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Abstract 
To prove the existence of the family of exponential attractors, we first define a 
family of compact, invariant absorbing sets kB . Then we prove that the solu-
tion semigroup has Lipschitz property and discrete squeezing property. Fi-
nally, we obtain a family of exponential attractors and its estimation of di-
mension by combining them with previous theories. Next, we obtain Kir-
chhoff-type random equation by adding product white noise to the right-hand 
side of the equation. To study the existence of random attractors, firstly we 
transform the equation by using Ornstein-Uhlenbeck process. Then we ob-
tain a family of bounded random absorbing sets via estimating the solution of 
the random differential equation. Finally, we prove the asymptotic compact-
ness of semigroup of the stochastic dynamic system; thereby we obtain a fam-
ily of random attractors. 
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1. Introduction 

In 1991, Eden A. et al. [1] proposed the concept of inertial fractal set and how 
inertial fractal set is constructed. Meanwhile, they provided some applications 
for people to study how to prove the existence of exponential attractors. The au-
thors’ relevant research results can be referred to [2] [3] [4] [5]. 

With the advent of Kirchhoff [6] equation and the existence of its solution, 
scholars began to study the existence of exponential attractors of Kirchhoff equ-
ation. Recently, Jia Lan, Ma Qiaozhen [7] studied the Kirchhoff-type suspension 

How to cite this paper: Lin, G.G. and 
Zhou, C.M. (2021) The Family of Exponen-
tial Attractors and Random Attractors for a 
Class of Kirchhoff Equations. Journal of 
Applied Mathematics and Physics, 9, 3143- 
3154. 
https://doi.org/10.4236/jamp.2021.912205 
 
Received: October 8, 2021 
Accepted: December 24, 2021 
Published: December 27, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2021.912205
https://www.scirp.org/
https://doi.org/10.4236/jamp.2021.912205
http://creativecommons.org/licenses/by/4.0/


G. G. Lin, C. M. Zhou 
 

 

DOI: 10.4236/jamp.2021.912205 3144 Journal of Applied Mathematics and Physics 
 

bridge equations:  
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They proved the asymptotic compactness of the semigroup and showed the ex-
istence of exponential attractors by a new method of enhanced flattening prop-
erty under a weaker condition of nonlinearity. 

Lin Guoguang, Wang Wei [8] discussed a class of higher-order Kirchhoff-type 
equation with nonlinear damped term:  
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They obtained the exponential attractors via proving the Lipschitz continuity 
and discrete squeezing property of dynamical system. 

In paper [9], we studied Kirchhoff equation:  
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( ) ( ) ( ) ( )
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,
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= = ∈∂Ω >

�      (1.1) 

where 1m > , 2p ≥ , ( )1nR nΩ ⊆ ≥  is a bounded region with a smooth boun-
dary ∂Ω , [ )0,Q = Ω× ∞  stands for the cylinder in n

x tR R× , the rigid term 
( ) [ )1 0,M s C∈ ∞  is a general function, ( ) ( )2 0m

tuβ β−∆ >  is the strong dis-
sipative term, u uρ  is the nonlinear term and 1ρ ≥ − , ( )f x  denotes the ex-
ternal force. We have proved the existence and uniqueness of solution, a family 
of global attractors and its dimension estimation. In this paper, we will discuss 
the family of the exponential attractors and its dimension estimation. Meanwhile, 
we will discuss the family of random attractors of stochastic Kirchhoff equation 
with product white noise:  
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 (1.2) 

where ( )W t  is independent of time denotes a two-side process in probability 
space ( ), , PΩ  , ( ) ( ){ }, : 0 0C R Rω ωΩ = ∈ = ,   denotes a Borel σ -algebra 
generated by compact-open topology on Ω , P denotes a probability measure. 

Random attractor plays an important role in stochastic dynamic systems be-
cause of its property. Lu D. proposed the concept of stochastic process and its 
application in the literature [10]. Then Guo Boling, Pu Xueke introduced the 
knowledge of random infinite dimensional dynamical system in the literature 
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[11]. Lin G.G., Qin C.L. [12] discussed the existence of the random attractors of 
weekly damped Kirchhoff equation:  

 
( ) ( ) ( ) ( ) ( ) [ )
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t D
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∫  

Following, Lin, G.G., et al. [13] proved the exponential attractor of Kir-
chhoff-type equations with strongly damped terms and source terms:  

( ) ( )( ) ( ) ( ) ( ) ( )
2

d d d d .m mm
t tu u u u g u t f x t q x W tφ + −∆ + ∇ −∆ + = +  

 

More relevant results can be referred to [14] [15] [16] [17]. 

