
2

    = + + − + + + =       
C 0α α α β β β β  
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3 31 2 1 2
2 2

2
2

2
1 3 32 2
2! 2 2

        = + + − + + =               
C 0α α α β β β  

3 31 2 1 2
2 2

3 2
3 2

3
1 3 1 32 2
3! 2 2! 2

          = + + − + + =          
             

C 0α α α β β β  

3 31 2 1 2
2 2

4 3
4 3

4

3
1 3 1 3 1282 2

14! 2 3! 2
10

 
           = + + − + + =            

                −  

C α α α β β β  

The above formula showed that 0 1 2 3= = = =C C C C 0  and  

3
128Error Constant .

1
10

 
 

= ≠ 
 −  

0  

This implies that the order of each of the discrete schemes in the Two-step 
Butcher’s scheme in block form is 3.                                    

3. Numerical Experiments 

In this section, we applied both the derived discrete scheme in block form and 
the schemes given in Lambert [19] in Predictor-Corrector form on some initial 
value problems. 

Example 3.1  
Consider the following initial value problem y y′ = −  with initial condition 
( ) 00 1y y= = , 0.2h =  on 0 2.4x≤ ≤  and ( ) e xy x −=  as exact solution. 
Using the above Two-Step Butcher’s scheme in block form with  

( ),y f x y y′ = = − . In matrix form for 0n = , (11) becomes respectively,  

 

1

3
2

7
4

2

240 234 0 32 7
27 8532 0 10400 701

.
441 146216 158720 16464 4629
546 4319 1984 2156 2971

y
y

y

y

 
− −    

    − −     =
    −
    − − −    

 

       (13) 

For 2n = , we have the same matrix as above but different right hand side  

3

7
2

2
15
4

4

240 234 0 32 7 4.692239
27 8532 0 10400 701 469.894282

.
441 146216 158720 16464 4629 3102.911030
546 4319 1984 2156 2971 1991.520559

y
y

y
y

y

 
− − −      

      − − −       = =
      −
      − − − −      

 

(14) 

This process is continued for 4,6,8, ,30n = �  and the results are as shown in 
Figures 2-5. It can be observed from the first four figures of Figure 2 that the 
Two-Step Butcher’s scheme in block form performed at par with the exact solu-
tion. Since we are solving a linear system of equations in each iteration, we plot-
ted the values of n against the norm of the residual = −r b Ay  on a semilogy  
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Figure 2. Comparison of the approximate values of 1 3 2 7 4 2, , ,n n n ny y y y+ + + +  obtained using the Two-Step 

Butcher’s scheme and the exact solution. 
 

 
Figure 3. The norm of the residual = −r b Ay  versus the values of n on a semilogy scale 

obtained from using the Two-Step Butcher’s scheme. 
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Figure 4. The norm of the error between exact and approximate ny  using the Two-Step Butcher’s 
scheme in block form.  

 

 
Figure 5. Absolute errors of the 5th Order Butcher’s algorithm with 1y  the same obtained from 
the Two-Step Butcher’s Scheme. 
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scale and the result is as shown in Figure 3. It can be observed that as n increases, 
the norm of the residual decreases as expected. In the same vein, Figure 4 shows 
a plot of the norm of the Error between the Exact and Approximate values of 

ny  using the Two-Step Butcher’s scheme in block form on a semilogy scale. 
In addition, we used the 5th Order Butcher’s algorithm to solve the same initial 