2. Preliminaries 

Combine paper [9] with some new definitions and assumptions, we have:  

( )2H L= Ω , ( ) ( ) ( )1
0 0
m mH H HΩ = Ω Ω∩ , ( ) ( )2

0 0
m k k

kE H H+= Ω × Ω ,  

where 1,2, , 2k m= � , ( )T,U u v= , tv u uε= + , ( )0 0,1,2,iC i> = �  are con-
stants. jλ  denotes the jth eigenvalue of −∆  with the homogeneous Dirichlet 
boundary on Ω . Define the inner of kE  as following:  

 ( ) ( )( ) ( ) ( )2 2, , , , , .m k m k k kξ η ξ η ξ ξ η η+ += ∇ ∇ + ∇ ∇  

( ) ,M s ρ  and p satisfy the following conditions:  
(A1) For 0s∀ ≥ , we have ( )0 11 M sε µ µ+ ≤ ≤ ≤ , where 0 1,µ µ  are con-

stants, and  
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m m
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βλ µλµε β µ
β βλ λ −

   ≤ ≤ + − − − +  
+    

. 

3. Exponential Attractors 

Definition 3.1. Compact set kM  is called a family of exponential attractors 
of ( ){ }( )0

, kt
S t E

≥
, if a family of compact attractors k k kA M E⊆ ⊆  satisfies: 

1) ( ) , 0k kS t M M t⊆ ∀ ≥ ; 
2) kM  has finite fractal dimension 

kMd ; 
3) There exist constants 0 1, 0a a >  such that  
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( )( ) 1
00, , e .a t

k kt dist S t E M a −∀ ≥ ≤  

Definition 3.2. [1] Solution semigroup ( )S t  is Lipschitz continuity, if there 
is a bounded function ( )l t , such that  

( ) ( ) ( ) , , .
kk

kEE
S t U S t V l t U V U V E− ≤ − ∀ ∈  

Definition 3.3. [1] Assume that solution semigroup ( ) : k kS t E E→  is a map 
satisfies Lipschitz continuity, then we say ( )S S t∗ ∗=  is squeezing in kE , if  

10,
8

δ  ∀ ∈ 
 

, 0t∗∃ > , ( )N N δ= , there is  

( ) ( ) , , ,
k k

N N kE E
Q S U S V P S U S V U V E∗ ∗ ∗ ∗− ≥ − ∀ ∈  

or  

, , ,
k k kE ES U S V U V U V Eδ∗ ∗− < − ∀ ∈  

where NP  is an orthogonal projection in ,k N NE Q I P= − . 
Theorem 3.1. [15] Assuming that 
1) ( )S t  possesses a family of ( )0,kE E -compact attractors kA ; 
2) ( )S t  exists a family of positive, invariant compact sets in kE ; 
3) ( )S t  is Lipschitz continuous and squeezing on kE ;  

then ( )S t  exists a family of ( )0,kE E -type exponential attractors kM  and  

( ) ( ) ( )( )( )0 1 1
, ,j l

k kt t j k
M S t M M A S t E

∗

∞ ∞
∗ ∗ ∗≤ ≤ = =

= = ∪∪ ∪ ∪  

moreover, the fractal dimension of kM  satisfies 0 1
kMd cN≤ + , where 0N  is 

the least of N which makes squeezing found. 
Theorem 3.2. [9] Suppose that (A1)-(A4) are valid. Let ( )0 1, ku u E∈ ,  

1,2, , 2k m= � , ( ) ( )2f x L∈ Ω , then the initial boundary value problem (1.1) 
has a global solution ( ),u v  that satisfies ( )( )2

00, ; m ku L H∞ +∈ +∞ Ω ,  
( )( ) ( )( )2 2

0 00, ; 0, ;k m kv L H L T H∞ +∈ +∞ Ω Ω∩ , and there exists a nonnegative real 
number kR  and ( ) 0T t= Ω >  so that  

( ) ( )
2 22 2 2, , .

k

m k k
kE

u v u v R t T+= ∇ + ∇ ≤ >  

According to paper [9], the solution semigroup ( )S t  of the initial boundary 
value problem (1.1) exists a family of ( )0,kE E -compact attractors kA , and we 
can define a family of positive, invariant compact sets ( ) 00k kt T

B S t B
≤ ≤

=∪ , 
where { }2

0 :
kk k kEB U E U R= ∈ ≤ . 

Next, we prove the problem (1.1) exists a family of exponential attractors. 
Let Equation (1.1) transform into a first-order evolution equation:  

( ) ( ) 0, ,t kU F U R U U E+ + = ∈                  (3.1) 

where  

( ) ( ) ( )( )T2 2 2, ,m mF U u v u v u vε εβ β ε ε= − −∆ + −∆ + −  
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20, .

p mm
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Lemma 3.1. (Lipschitz property) 0 0, kU V B∀ ∈ , there is  

( ) ( ) 2
0 0 0 0e ,

kk

t
EE

S t U S t V U Vα− ≤ −  

where 
2 2

2 2 1 2 1
2 2

1

max ,
m

m k

C C λ
α ε β ε

λ +

 +
= + 

 
. 

Proof. Let ( ) ( ) ( ) ( ) ( )( )T
,U t U t V t u t v t= − = , where  
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0 2 2,V t S t V u t v t= = ,  
( ) ( ) ( )1 2u t u t u t= − , then we have  

 ( ) ( ) ( ) 0,tU F U R U R V+ + − =                   (3.2) 

Taking the inner product of Equation (3.2) with W in kE , and we get that  

 ( )( ) ( ) ( )( )21 d , , 0,
2 d kk k

t EE E
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t
+ + − =          (3.3) 

By using Young’s inequality, Holder’s inequality, Poincare’s inequality and dif-
ferential mean value theorem, we obtain  
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Substitute (3.4) and (3.5) into (3.3), we have  
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, then we 

have  

 
22 22

1 2
d .
d k k

m k
E E

U v U
t

α α++ ∇ ≤              (3.6) 

By using Gronwall’s inequality, we get  
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Meanwhile, we obtain ( )( )
2
2e

k

t

BLip S t
α

≤ . 

Lemma 3.1 is proved. 
Lemma 3.2. (discrete squeezing) 0 0, kU V B∀ ∈ , if  

( ) ( )0 0 0 0 ,
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Q S U S V P S U S V∗ ∗ ∗ ∗− ≥ −  
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0 0 0 0
1 .
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Proof. Applying NQ  to Equation (3.2), we get  
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Taking the inner product of Equation (3.8) with NQ U  in kE , we obtain  
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Similar to the process of Lemma 3.1, we have  
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By using Gronwall’s inequality, we get  
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Therefore, when 
4

7 ln 2t
α∗ ≤ − , we have  

0 0 0 0
1 .
8k kE ES U S V U V∗ ∗− ≤ −  

Lemma 3.2 is proved. 
In fact, Theorem 3.1 has provided the theoretical basis to prove the existence 

of random attractors. Because of the value of ( )1, , 2k k m= � , furthermore, we 
can obtain the existence theorem of the family of exponential attractors via 
Lemma 3.1 and Lemma 3.2 as following: 

Theorem 3.3. Assume (A1)-(A4) are valid, f H∈ , then kU E∀ ∈ , the solu-
tion semigroup ( )S t  of the initial boundary value problem (1.1) exists a family 
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of ( )0,kE E -type exponential attractors kM , and  
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4. Random Attractors 

Define the time-translation operator on Ω : ( ) ( ) ( )s t t s sθ ω ω ω= + − , then 
{ }( ), , , t t R

P θ
∈

Ω   constitutes an ergodic, metric dynamical system. According 
to paper [8], we have some definitions and theorems as following: 

Definition 4.1. { }( ), , , t t R
P θ

∈
Ω   is a metric dynamical system,  

( ) ( ) ( )( ),k kB R B E B E+ × ×  is measurable. φ  is called a continuous stochas-
tic dynamical system, if map : k kR E Eφ + ×Ω× →  satisfies 

1) ( )0, , ,kx x x Eφ ω ω= ∈ ∈Ω ; 
2) ( ) ( ) ( ), , , , , , ,s kt s t s t s R x Eφ ω φ θ ω φ ω ω+ = ∀ ∈ ∈ ∈Ω� ; 
3) ( ) ( ), , , ,t x t xω φ ω→  is continuous. 
Definition 4.2. [8] k kB E⊂  is called a family of tempered random sets, if  

( )( )lim inf e 0, ,s
k ss

d Bβ θ ω ω−
−→∞

= ∈Ω  

where 0β > , ( ) sup
k kk x B Ed B x∈= . 