problem. Since this algorithm is non self starting, we made two different plots 
shown by the red and blue lines of Figure 5 and Figure 6. In Figure 5, we used 
the exact value of 1y  as starting guess in solving the IVP, while in Figure 6, we 
used the 1y  obtained from the Two-Step Butcher’s scheme in solving the IVP 
and the absolute errors are plotted on semilogy scales. We observed that except 
for 0,1,2,3,4,5n = , there is no distinctive difference between the two red and 
blue plots in both figures. In the aforementioned figures, we also super-imposed 
the solution obtained from an implementation of the Two-Step Butcher’s 
scheme on the same figures for better comparison. These are clearly shown by 
the lower yellow and black lines depicting better approximate solutions. Since 
the 5th Order Butcher’s algorithm uses the exact value of 1y , one would have 
expected that it will give better approximations to the exact solution. However, 
for both 3 2ny +  and 2ny + , the Two-Step Butcher’s scheme in block form out-
performed the former. Besides, in the absence of round off errors while it took 
the Two-Step Butcher’s scheme 30n =  (=2(30)) iterations, it took the 5th Order 
Butcher’s scheme 60n =  iterations. 

 

 
Figure 6. Absolute errors of the 5th Order Butcher’s algorithm with 1y  as exact value against Number 
of iterations. 
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Example 3.2  
Consider the following initial value problem 20 20sin cosy y x x′ = − + +  with 

initial condition ( ) 00 1y y= = , 0.1h =  on 0 3.2x≤ ≤ . Using the Two-Step 
Butcher’s scheme in block form we substitute ( ), 20 20sin cosf x y y x x= − + +  
and for 0n = , we obtained the following system of equations  

 

1

3
2

7
4

2

170 1280 0 1230 353.7640264
5400 29440 0 540 4453.076732

.
154840 32980 317440 8820 95869.93272
29680 43120 39680 10920 3978.425343

y
y

y

y

 
−    

    − −     =
    −
    − − −    

 

   (15) 

For 2n = , we obtained the following system of equations  

3

7
2

15
4

4

2

170 1280 0 1230
5400 29440 0 540
154840 32980 317440 8820
29680 43120 39680 10920

10 1022.257690852725
700 12221.5143372693

5100 273505.2293709757
2720 6045.32

y
y

y

y

y

 
−   

   −   
   −
   − −   

 
− 

  − = +
 
 
− − 

.

7476872326

 
 
 
 
 
 

 

This process is continued for 4,6,8, ,30n = �  and the results are as shown in 
Figures 7-10. It can be observed from the first four figures of Figure 7 that the 
Two-Step Butcher’s scheme in block form performed at par with the exact solu-
tion. In addition, Figure 8 shows a plot of computed absolute errors of  

1 3 2 7 4 2, , ,n n n ny y y y+ + + +  using the Two-Step Butcher’s scheme in block form. The 
black line showed that 2ny +  had the least absolute error compared to the rest. 
Since we are solving a linear system of equations in each iteration, we plotted the 
values of n against the norm of the residual = −r b Ay  on a semilogy scale 
and the result is as shown in Figure 9. We observed that as n increases, the norm 
of the residual decreases as expected. In the same vein, Figure 10 shows a plot of 
the norm of the Error between the Exact and Approximate values of ny  using 
the Two-Step Butcher’s scheme in block form on a semilogy scale. However, un-
like the first example in which the 5th Order Butcher’s algorithm performed well, 
here we noticed a great divergence from the exact values. This means that this 
algorithm is not suitable for problems of this nature albeit the trigonometric 
functions involved. This shows the supremacy of the Two-Step Butcher’s scheme 
for solving IVPs. 

Example 3.3  
We seek numerical approximations to the initial value problem 9y y′ = −  

with initial condition ( )0 ey = , 0.1h = . 
We followed the same steps in solving Examples 3.1 and 3.2. We started with 

2n = , this process was continued for 4,6,8, ,30n = �  and the results are as  
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Figure 7. Comparison of the approximate values of 1 3 2 7 4 2, , ,n n n ny y y y+ + + +  obtained using the Two-Step 

Butcher’s scheme and the exact solution. 
 

 
Figure 8. Absolute errors of 1 3 2 7 4 2, , ,n n n ny y y y+ + + +  using the Two-Step Butcher’s scheme in 

block form. 
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Figure 9. The norm of the residual = −r b Ay  versus the values of n on a semilogy scale ob-

tained from using the Two-Step Butcher’s scheme. 
 