Definition 4.3. [8] ( )D ω  is the set of all the random sets on kE . Random 
set ( )kB ω  is called a family of absorption sets on ( )D ω , if ( ) ( )kB Dω ω∀ ∈ , 

0T∃ > , such that  

( ) ( ) ( )0, , . . .t k t kt B B P a eφ θ ω θ ω ω ω− − ⊂ − ∈Ω  

Definition 4.4. [8] Random set ( )k ω  is called a family of random attrac-
tors of continuous random dynamic system ( ){ }, ;

t s
S t s ω

≥
 on kE , if ( )k ω  

satisfies: 
1) ( )k ω  is a family of random compact sets; 
2) ( )k ω  is a family of invariant sets, which means  

( ) ( ) ( )0, , k k tt S t ω ω θ ω∀ > =  ; 
3) ( )k ω  attracts all sets on ( )D ω , which means ( ) ( )kB Dω ω∀ ∈ , there is  

( ) ( ) ( )( )lim , , 0,t k t kt
d S t Bθ ω ω ω− −→∞

Θ =  

where ( ), sup infx A y Bd A B x y∈ ∈= −  denotes the Hausdorff half-distance. 
Theorem 4.1. Assume the family of random sets ( ) ( )kB Dω ω∈  is a family 

of random absorbing sets of the stochastic dynamic system ( ){ }, ;
t s

S t s ω
≥

, and it 
satisfies: 

1) random set ( )kB ω  is closed set on kE ; 
2) . .P a eω∀ − ∈Ω , ( )kB ω  is asymptotically compact. Namely, when  

nt → +∞ , there exists a convergent subsequence in kE  for ( ),
nn n tx S t θ ω−∀ ∈ . 

Then there exists a unique family of global attractors ( )k ω  of the stochas-
tic dynamic system ( ){ } 0

,
t

S t ω
≥

, and  

( ) ( ) ( )( ) , .k t k tt t
S t B

τ ω τ
ω θ ω θ ω− −≥ ≥

=∩ ∪  
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Rewrite Equation (1.2) into a stochastic differential equation:  

 ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

0 1

d d d ,

,0 , ,0 , , 0,

p m mm
t tp
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 = = ∈∂Ω >
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Equation (4.1) can be reduced to  
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Let ( ) ( )0
e ds

t t s sδ δ θ ω θ ω
−∞

= = −∫ , where ( )tδ θ ω  denotes Ornstein-Uhlen- 
beck process and is the solution of Ito equation:  

d d d .t Wδ δ+ =  

Let ( ) ( )tz v q x δ θ ω= − , furthermore, rewrite Equation (4.1)  
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Lemma 4.1. ( )T
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, ,

2 2

2 2

2 2

k

pm k m k m m k m k
E p

m k m k k k m k k

m k m k k k

m
k m k k

m
m k

m

Lx x x x x M D u x x

x x x x x x

x x x x

x x x

x

ε

βε ε β ε

ε εε βε ε

βλ β ε

βε ε ε βλ
β βλ

+ + + +

+ + +

+ +

+

+

= ∇ − ∇ + ∇ ∇

− ∇ ∇ + ∇ ∇ + ∇ − ∇

≥ ∇ − − ∇ − ∇ − ∇

+ ∇ + ∇ − ∇

 + −
≥ − ∇ + 
 

2 2

2

2 22
2

2

.
2

k

m k

x

x

βε ε

β βε βε +

 
− ∇ 

 
 − +

+ ∇ 
 

 

Let 
2 2 2

5 2min ,
2 22

m

m

βε ε ε βλ βεα ε
β βλ

 + −
= − − 

 
, 2

6α β βε βε= − + , we ob-

tain  
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( )
22 26

5 2, .
2k k

m k
E ELx x x x

α
α +≥ + ∇  

Lemma 4.2. Assume ϕ  is the solution of problem (4.3), then there exists a 
bounded random compact set ( ) ( )0k kB D Eω ∈� , such that for arbitrarily ran-
dom set ( ) ( )k kB D Eω ∈ , there is a random variable 0kT > , we have  

( ) ( ) ( )0, , , .t k t k kt B B t Tϕ θ ω θ ω ω ω− ⊂ ∀ > ∈Ω�  

Proof. Suppose ψ  is the solution of problem (4.3). Taking the inner product 
of Equation (4.3) with ψ  in kE , we obtain  

( ) ( )( )21 d , , , .
2 d kk k

tEE E
L F

t
ψ ψ ψ θ ω ψ ψ+ =             (4.4) 

According to Lemma 4.1, we get  

 ( )
22 26

5, .
2k k

m k
E EL z

α
ψ ψ α ψ +≥ + ∇               (4.5) 

( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

( ) ( )

2 2

2

22 21
32

1

2 22
2

1

, , , ,

, 1 ,

1
2 22

1 1 .
2 2 2

k

k

m k m k k k
t E

m k k k k

k
m k

mE

m k
tm

F q x u u u z

q x z q x z

z C

q x

ρθ ω ψ ψ δ

β δ ε δ

λε βψ λ
λ

β ε δ θ ω
ε λ

+ +

+

+

+

= ∇ ∇ − ∇ ∇

− ∇ ∇ + + ∇ ∇

 +
≤ + + + 

 
 +

− + + ∇ 
 

  (4.6) 

Substitute (4.5)-(4.6) into (4.4), we have  

 
( )

( ) ( )

22 2 21
5 6 2

1

2 22
3 2

1

1d 2
d 2

1 12 .

k k

k
m k

mE E

m k
tm

z
t

C q x

λ
ψ α ε ψ α β

λ

εβ δ θ ω
ε λ

+

+

 +
+ − + − − ∇ 

 
 +

≤ + + + ∇ 
 

 

Let 4 52C α ε= − , 5 32C C= , ( )
22

6 2
1

1 1 m k
mC q xεβ

ε λ
++

= + + ∇ , then we obtain  

 ( ) 22 2
4 5 6

d .
d k k tE EC C C
t
ψ ψ δ θ ω+ ≤ +              (4.7) 

By using Gronwall’s inequality, we get  

 ( ) ( ) ( ) ( )( )44
22 2

0 5 60
, e e d .

k k

t C t rC t
tE E

t C C rψ ω ψ ω δ θ ω− −−≤ + +∫     (4.8) 

Because ( )tδ θ ω  is tempered, ( )tδ θ ω  is continuous about t. According to paper 
[11], we can obtain a temper random variable 1 :r R+Ω → , so that ,t R ω∀ ∈ ∈Ω , 
we have  

 ( ) ( ) ( )
42 2

1 1e .
C

t

t tr rδ θ ω θ ω ω≤ ≤                  (4.9) 

Substitute tθ ω−  for ω  in inequality (4.8), and let r tτ = − , then we have  
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( ) ( ) ( )( )
( ) ( )

4 4

4

02 2 2
0 5 6

2 5 6
0 1

6 4

, e e d

2
e .

k k

k

C t C
t tE E t

C t
t E

t C C

C C
r

C C

τ
τψ θ ω ψ θ ω δ θ ω τ

ψ θ ω ω

−
− − −

−
−

≤ + +

≤ + +

∫
 (4.10) 

Because ( ) ( )0 t k tBψ θ ω θ ω− −∈  is tempered and ( )tδ θ ω−  is tempered,  

( ) ( )2 5 6
0 1

6 4

2C C
R r

C C
ω ω= +  is also tempered. Then  

( ){ }0 0:
kk k EB E Rψ ψ ω= ∈ ≤�  is a random attractor set. Because of  

( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

0

TT
0

,

, 0, 0, ,

t t

t t t t

S t

t q x q x

θ ω ψ θ ω

ϕ θ ω ψ θ ω δ θ ω δ θ ω

− −

− − − −= + −

�
 

( ) ( ) ( ) ( ){ }0 0 0:
k

k
k k tEB E R q x Rϕ ϕ ω δ θ ω ω−= ∈ ≤ + ∇ =�  is a random attrac-

tor set of ( ),tϕ ω . 
Lemma 4.3. When 1,2, , 2k m= � , ( ) ( )k kB D Eω∀ ∈ , assume ( )tϕ  is the 

solution of problem (4.2), and we decompose 1 2ϕ ϕ ϕ= + , where  

 
( ) ( )

1 1
T

01 0 1 0

d d 0,

, ,

L t

u u u

ϕ ϕ

ϕ ω ε

+ =


= +
                    (4.11) 

( )
( )

2 2

02

d d , ,

0,
tL t Fϕ ϕ θ ω ϕ

ϕ ω

 + =


=
                    (4.12) 

then ( ) ( )2
1 , 0t k

t tϕ θ ω− → →∞ , ( ) ( )0 t k tBϕ θ ω θ ω− −∀ ∈ . 
Also, there exists a temper random radius ( )1R ω , such that ω∀ ∈Ω , ( )1R ω  

satisfies ( ) ( )2
2 1, t k

t Rϕ ω ω−Θ ≤ . 
Proof. Suppose 1 2ψ ψ ψ= +  is the solution of Equation (4.4), then we can 

know from Equation (4.11) and Equation (4.12) that 1 2,ψ ψ  satisfy  

 
( ) ( )( )