 
Figure 10. The norm of the error between the exact and approximate values of ny  using the 
Two-Step Butcher’s scheme in block form versus the number of iterations. 
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shown in Figures 11-15. It can be observed from the first four figures of Figure 
11 that the Two-Step Butcher’s scheme in block form performed at par with the 
exact solution. Since we are solving a linear system of equations in each iteration, 
we plotted the values of n against the norm of the residual = −r b Ay  on a 
semilogy scale and the result is as shown in Figure 12. It can be observed that as 
n increases, the norm of the residual decreases as expected. In the same vein, 
Figure 13 shows a plot of the norm of the Error between the Exact and Ap-
proximate values of ny  using the Two-Step Butcher’s scheme in block form on 
a semilogy scale. 

In addition, we used the 5th Order Butcher’s algorithm to solve the same initial 
problem. Since this algorithm is non self starting, we made two different plots 
shown by the red and blue lines of Figure 14 and Figure 15. In Figure 14, we 
used the exact value of 1y  as starting guess in solving the IVP, while in Figure 
15, we used the 1y  obtained from the Two-Step Butcher’s scheme and the ab-
solute errors are plotted on semilogy scales. We observed that except for  

0,1, 2,3,4,5n = , there is no distinctive difference between the two red and blue 
plots in both figures. In the aforementioned figures, we also super-imposed the 
solution obtained from an implementation of the Two-Step Butcher’s scheme on 
the same figures for better comparison. These are clearly shown by the lower 
yellow and black lines depicting better approximate solutions. For example, at 
 

 
Figure 11. Comparison of the approximate values of 1 3 2 7 4 2, , ,n n n ny y y y+ + + +  obtained using the Two-Step 

Butcher’s scheme and the exact solution. 
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Figure 12. The norm of the residual = −r b Ay  versus the values of n on a semilogy scale ob-

tained from using the Two-Step Butcher’s scheme. 
 

 
Figure 13. The norm of the error between exact and approximate ny  using the Two-Step Butch-
er’s scheme in block form. 
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Figure 14. Absolute errors of the 5th Order Butcher’s algorithm with 1y  the same obtained from 
the Two-Step Butcher’s Scheme. 

 

 
Figure 15. Absolute errors of the 5th Order Butcher’s algorithm with 1y  as exact value against 
Number of iterations. 
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30n =  in Figure 14 and Figure 15, while the minimum absolute error obtained 
using the Two-Step Butcher’s scheme is approximately 10−25, that of the 5th Or-
der Butcher’s algorithm is approximately 10−10 of course in the absence of round 
off errors. Since the 5th Order Butcher’s algorithm uses the exact value of 1y , 
one would have expected that it will give better approximations to the exact so-
lution. However, for both 3 2ny +  and 2ny + , the Two-Step Butcher’s scheme in 
block form outperformed the former. 

4. Conclusion 

We showed that if the step size h is not too small the matrix D will be invertible. 
Nowhere in literature has there been any proof on the necessary conditions for 
the invertibility of the D matrix which was our main aim. In addition, ordinarily 
speaking one would have expected the 5th Order Butcher’s algorithm which uses 
the exact solution 1y  as the starting value to give more accurate results than the 
self-starting Two-step Butcher’s scheme in block form, but to our greatest sur-
prise, the reverse was the case as depicted by the Figure of the absolute errors in 
the preceding section. The accuracy could be due to the fact that all the discrete 
schemes used in the Two-step Butcher’s scheme in block form are of uniform 
order. From the figures in the last section, we can confidently say that the 
Two-step Butcher’s hybrid scheme performed better than its counterpart. In ad-
dition, the former performs well for both stiff and non-stiff IVPs.  
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Appendix. wxMaxima Codes for the Analysis 
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