1 1
T

01 0 1 0

0,

, ,

t

t

L

u u u q x

ψ ψ

ψ ε δ θ ω

+ =


= + −
              (4.13) 

( )
( )

2 2 2

02

, ,

0,
t tL Fψ ψ ψ θ ω

ψ ω

 + =


=
                   (4.14) 

Taking the inner product of Equation (4.13) with 1ψ  in kE , we obtain  

 ( )2
1 1 1

1 d , 0.
2 d kE L

t
ψ ψ ψ+ =                   (4.15) 

By using Gronwall’s inequality and Lemma 4.1, we have  

 ( ) ( )5
2 22

1 01, e .
k k

t
E E

t αψ ω ψ ω−≤                 (4.16) 

Substitute tθ ω−  for ω  in inequality (4.16), and ( )t kBδ θ ω ∈  is tempered, 
thus  

( ) ( ) ( ) ( ) ( )5
2 22

1 01 01, e 0 ,
kk

t
t t k tEE

t t Bαψ θ ω ψ ω ψ θ ω θ ω−
− − −≤ → →∞ ∀ ∈  

Taking the inner product of Equation (4.14) with 2ψ  in kE , with Lemma 4.1 
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and Lemma 4.2 we have  

 ( )
2

22 2
2 4 2 7 6

d .
d m k tE EC C C
t
ψ ψ δ θ ω+ ≤ +            (4.17) 

Substitute tθ ω−  for ω  in inequality (4.17), and by using Gronwall’s inequali-
ty, we obtain  

 
( ) ( ) ( ) ( )( )

( )

44
2 2 2

2 02 7 60

7 6
1

4 4

, e , e d

2
,

k k

t CC t
t tE E

t t C C r

C C
r

C C

τ
τψ θ ω ψ θ ω δ θ ω

ω

−
− −≤ + +

≤ +

∫
 (4.18) 

Thus, there exists a temper random radius ( ) ( )2 7 6
1 1

4 4

2C C
R r

C C
ω ω= + , such that 

ω∀ ∈Ω , ( ) ( )2 2
2 1, t k

t Rϕ ω ω−Θ ≤ . 

Lemma 4.4. The stochastic dynamic system ( ){ }, , 0S t tω ≥  determined by 
problem (4.3) has a family of compact absorbing sets ( )kD ω , while 0t = , 

. .P a eω− ∈Ω . 
Proof. Suppose ( )kD ω  be a closed ball with radius ( )2

1R ω  in kE . Ac-
cording to Rellich-Kondrachov Compact Embedding Theorem, 0kE E→ . Then 

( )kD ω  is the compact set in kE . For any tempered random set  
( ) ( ), ,k t kB t Bω ϕ θ ω−∀ ∈ , according to Lemma 4.3, we have ( )2 1 kDϕ ϕ ϕ ω= − ∈ , 

then for all 0kt T≥ > , when t →∞ , via Lemma 4.2 we have  

( ) ( ) ( )( )
( ) ( )

( ) ( )

( )

( )4

2

2
1

22
01

, , inf ,

,

e , 0

k kk

k

k

E t k t k t Et D

t E

C t
t E

d S t B D t t

t

t

ν ω
θ ω θ ω ω ϕ θ ω ν

ϕ θ ω

ϕ θ ω

− − −∈

−

−
−

= −

≤

≤ →

 

Lemma 4.4 is proved. 
According to the lemma mentioned above, we verified two conditions in 

Theorem 4.1. Similarly, we can obtain the theorem as following: 
Theorem 4.2. The stochastic dynamic system ( ){ }, , 0S t tω ≥  has a family of 

random attractors ( ) ( ) ,k k kD Eω ω ω⊂ ⊂ ∈Ω , and there exists a slowly in-
creasing family of random sets ( )kD ω , such that  

( ) ( ) ( )( ) , , . . .k t k tt t
S t D P a e

τ ω τ
ω ω ω ω− −≥ ≥

= Θ Θ − ∈Ω∩ ∪  

and  

( ) ( ) ( ), , 1, 2, , 2 .k k tS t k mω ω θ ω= = �   
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